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partly because in the usual micro data context it requires extraneous information
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Errors in Variables in Panel Data

Zvi Griliches and Jerry A. Hausman¥*

Panel data based on various longitudinal surveys have become ubiquitous in
economics in recent years. Their popularity stems in part from their ability to
allow and control for various "individual effects" and other relatively slowly
changing left-out-variables. TUsing the analysis of covariance approach, one can
estimate the relevant relationships from the "within" dimension of the data.
Quite often, however, the "within" results are unsatisfactory, "too low" and
insignificant. The tendency is then to blame this unhappy outcome, among other
things, on errors of measurement in the independent variables whose relative
importance gets magnified in the within dimension.

That errors of measurement are important in micro data is well known but has
had little influence on econometric practice.l! The standard errors-in-variables
model has not been applied widely, partly because in the usual context it
requires extraneous information to identify the parameters of interest. It is
rather obvious but does not appear to he widely known that in the panel data
context a variety of errors-in-variables models may be identifiable and
estimable without the use of external instruments. We exposit and develop this
idea and illustrate its application in a relatively simple but not uninteresfing
case: the estimation of "labor demand" relationships, alsc known as the "short
run increasing returns to scale” puzzle; see Solow (1967), and Medoff and Fay

(1983).

* Harvard and MIT and the NBER. We would like to thank the NSF and NBER for
research support. Adam Jaffe and Bruce Meyer provided research assistance.

1. Matters are somewhat better in sociology: see Griliches (1984) for general
discussion, and Hauser, Bielby, and Featherman, (1977) for an applied example.



In the next four sections we first outline our approach in a very simple
context; next we present and discuss the algebra for the more general case and
discuss different estimation strategies; then we turn to a description and
discussion of our empirical example, and conclude with recommendations for a

particular empirical strategy which should be followed when analyzing such data.
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I. The Problem of Errors in Variables

It is clear that once one has a time series and one is willing to assume
that errors of measurement are serially uncorrelated then one can use lagged
values of the relevant variables as instruments. The problem in panel data is
that because one is likely to assume the presence of correlated individual
effects, lagged values are not valid instruments without further analysis. But,
because the errors of measurement are assumed to have a particular time series
structure (usually uncorrelated over time), different transformations of the data
will induce different and deduceable changes in the biases induced by such errors
of measurement in the estimated parameters, which can be used to identify the
importance of such errors and recover the "true" parameters.

The following simple model will serve to illustrate our main ideas. Let the
true equation be of the form
1)y =y * Brgy gy
where the oy 's are unobserved individual effects which nay be correlated with
the true independent variable of interest, the Ziye The n;, are the standard
"best case” disturbances: i.i.d., with mean zero and variance ci.l The Z,4 are
not observed directly, however. Only their erroneous reflection, the Xy
(1.2) X., = z,

it T Zit T Vig

. . s . . 2
are observed, where Viy is an i.i.d. measurement error with variance o,

If OLS is applied to the observed variables, the equation to be estimated is

(1.3) Yig =@ * Bxpy = BVt omgy + (om0

and the resulting parameters will be biased for two distinct reasons: (1)

because of the correlation of the Xit with the left-out individual effects,

1. These assumptions correspond to the usual random effects specification. We
relax this assunption in our estimation and test procedures.



(usually upward) and (2) downward because of the negative correlation between the
observed Xi4 and the new composite disturbance term.

It is clear that in panel data one can eliminate the first source of bias by
going "within" by analyzing deviations around individual means. It is also
reasonably well known that going within might exacerbate the second source of
bias and make things worse rather than better.! What is less obvious is that
there are different ways of eliminafing the first source of bias, that they imply
different consequences for the magnitudes for the second type of bias, and hence
provide an opportunity for identifying its magnitude and recovering the "true”
cecefficients.

An alternative to the "within" estimator is a first difference estimator,
which also sweeps out the individual effects. Let us contrast then the
consequence of errors of measurement for these two different ways of dealing with
the "unobserved individual effects” problem.

First difference model Within model

Vi Voot =800 gxyp 1 )-Bvy =V I*(ngpmnyg )
- V= < - v _—
(7547730280 g =xg D7B(vyp-vy I+(nyyp-my )
dyjy = Bdxyp= BAvy+ dngy F o= -8V + 3
where the it it it it
Wit~ Vit Vi1 Yit™ Yig T Y4,

and similarily for the other variables.

Given our assumptions

257 2

a, 1 Y
(1.4)  plim by gy, = B01- ppggy)s pLim b = 8(1- 5 —]
yX Var x

1, See Hausman (1978) and CGriliches (1979) for a related discussion in the
context of the analysis of sibling data.
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It will be shown in the next section, that in the most likely cases in

"

economics: positively serially correlated "true" x's (z's) with a declining

correlogram and for T > 2,

2(m)

T var X

(1.5) Var(dx) <

and hence lbias bd l> bias bw - That is, errors of measurement will usually

bias the first difference estimators downward (towards zero) by more than they
will bias the within estimators.

