
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


31 0 E

0:1 TA_
CIANNINI rouNDATioN CF
AGRICULTURAL *NOMICEJ

LE-17'

RJU

LIKELIHOOD DIAGNOSTICS AND BAYESIAN ANALYSIS
OF A MICRO-ECONOMIC DISEQUILIBRIUM MODEL FOR
RETAIL SERVICES

P. KOOIMAN, H.K. VAN DIJK AND A.R. THURIK

REPORT 8507/E

TRASMUS UNIVERSITY ROTTERDAM,- P.O. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS



LIKELIHOOD DIAGNOSTICS AND BAYESIAN ANALYSIS

OF A MICRO-ECONOMIC DISEQUILIBRIUM MODEL FOR

RETAIL SERVICES

by

Peter Koolman
*

Herman K. van Dijk**
***

A. Roy Thurik

January 1985

Central Bureau of Statistics, The Hague.

Erasmus University Rotterdam/National Bureau of Economic Research,

Cambridge.

Research Institute for Small and Medium-sized Business, Zoetermeer.



LIKELIHOOD DIAGNOSTICS AND BAYESIAN ANALYSIS

OF A MICRO-ECONOMIC DISEQUILIBRIUM MODEL FOR

RETAIL SERVICES

by Peter Kooiman
*

Herman K. van Dijk
**

***
A. Roy Thurik

Abstract

In this paper we apply Maximum Likelihood and Bayesian methods to explain

differences in floorspace productivity among retail establishments in the

grocery trade. The model we develop is a switching model where sales are

either supply determined or demand determined. Under excess supply the model

allows for so-called 'trading-down', i.e., an increase in the share of selling

area, and, thereby, a decrease in service level.

To estimate our model we employ a cross-section of observations on

individual shops. We present maximum likelihood results, and also study the

shape of the likelihood surface by means of Monte Carlo numerical integration

methods. With a uniform prior we obtain marginal posterior density functions

both of the parameters of interest and of the average probability of the

excess supply regime in the sample. The average probability of excess supply

is .23, with a standard deviation of .06. This shows that, according to our

estimates, excess demand is the rule and excess supply the exception in the

sample that we analyse.
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1. INTRODUCTION

Since 1973 the Dutch Research Institute for Small and Medium—Sized

Business (Economisch Instituut voor het Midden— en kleinbedrijf, EIM) and the

Econometric Institute of the Erasmus University Rotterdam cooperate in a

research project aiming at an econometric analysis of the small and medium—

sized business sector in the Netherlands. Research effort has focussed so far

on the explanation of firm behaviour in the retail trade. Sales level, labour

volume, floorspace, floorspace partitioning, price setting behaviour and

financial structure are, or will be, the subject of analysis. Data used for

this purpose are available at the individual shop level. They stem from

surveys that have been held by EIM for a great number of branches in the

retail industry. The present study is a part of this project.

In this paper we apply maximum likelihood and Bayesian methods to analyse

an extension of a model developed by Thurik and Koerts (1984a,b) and Thurik

(1984) to explain differences in floorspace productivity, measured as sales

per square meter, among individual retail establishments (= shops). In this

model floorspace productivity is related to a partitioning of the floorspace

into selling area and remaining space used for storage, administration, own

production, staff facilities, etc. Both selling area and remaining space are

treated as inputs in a production technology for retail services. The model

has been applied to a wide variety of Dutch and French supermarkets and

supermarket—like establishments and to several Dutch non—supermarket shop

types. Thurik (1984) has used the model to investigate whether French

supermarkets maximize profits or sales. He also analysed the influence of

environmental factors on floorspace productivity, e.g., per capita consumer

spending, population density, number of competitors, and shopping centre

characteristics. No outside influences could be established, however, that

were both plausible and statistically significant. Only supply factors, i.e.,

establishment properties, seem to play a role.

A reason for this rather counter—intuitive result may be that the model

used was not appropriate. Sales, hence floorspace productivity, are determined

by the interplay of supply and demand, and cannot properly be analysed from

the supply side alone.1 In leaving out a demand side, as Thurik (1984) does,

one implicitly assumes that demand is always large enough to sustain sales

1. Thurik (1984), p. 121-3, advances several other possible explanations as

well.



maximization constrained by technical possibilities alone. This may not always

be true actually. Therefore we introduce an explicit demand side in the model.