Note, however, that if we have estimated both b. and bw we have already

d

computed Var dx and Var X and hence have all the ingredients to solve out for the

2 . . .
unknown a, and 8. In fact, consistent estimates can be had from

A ~ ~
(1.6) g =12 b, / Var(dx) -(T-1)b, / TVar x]/[2/var dx - (T-1)/TVar %]
s
3-b
(1.7) 03 _ Aé o Var2ux
3

Several points are worth noting here:

1. These results were derived assuming that the measurement errors were not
serially correlated, while the true z's are. It is possible to allow for serial
correlation in the measurement errors, the v's, provided that we know its
magnitude. For example, if x is a gross capital stock measure based on a 20 year
life assumption and the i.i.d. measurement errors occur in the measurement of
investment, then the first order serial correlation of the errors in the capital

stock is 19/20 = .95. The first difference bias formula now becomes

2 2
‘32Gv(1-p5) ‘O°15'0;
(1.8) pllm(bd‘]a) = Var ax Var dx
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and a similar expression can be worked out for the hias of the within estimator.
Other forms of serial dependence in the errors of measurement can be both tested
for and consistent estimators can be derived in their presence.

2. We have derived these results assuming only one independent variable.
If there are more independent variables in the equation, but they are not subject
to error, they can be swept out from all the other variables and the formulae
reinterpreted in terms of the variances of residuals from regressions on these
other variables. If gome of them are also subject to measurement error, the
formulae become more complex but can be similarly derived provided that these
measurement srrors are mutually uncorrelated (or correlated with a known

correlation).

%. The first difference and the within estimators are not the only ones
that will give us an implicit estimate of the bias. We could define, for
example, the "longest difference" tdy = Y=Yy and similarly dx = Ln=Xg, which
lead to

(1.9) plim b, = 8 - 6203 /Var(gdx)

2d
. 2 .
and allows for another estimate of B and a,- In fact, there are T/2 such
independent estimates which can be combined optimally to improve upon the
efficiency of the estimators outlined above. For a 6 period cross-section, we
2
can compute estimates of from Te~Yyq» y5-y2, and y4-y3 and derive (3 and 9, from
another round of estimation on using the relationships

5
(1.10) (a) bey =8 - 2B0V /Var dx61

]

(b) bs, = B - 280, /Var dx,

N <N

(c) h

|
o)

- ZBGV /Var dx

43 = 43



)
with B given by the "constant” of such a "regression" and o; derivable from its

slope. More general optimal restricted estimators are developed below.

4. While we have expressed these formulae in terms of the observable Var
dx, Var ;, and so forth, in many contexts it may be more interesting to
reinterpret them in terms of the parameters for the "true" unobserved z variable,
its variance and serial correlation structure. This will be done in the next
gsection, where we shall present a more rigorous derivation of some of these

results.



ITI. Derivation of Results

We now reconsider our basic model of equation (1.1) and derive the

relationship among the various estimators. The specification of the equation is

(2.1) gy =g Bxgpt My BV T @yt BXgyt ey ImT,ee0 N Es1,T
For ease in derivation in the

where Vit arises from the errors in variables.

results, we assume that all the random variables are jointly covariance

stationary. For the present we also assume that both Nt and Vi are not

serially correlated, EnitnirzEv*tvir=o for t#t. We first calculate the

probability limit of the first difference estimator.

1 ] - . 1 1] 3
(2.2) plim b,-B = plim (ﬁT dx'dx) ! plim (ﬁf dx'de]

-1 2

-1 2 2 2
) (_20\/8) - -(02(1—01)+0V) UVB

N o
3V

= (20 (1—p1) + 29

<

where p1is the correlation between the true regression variables z since x = z+v.

Note that as expected the inconsistency increases as the correlation increases
First differencing "removes more of the signal” for

so long as it 1is positive.

given 05 and 03 the higher is Py which exacerbates the errors in variables

problem.

For the within estimator we calculate the probability limit to be

(2.3)  plim b -B = plin (1= ¥ ¥)7' plin (lr ¥'7)

203 T m
e =5 L (907 - G ) o 2]

n

2“9 -1 2
= - [0, - T L (T'J)Oj} B
where all plims in the paper are taken as Now.

The formula is the same as the usual OLS case except for the term involving the



gerial correlation coefficients o5 for the z's which arises from the within

transformation X,, = x,, - 1-X X, .. To compare the inconsistencies between the
it it T ij

first difference and within estimators note that plim bd does not depend on T

(as N+=), but that plim bw does depend on T because of the within transformation.

We will develop the conditions which will cause the within estimator to be less

inconsistent which we expect to be the usual case. The comparison is given in

Table 2.1.

Table 2.1: Comparison of First Difference and Within Estimator

T | plim b -8 plim b_-B Conditions for
d w
[v, Flbg Po,py>0
2 -1 2 2 2 -1 2
2 | -(og = o py) o B |- (o =0 p,) o, B same
2
2 g
" z -1 2 2 1
5 = (o = =(201*05)) o8 3 et T e
2 02
4 " (o, - =2 (3p,+2p,+p: ) o°8 e Lo+ Lo
T WPTEPRTPs) OuR [ 7 AT 3 07 g Py
2
20
" z T~ -1 2 2
Torw —(c - T-_T o T pJ) O—VB ﬁ (p1+p2*....> < p1

For T=2 the estimators give numerically identical results since the within

transformation and first differences are related by the formula %-dx = X. Tor

<

T=3 the condition is p1>p2 which is assured with a declining correlogram. For

2 1
T=4 the required condition is p1> 3 P + 3 Pz which again follows from a

=



declining correlogram. The general result follows by induction. This condition
then is a sufficient condition for the within estimator to be less inconsistent.
The steepness in the decline of the correlogram will determine the differences in
magnitude, but in many cases we would expect a substantial difference.

The situation reverses if we difference the data more than one period apart.

Define dYx = x*-xt—j Then the probability limit of the least squares estimator

on these data is

. _ 2 2yv-1 2
(2.4) plim bj-ﬁ = - (Oz (1—pj) + gv) g, B
For example, take T=3 and j=2. The inconsistency of b,is smaller than bwso long

as py” P for positive Py For T=4 and j=3 the condition is 5 o3< 391 + 2p2,
which holds under the assumption of a declining correlogram. For T=4 and j=2 so
that the 'longest' difference is not used the condition is 4p,< 3 py*+ 1 p3 so
that a declining correlogram is not sufficient to assure the inconsistency in b2
is less than bw' The general result is that for a given sample T, the
estimator with j=T-1 will be less inconsistent than bw but for intermediate
1<{j<T-1 no definite ordering can be made. Note that our comparison only involves
the inconsistency in the estimators for the case N+w. For moderate size N the
mean square error may be a better comparison criterion, and the estimator with
j=T-1 eliminates a non-negligible proportion (T-2) / (T-1) of the observations.
We now turn to the general case with serial correlation in the Vit'g and
the n .. so that Vin) = E@IN and V(v) = Q:IN where both © and Q are T x T
matrices with all diagonal elements assumed equal. For the first difference

estimator it is convenient to define a bidiagonal matrix X with -1 on the

diagonal and +1 on the superdiagonal. Then we define A = K'QDIN. We transform
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the model of equation (2.1) with A to find
(2.4) Ay = AXB + Aa + Ae
and estimate by OLS, b, = (X'A'A0)7'X'A'Ay. Now Ev'A'Av = tr [(A'2)a®)1]
= 2N(T-1)03(1—r1) by stationarity where r, is the correlation coefficient

from Q. Therefore we calculate the inconsistency of the first difference

estimator

< . 1 1A -1 . 1 t a0
(2.5) plim b8 = plim (m‘ X'A'AX) ' plim (W -v'A'AVB)

[2(m-1)(a2(1=p,) + & (1-2)) |7 [-2(2-1) o2 (1-x, )]

- oi (1—r1) B-

2 2
=={a, (1-py) + o, (1-r,) |
The bias of the first difference estimation here as compared to equation (2.2) is

less if r1>0. The more highly positively correlated the measurement error is,

the more you eliminate using first differences. Kowever, the presumption that
r1>0 seems less strong in economic data than the assumption we used before that
Py > 0.

To calculate the inconsistency of the within estimator define the projection

~

matrix J as %—times a matrix of all ones. The complement is q = IT—J
and transform using Q = G(:)IN, so that
(2.6) Qr = QXB + Qa + Qe

The within estimator follows from applying OLS to equation (2.6). Note that

1 1 T-1 > 203 T
Egv'iQey = T—tr(QQ()jI) = N[— o, - —;E 321 (T-3) rj]. To calculate the

inconsistency we take plims

(2.7)  plim b -B = plin [%rrf X'Q"X]"'plin ';T'T‘ [-x'a"avs]



o 2 ) ) 42 203
= oy = ==y 1 log (=0)oy * oy (T-0) r5) (o, - qrgopy] (T-3)74 18

J

As with first differences, the inconsistency in the first difference estimator
decreases with respect to the uncorrelated case so long as all rj> 0. Again this
assumption is not as compelling as the analogous assumption about the pj's. To
compare the bias of the first difference and within estimators, first note that
for T=2 they are identical as before. For T>3 it may be reasénable to assume
that pj> r.>o for all j. That is, serial correlation is higher in the true

variable than in the measurement error. Then for the case T=3 the within

o,~ o, 1-p
estimator is less biased then the first difference estimator if 1 £ 1-r1

SR 1

1

which holds if the serial correlation in the true variable decreases less slowly
than the serial correlation in the measurement error. This type of condition
generalizes to values otf T larger than 3. While the condition seems plausible,
that p. > T and that the decrease in the serial correlation of the pj's be less
than for the rj's, it is not overwhelming. Counterexamples are easy to construct.
The particular case under consideration would need to be examined.