When demand is large enough sales will be supply determined and the former

model applies. With demand too small, however, sales will be demand

determined, and we substitute another model. Thus we end up with a switching

model, where sales, and the partitioning of the floorspace, are either supply

determined or demand determined. As we do not know which of the two regimes

applies to each one of the available observations, we have to include both

possibilities in the model, leaving the data to decide on the most likely

regime distribution. To the extent that sensible results can be obtained our

model may serve as a framework for a renewed attempt to establish the

influence of environmental factors on floorspace productivity.

Switching models with endogenous regime choice have mainly been used to

analyse markets in disequilibrium, where it is assumed that transactions equal

the minimum of supply and demand. They have been used to analyse, for example,

the labour market, the housing market, the credit market. See a.o. Rosen and

Quandt (1978), Fair and Jaffee (1972), Laffont and Garcia (1977). As far as we

know only aggregate time series data have been used to estimate these models.

It •has often been argued that for this type of data the discrete switch is

inappropriate as in the aggregate regime switches occur only gradually and

incompletely. In actual aggregate markets supply constraints and demand

constraints will always coexist. Smoothed versions of the switching model have

therefore been developed by Muellbauer (1978), Kooiman and .Kloek (1979),

Malinvaud (1982), Lambert (1984) and Kooiman (1984), aggregating over micro

markets in disequilibrium. Their basic assumption is that the minimum

principle is more likely to apply to the micro—level of individual markets,

households or firms, than to the aggregate. The alternative is of course, to

stick to the discrete minimum condition and apply the model to genuine micro

data. This is the approach we take in the present paper, where we present

estimates of the discrete version of our switching model based on a cross—

section of observations pertaining to individual retail establishments.

The likelihood function of the discrete switching model is rather

complicated, so that no analytical results can be obtained and numerical

optimization has to be used to find maximum likelihood estimates. A

complication arises from the fact that the likelihood function can be shown to

tend to infinity for suitable values of the structural parameters, when

variances tend to zero. This feature, which does not exclude a consistent root
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of the likelihood equations corresponding to a local maximum, may seriously

frustrate the application of numerical optimization techniques. For an example

see Kooiman and Kloek (1985). The interference of this unboundedness

phenomenon makes that one has to be very careful when interpreting estimation

results. It is desirable to investigate the shape of the likelihood surface

more closely in order to check the relevance of the estimates obtained. In

this paper we intend to demonstrate that Bayesian methods can be used for that

purpose.

Recently Van Dijk (1984) and Van Dijk, Kloek and Boender (1985) have

demonstrated the feasibility of numerical integration, hence Bayesian

analysis, in relatively high dimensional parameter space. They use Monte Carlo

simulation methods for that purpose, based on importance sampling. We use two

of their methods, named Simple Importance Sampling and Mixed Integration, to

compute posterior first and second moments and marginal posterior density

functions, both of the model parameters and of the average probability of the

excess supply regime in the sample. These results, apart from being

interesting by themselves, allow us to check whether the asymptotic maximum

likelihood results adequately summarize the actual properties of the

likelihood function, given the available set of data.

We present our switching model for retail services in Section 2. In

Section 3 we derive the likelihood function, and in Section 4 we discuss the

methods of analysis employed. Estimation results and likelihood diagnostics by

means of numerical integration methods are the subject of Section 5. Section 6

concludes.

2. THE MODEL

The model we develop and discuss in this section expands on a model

developed by Thurik and Koerts (1984a,b) and Thurik (1984) to explain

floorspace productivity in retailing, i.e., the level of annual sales per

square meter of available floorspace. The model assumes that the partitioning

of floorspace into customer or selling area and remaining space plays a

predominant role in the determination of the sales level. Differences in the

partitioning of the floorspace reflect different marketing or operational

strategies. A low share of selling area is found, for instance, in the

traditional 'shop around the corner' with mainly counter service, where most

goods are kept in stock and only few are displayed. A low share of remaining



space is associated with modern self-service and cash-and-carry type shops,

where most handling of goods takes place in the selling area and all goods are

on display.

In the model both selling area and remaining space are treated as inputs

in a production function for retail services. Input substitution accounts for

changes in operational policy. The model assumes that shopkeepers partition

their available floorspace in such a way that sales are maximized. Analy-

tically the level of annual sales Q and the partitioning of available floor-

space W in selling area C and remaining space R are determined by solving the

following problem:

max Q
C,R

subject to: Q < Qs(C,R;X

• R = W - C,

0 < C < W,

2 (1)

where X summarizes the exogenous variables of the model apart from W, and

0(.) is the possibility frontier or supply function for retail services. One

may wonder whether it is appropriate to leave the demand side out, as Thurik

(1984) does, and explain the level of sales from the supply side alone.