The 'long' difference estimator is the same as equation (2.5) with 0y and ry
replaced by p. and rj, respectively. Note that the most favorable case need no
longer be j=T-1 because rj decreases along with pj- The j which minimizes the
inconsistency maximizes the ratio (1-pj) / (1-rj). For a positive and declining
correlogram for both pj and rj the tradeoff is between removing too much signal

and removing some of the noise. If both z and v follows AR1 processes with

'p1>r1then j=T-1 will minimize the inconsistency. On the other hand, if z follows

1. The necessary and sufficient condition is (1-p )/(1-r ) < (1- %-p1— % pﬁ)/
1 1 2

2 1
(1-— 3‘ I'1 - 3 I‘g)n



13

an AR1 process and v follows an MA! process, then j=1 can be optimal. The
optimal choice depends on both the type of process as well as the particular

coefficient values.

A question which now arises is within a family of transformations Ry =
RXB + Ra + Re to eliminate a, which transformation will have good properties
with respect to errors in measurement? If we write R = g(ﬁ)l note that each row
of X must sum to zero +to eliminate a from equation (2.1). Even if we choose as
the criterion function the minimization of the inconsistency, the optimal R
depends on the properties of Z and Q.1 In the uncorrelated case, diagonal 2,
with a declining correlogram for z, the long difference estimator, j=T-1,
minimizes minus the inconsistency. For the correlated case of nondiagonal 72, the

optimal estimator depends on hoth Z and Q. A potentially interesting topic

for future research would be to determine the optimal R for interesting

stochastic processes which determine Z and Q.

We now turn to the question of consistent estimation. In the general
correlated case, the problem remains unidentified. That is, external instruments
uncorrelated with the measurement error would be necessary for consistent
estimation. We therefore concentrate on the uncorrelated case. The procedures
we develop can also be applied in the 'partial' correlation case, e.g. if v
follows an MAm process with m<T. The strategy we propose here is to take
advantage of the existence of alternative consistent estimators, i.e.

overidentification, to test the assumption of no correlation in the v's. If the

1, The inconsistency of the estimator may well constitute the major part of a
criterion such as asymptotic mean square error given the quite large samples,
in N, which are often present with panel data.
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alternative estimates of B are mutually coherent, than the researcher can have
some confidence that his assumptions hold true. The basic formula (2.2) leads to
our estimation strategy which is a consideration of the differenced estimator.

The appropriate weighted average of two differenced estimators leads to a

consistent estimate of B since

(2.8) piim [T (adxadx’ - axax' )™ [z (@%x ady - axay] -

[AS]

(c?-o‘f)" [0.8—2038-6$6+2033)=B

Therefore, a consistent estimator follows from dividing the differences of the

(]

variances into the differences of the covariances. Of course, for 7>3 more than

one such estimator exists.

A convenient estimation and testing scheme arises gince m = T-2 such

estimators exist given our assumption of staticnarity. Consider the stacked set

of equations

il
—~
Q
N
1
_Q
S—

(2.9) 8,

o -

N WM

.

By = (65 = oy )7 (wy - @)

where oi are the variances of the k differenced X's, W, is the covariance of the

k differenced X's and y's , and the subscript on the B, denotes the separation of

Q *°*Q

]

the differencing when j is the longest possible differences. The variances of
the Bj's can be calculated straightforwardly, if somewhat tediously. However, a
more clever approach is to recognize that estimation of say 61 by equation (2.9)
is equivalent asymptotically to estimation of the first difference equation using
adjacent X's as instruments. TFor example, if T=3 we would use Yoy = (X2-X1) B
+ (v2-v1)s * n,mny with X3 as an instrument and similarly Y5Y5 = (X3- X2)8+(v3-

v2)5 * nomny with X1 as an instrument. Under the assumption that the errors of



measurement are uncorrelated the adjacent X's provide valid instruments.!

Perhaps more importantly, this approach does not depend on the stationarity

assumption so that it has general applicability to the panel data case.
Therefore, the recommended approach is to stack the differenced equations

which correspond to the 8.'s in equation (2.9)
J

(2.10) dy = dXB - dvp + dn = dXB + de¢

2 2 2
a°% = a°xp - a%vp + a%n = axp + a2
d"y = a"™xp - a%vp + d = 4"x3 + a"

Note that each difference equation has N observations. The X's provide the
instrumental variables for each equation where all X's not involved in the
difference are used as instruments. It is important to note that future X's as
well as past X's provide instrumental variables. Indeed when the underlying Z
variable process is close to a random walk, the future realizations of X provide
much of the identifying information especially as T becomes large and the effect
of the initial condition diminishes. However, if the future Z's are not
exogenous with respect to current and past n's than a one-sided estimator can be
used with only past X's serving as instrumental variables.

We estimate B from equation (2.10) using instrumental variable methods. The
asymptotically efficient estimator is a 'system' estimator where the estimated

B's are constrained to be equal and the covariance of the stochastic disturbances

Z is taken account of when the variance of the estimated coefficient is

1. It is remarkable that under stationarity the original specification

¥y = XB + a+n can be estimated using differenced X's as instruments since e.g.

E[ (%, - X, g al] = 0. This approach would allow an application of the Hausman-
TaylE% (19%1 procedure where other right hand side variables are included, say
Wy and (Wit—wi') are used as additional instruments.
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calculated. It is important to note that a 35LS or GLS type estimator is

inconsigtent because instruments from a given equation are not orthogonal to the

disturbances in another equation unless they are contained in the instrument set

of that equation.

Therefore, when sjstem 28L3 is done, different instrumental variables are
used in each equation. Of course, any single equation of the set of equations
from (2.10) can be estimated alone. Conditional heteroscedasticity can also be
allowed for at some increase in computational complexity with the estimator that

Hansen (1982) and White (1982) proposed. The estimator is

1 y NI
Q'Y for W = — £ §.'%.%.4.
R LIRS IS RS R

where € are the stacked dJE's and T is calculated from an initial consistent

=

™

£

(2.12) % = [X'W'3R 000w

==

estimate of 8 and T are the stacked de's, y is thz stacked djy's, and § is the
stacked matrix of instruments.! The asymptotic covariance matrices of the
estimator is V(g¥*) = [QW_15'f}-1.
We now turn to the question of whether the no correlation assumption in the
errors in measurement is valid. This assumption or an assumption about the form
of the process generating the measurement is needed because the general
correlation case is unidentified without the use of other variables as
instruments. Note that if we applied least squares (0LS) to equation (2.10),
equation by equation, we expect the estimates of B to differ according to our
previous formulae. Similarly, it can be demonstrated that in the IV case with
correlated errors in measurement that different the estimates of 8 will have
different probability limits. Therefore, a testing procedure is to estimate the

system of equations (2.10) in unrestricted form so that each equation is allowed

to have its own B.

L. Tote that @ is a block diagonal matrix.
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A large sample A large sample X2 test with m-1 degress of freedom for
equality of the Bj's is equivalent to the implicit test in equation (2.9) that
the Bj's are equal. An alternative specification test is to take an equation,
say the first, and restrict the set of instruments. For Xi4=Xi{t-q instead of
using all other X's as instrumental variables we could restrict the
instrumental variables to be those X's which are at least 2 time periods away.
The test statistic proposed by Hausman (1978) or Hausman and Taylor (1981)
provides a large sample XZ test with one degree of freedom. Lastly, tests of the
overidentification type of Sargan (1958) and Hansen (1982) can be used. Under
stationarity assumptions these various tests are closely related. In the general
case of nonstationarity of the X's they will differ although Newey {1683)
provides a partial guide to their comparability.

The general approach that we suggest then goes as follows:

(i) Estimate equation (2.1) by GLS (variance components) and by the within
estimator. Do a test for equality of the estimates using a Hausman (1978) or
Hausman-Taylor (1981) type test.

(ii) If you reject the hypothesis in (i) then calculate some differenced
estimates by OLS. If they differ significantly, errors in measurement may well
be present. A joint teat of all the differenced estimates can be made by using
GLS on the system of equations in (2.10).1 (iii) Estimate the equations in

(2.10) by IV. Then do a specification test(s) of the no correlation
assumption in the errors in measurement. If the different estimates of B do not
differ significantly you are done. If they do differ significantly, the
specification of a correlated errors in measurement process, use of outside

instruments, or respecification of the original model (2.1) seems to be called

for.

1. The within estimator can be neglected since it is a linear combination of the
differenced equation estimators of (2.10).
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ITI. An Empirical Example

The empirical example we consider is related to the old conundrum of "short
run increasing returns to scale.” Let % = logarithm of employment and q =
logarithm of output. The relationship between 2 and q depends on what is assumed
about the production function, what is held constant, and what expectational
asgumptions are made about the relevant prices. If the production function is
assuried to be Cobb-Douglas with a labor elasticity a«, then one can derive two
alternative relationships: the first based on inverting the production function

and the second on solving the value of marginal productivity equals the wage

condition:

1-a
a

(3.1a) 2 = %—q - Kk

(3.1b) L =1loga+gq - w'
where k is the logarithm of capital services and w' is logarithm of the real wage
lcg w - log P, where P is the price of the product. In either form, the
coefficient of q should be one or higher. In econometric practice one tends to
get coefficients which are less than one, implying short-run increasing returns
to labor alone (Brechling 1973, Sims 1975). Adding lacs helps a little, but
usuall& not enough. A reasonable interpretation of the data and one rationale
for the introduction of lags is that labor is hired in anticipation of "normal"
or expected output, while actual output is subject to unanticipated "transitory”
fluctuations. Since this argument is isomorphic with the errors-in-variables
model (see Friedman, 1957, Maddala 1977), we can apply our framework to it.

We shall use data on 1242 U.S. manufacturing firms for the 6 years, 1972-

1977 from the NBER R&D panel (Cummins, Hall and Laderman 1983), and adopt the

gsecond interpretation of the equation to be estimated. In this model



* '
(3.2) 25 = dy +ayy * {= Wi+ (log ay-log @) + |
*
4y is the expected or "permanent" output level, dt is a set of individual year

constants (time dummies) and the bracketed term represents a composite

"disturbance" which consists of three terms: (1) a real wage term, which

presumably differs in some consistent fashion across firms and moves, more or

less in unison for all the firms, over time. For instance,
L}

(3.3) wyy =omg vy oy
may have a variance component structure with Yy subsumed in the dt and Ti
agsumed to be uncorrelated with 14 A term associated with the fact that the
labor elasticities ai's might differ across firms; and (3) a pure i.i.d.
disturbance term gy We do not observe the expected output variable q:t but
only the actual output

*
(3.4) = + Vi

G347 93¢
where Vit is an i.i.d. "error" or transitory component in Uy Note *that Vg
s
need not be an actual "measurement” error. Observed q; 4 may be measured

correctly but relatively to the conceptual variable desired in the model, A4 is

erroneous.l We can rewrite the model in terms of observables as

(3'5) /Q.it = ai + qu‘t+dt + (—Bvit—»tit+-nit)

[t}

where we expect B 1 and the ai's are a set of individual firm effects

incorporating both permanent real wage differences and differences in the labor

elasticity across firms and hence likely to be correlated with the Uy

1. They need not be "errors" as far as other variables are concerned. For
example, both hours worked per man and materials used are likely to be related to
such transitory output fluctuations.



20

To recapitulate the model, we assume that workers are hired in anticipation
of actual demand, that actual demand is met primarily by unanticipated
fluctuations in hours of work per man (which are unobservable in our data) and
inventory fluctuations, and that we can subsume the real wage variable into the
time dummies and the individual firm effects.! Our focus then is on the
estimation of B and 05 , the variance of the "error" (v) in q, its unanticipated
component.

Table 3.1 presents the estimated B's for different cuts of the data, total,
within, first differences, and "long"differences, and the associated net variance
of g (net of year and industry dummy variables). It also shows a set of narallel
instrumental variatble estimates of 8, where data on capital are used as an
external instrument for q. The validity of such external instruments depends on
the lack of a firm specific short-run movement in real wages, on the non-
correlation of the capital measures with Tige Note that the OLS results behave
as predicted, with the first difference estimator teing lower than the within
one. The long difference estimates is greater than toth the first difference
estimate and the within estimate as the derivations in Section 2 predicted.

There are two ways of interpreting these results. The first would maintain
the assumption that B = 1, ignore the potential presence of correlated individual
effects, and accept the instrumental variable results as vindicating this

position. There are difficulties with this view, however. The implied "error"

1, An alternative interpretation would divide % into two components, "fixed"

labor which changes only in response to permanent changes in q, and "variahle"
labor, which is related to v.
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Table 3.1: Estimates cf the Employment-Output Relationship for 1242 U. 3.

Manufacturing Firms, 1972-77

iy =@y *oBayy *dy

Egstimation Method Instrumental Variables
and Degrees of Net Variance Estimates
Freedom of q g MSE 8 MSE
1. Total 2.256 .966 .168 .995 .160
d.f. = 7547 (.003) (.063)
2. Within L0327 640 011 NeCe
d.f. = 6303 (.008)
3. First differences .0251 .481 .015 .851 .019
d.f. = 6304 (.010) (.160)
4. "Long differences .1438 730 .048 1.050 063
1972-77" (.016) (.037)
d.f. = 1260

The bracketed terms are the estimated standard errors. Total regressions contain
also 5 year and 22 industry dummy variables. The within and first difference
regressions include also year dummy. The instrumental variables used are the
logarithm of net plant, the first difference in log net plant and the long

difference in log net plant respectively.
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The variables variance of 03 is .038, which is larger than the variance of
the first differences of q which should contain 203, if the model were right!
Also, it is unlikely that net investment which is the first difference in net
plant is independent of the unmeasured fluctuations in real wage rates. Hence,
the congistency of the external instrumental variable estimates is rather
suspect.

We turn, therefore, to deriving an estimate of 8 and oi from the contrast
between the first difference and the within estimator, both of which should be
free from the correlated individual effects bias. Using the formulae given in

equations (1.6) and {1.7) and the values calculated in Table 1 yields

2
(3.6) B = .776 and o; = .0048
Another estimate can be had by using the "long" differences instead of the

first ones in these formulae. This calculation yields

(3.7) 8= .785 and o = .0050
which is very close and supports our final conclusion that for this equetion the
"true" 8 is about .78 and that the "unanticipated" variance output accounts for
about 40 percent of the observed variance in the first differences, 18.5 percent
of the within variance, and a much smaller fraction, 7 percent, of the "long"
differences, where the variability in growth trends predominates.

We now take a closer look at the estimates to see how well the hypothesis of
uncorrelated measurement error holds up. We first present the moment estimates
from equation (2.9) which are derived from the variances and covariances of the
differenced variables. They should be approximately equal if the no correlation
assumption holds true. These moment estimates are based on sucessive differences
so that the first estimate is based on variances and covariances one period

apart, the second estimate uses moments two periods apart, and so on. Note that
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the estimates in equations (3.6) and (3.7) use the same moments but use the
within estimate as the basis while here we use the first difference estimator as
the basis. As can be seen in (3.8), the last 3 estimates are quite close,
although they continue to rise which may

(3.8) By = -674 By = 757 By = -783 By = 794
indicate some remaining correlation in the measurement error. However, 51 seens
definitely lower. A tentative specification might therefore be an MA! process in
the measurement error. To determine whether this is the case, we now turn to
instrumental variable estimation which is asymptotically equivalent to our
previous moment estimators and which allows for convenient calculation of
variances of estimates and of test statistics.

In Table 3.2, we present the results of estimating the model in first
difference form. Thus, the individual firm effects, a,, are eliminated so that
correlation between firm effects and output no longer is present. Results from
both OL3 and IV (25LS) are presented where the internal instruments are chosen
subject to the no correlation in measurement error assumption. In the first
column, the OLS results again yield quite low estimates of B. Furthermore, the
data seems distinctly non-stationary, especially during the steep recession year
of 1975. In Column 2, the instrumental variable results under the no correlation
assumption for measurement error are given. Here, for example, the instrumental
variables used for the first line, the difference between 1974 and 1973, are
output in the years 1972, 1975, 1976, and 1977.! Again the 1975-1974 difference
gives a significantly lower estimate than do the other years. In line 5, we give
the restricted IV results where 3 across vears is restricted to be the same. The

null hypothesis of equality of B across years leads to a X% variable. The

1 we use 1973 as the base year in our estimates so that the initial conditions
from 1972 can be used as an instrumental variable.
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Table 3.2: OLS and IV Estimates of the Employment-Output Relationship

Years for No Correlation MA1 Test MA2
Difference OLS IV IV Stgt. IV
X1
First Difference
te 1974-1973 .568 842 1.25 1.24
(.025) (.037) (.292) 1.98 (.294)
2. 1975-1974 .395 512 . 647 —_—
(.025) (.028) (.048) 11.99 —
3. 1976=-1975 505 . 748 1.45 _— 2.55
(.020) (.037) (.322) 4.82 (3.56)
4. 1977-1976 491 .T726 1.19 1.20
(.022) (.164) (.250) 6.04 (.250)
5. Restricted .515 .666 .675 1.22
Estimates (.010) {.017) (.041) 0.06 (.130)
Nested differences
6. 1977-1972 <730 . 745 .842
(.016) (.020) (.038) 9.01 -
7. 1976-1973 .673 732
(.017) (.019) —_ —_— —_
8. Restricted 553 .696 . 765
Estimates (.012) (.016) (.031) —_— _
Overlapping Diff.
9. 1975-1973 .581 716 . 791 . 291
(.019) (.023) (.141) —_—
10. 1976-1973 .673 .732 —_— —
(.017) (.019) —_—
11. 1977-1973 703 753 224 4.56
(.017) (.020) (.247) —
12. Restricted 535 745 .712
Estimates (.010) (.019) (.138) 0.06
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estimated statistic is 55.8 which leads to a rejection, although one should
recognize that our rather large sample size makes rejection of most hypotheses
likely at the usual significance levels.

In lines 6 and 7 of Table 2, we present results for the nested differences.
Note that under the model specification these estimates would be independent if E
were diagonal. The third overlapping differences estimate for 1975 minus 1974 is
given in line 2. The IV estimates are quite close for 1977-1972 and for 1976-
1973 with 1975-1974 again quite different. The restricted estimate is .696 which
again leads to a rejection of equality across years. The test statistic is
calculated to be 50.9. The estimates are distinctly non-independent with the
correlation coefficients equal to .52, .21, and .29. However, our estimation
procedures and estimated standard errors account for this possible non-~
independence in E. We conclude that all the serial correlation in the
disturbances is not accounted for by the firm effects, industry effects, and time
effects.

In lines 9-11 of Table 2 we present the overlapping difference results. The
results for 1974-1973 are given in line 1. Note that the OLS estimates increase
monotonically as the gap in years increases which is exactly what our errors in
variables analysis for the uncorrelated measurement error model of Section 2
predicted. The IV estimate for 1974-1973 is .842. The increase in the IV
estimates in lines 9-11 together with the moment estimator results in equation
(3.8) raise doubts about the no correlation in the measurement errors assumption.
The restricted estimate is .745 which is also quite close to the moment

estimator results which we presented earlier.!

L. The test statistic for the restricted esgimate is 8.6 which is significant at

the 5% level but not at the 1% level for a Xz variable.
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In column 3 of table 2, we relax the no correlation in measurement error
assumption and allow for an MA1 process which was suggested by the results in
equation (3.8). To do this, we use only instruments that are two or more years
away from the years used to form the particular difference . Tirst, note that
the IV estimates rise in each period. On the basis of a Hausman (1978) test, the
difference is significant for 3 out of 4 estimates.l Also, note that in 3 of the
4 equations the estimate of 8 exceeds one, although never by a statistically
significant amount. These results are more in line with the predictions of the
production function model of equation (3.1). In fact, they are what is expected
with a true value of about .75 which is a commonly accepted value of «. However,
the difference of 1975 minus 1974 is again much lower. Because of this one
equation, the restricted estimates gives an almost identical estimate to the no
correlation restricted estimate.

For nested differenées, we can only estimate 1977-1972 and 1975-1974 due to
the unavailability of instruments for 1976-1973. In both years, the estimates
rise by a significant amount. The overlapping estimates also rise. These two
additional sets of estimates again lead to severe doubts about the no correlation
assumption in the measurement error.

In the last column of Table 2, we now allow for an MA2 process in the
measurement error. For 1974-1973 and 1977-1976 the results are virtually
identical to the MA! measurement error model. For 1976-1975 the estimate is so
imprecise that no conclusion can be drawn. A possible conclusion here is that

the MA1 measurement process is sufficient. A Hausman-type test does not reject

1, Overidentifying restriction tests on sets of instruments can also be used
here. They lead to x“ tests with higher degrees of freedom. See Newey (1983).
For instance for the 4 first difference estimates in column 2 of Table 3.2, the
test statistics are: 20.8, 17.6, 32.2, and 22.7. All of these statistics are
higher than conventional significance levels of a X variable.
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this hypothesis in any of the three years.l Furthermore, an MA1 process in
measurement error could well arise because of differences in fiscal years across
firms and the change in fiscal years among many firms which took place in 1976.

Our empirical results are not easily summarized. First we have found that
it is quite likely that correlation exists between firm effects and measured
output. Second, traditional covariance techniques are subject to errors in
variables which have a sizeable effect which goes in the predicted direction.
Next moments estimators and IV estimators reduce the magnitude of the bias.
Correlation in measurement error seems present, although an MA1 process seems
adequate for our particular data set. lastly, we return to the puzzle: Is
g <1 ?. Apart from 1975-1974, the MA1-IV results indicate that 8 > 1. However,
the nested difference and overlapping difference results continue to indicate
that B lies in the range of .75 to .85. These conflicting results are difficult
to tell a completely coherent story about within the context of our model. To
some extent, the B > 1 results must be discounted since they should not arise
within the context of the errors in variables model which we begin with and
estimates derived from the original levels specification.

The following might be a possible interpretation. Approximately .005 of the
variance of log of output is unanticipated. This is less than 0.3% of the total
variance in log output, but it accounts for close to 40% in the variance of its
first differences. Allowing for such errors raises the estimated B from about .5

to about .75 or .8 leaving us rather far from the expected unitary elasticity.

1, Overidentifying restriction tests on the MA! measurement model reject only
for 1974-73, but not for the other 3 first difference estimates. The test

statistics, with degrees of freedom in parentheses, are 9.9 (1), 2.0 (1),
2.6 (1), and 1.7 (2). These results lead to further confirmation about the

adequacy of the model.



One interpretation of these results is the distinction between variable and
overhead labor. If "overhead" labor does not vary much over the horizon and

of our data and the size of shocks that we observe, our estimates imply that it
accounts for about 20+ percent of manufacturing employment. Our results are also
consistent with Sims (1974) whose final estimate of the 'total' B was about .8

for a specification which used the number of workers rather than manhours as the

dependent variable.
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IV. Conclusion

Correlation between individual and firm effects and right hand side
variables has been emphasized in the recent literature on estimation in panel
data. Specification tests often lead to the rejection of the hypothesis of no
correlation. This paper points out that errors in variables can lead to the
rejection since covariance estimators, e.g. within or fixed effects procedures,
are affected more by errors in variables than are the GLS, e.g. random effects,
estimators. Under reasonable assumptions about correlograms, the bias moves in a
predictable direction so it can be discovered by considering the differences
between firgt difference and long difference estimators. Consistent estimators
are available from a method of moments approach and from an IV approach. The IV
approach leads to specification tests which permit an assessment of whether the
measurement error correlation assumptions, which provides the rationale for the
validity of the instruments, hold true. Our empirical example provides a rather
convincing illustration of the utility of our approach to the analysiz of errors
in variables in panel data. Unfortunately, we have not been able to solve the

long standing B 2 1 puzzle of the elasticity of labor demand with resvect to

output.
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V. Notes on the literature: For work on panel data see Maddala (1973), Mundlak

(1978), Hausman (1978), Hausman and Taylor (1981) and Chamberlain (1982). For
the importance of errors in such contexts see Griliches (1974, 1979, and 1984).
For an earlier effect at identifying the error variance from the contrast between
levels and first differences in a single series see Karni and Weissman (1975).
For a discussion of labor demand estimates see Brechling (1973), Sims (1974),

Solow (1964), and Medoff and Fay (1983).
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