Actually demand may not be large enough to sustain the solution derived from

(1). In order to account for this possibility we introduce an additional

demand constraint in the maximization problem (1)

where Q (.) is a demand function that we shall assume to be known by the

shopkeeper. Thus we obtain a more general model that allows for 'demand

constrained' operations of retail establishments as well.

The general solution to the maximization problem (1) + (2) depends on the

specification of the supply and demand functions. We employ the following

beta-type supply function:
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QScC il W,X = gX)(C
ITC

W (1-7)E. 0 < y < C,

0 < n < 1,

6 > 0,

KX) > 0,

(3)

where we have suppressed the explicit dependence on R by substituting

R = W — C. According to this equation supply is zero, i.e., no sales are

possible, when remaining space is zero, or when selling area C does not

surpass a threshold level y independent of shop size, that we shall treat as a

parameter to be estimated.
2 Other parameters to be estimated are the scale

elasticity c and the distribution parameter n. We postpone the specification

of the shift factor gX) until Section 5, where we present our estimation

results, as it is immaterial for the general structure of our model on which

we want to concentrate now. We refer to Thurik (1984) for a detailed

justification of (3).

The demand function we employ is of the simple constant elasticity type:

Q (CO() = 6(X)(C —

6(X) > 0,

where we have included the same threshold y as in equation (3). The

specification of S(X) is again postponed until Section 5. In view of the

stochastic specification of our model, which is the subject of the next

section, we have to impose the regularity condition u > ne on the demand

elasticity u. It guarantees
3 that multiple intersections of the supply and

demand curves are excluded on the interval y < C < W.

Given supply and demand equations (3) and (4) the solution to the sales

maximization problem (1) ± (2) takes one of two possible forms, depending on

the relative position of the two curves. Figure 1 depicts both possibilities.

With demand large enough, as in Figure 1A, the optimum is obtained at the top

of the Qs(.)—curve. When demand is too low to sustain this solution the

2. Originally Thurik used a threshold for remaining space as well, which was

consistently found to be zero, so we left it out.

3. By comparing the derivatives of the right hand sides of (3) and (4) 
with

respect to C it can directly be checked that, given u > ne, the demand curve

intersects the supply curve from below for any intersection on the interval

y < C < W. For continuous functions this entails that at most one inters
ection

••••••

can occur.
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optimum is found at the intersection of the supply and demand curves, as in

Figure 1B. In other words, in situations of excess supply shopkeepers tend to

increase the share of selling area, and, thereby, decrease the service level

(so—called 'trading down'). It can easily be seen from the figure that

analytically the value of C follows as the maximum of Ced and Ces, i.e.,

C = max(Ced2 Ces), where Ced

Q8( )/C = 0, and Ces solves the equilibrium condition Qs(.)

is the solution to the first order condition

= Q

Moreover, it is immediately clear from the figure that the solution always

lies on the supply curve. Consequently, our model for the endogenous variables

Q and C reads as

where

Q = Qs(C;W,x),

C = max(Ced, Ces),

Ns(Ced;W°C)/3Ced = 0,

Qs(Ces;WOO = Qd(Ces;X),

(5)

the last two equations only serve to define the latent variables

Ces figuring in the maximum condition for C.
ed and

The type of model that we have obtained is known in the econometrics

literature as a switching or minimum—condition model. Its canonical form

obtains in the description of markets in disequilibrium, where transactions

are assumed to equal the minimum of supply and demand, i.e., Y = min(Ys, Yd)

with yS = yS(p; X) and Yd = Yd(P,X) as supply and demand functions, P being the

price. The presence of an additional endogenous variable Q, that is not

directly affected by the switch of regimes, makes our model analytically

•
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similar to a disequilibrium model with an additional price equation. The one—

market disequilibrium model •with endogenous prices has been described by

Maddala and Nelson (1974), Goldfeld and Quandt (1975), Quandt (1982) and

others. Rosen and Quandt (1978) give an empirical application to the U.S.

labour market.

3. THE LIKELIHOOD FUNCTION

Two types of stochastic specification have been discussed in the

statistical literature on switching models based on the minimum condition. The

first one goes back to Fair and Jaffee (1972) and Maddala and Nelson (1974).

They assume that the level of transactions Y equals the exact minimum of

s, yd.).
unobserved stochastic supply and demand: Y = 

min(y The likelihood

function for this model can be shown to be unbounded when variances tend to

zero. To avoid this problem Ginsburgh et al. (1980) employ certainty

equivalents and add an error term to the minimum condition: Y = min(EYs, EYd)

+ error, where E is the mathematical expectations operator. The model for Y

then effectively reduces to a non—linear regression model. As we find it hard

to accept the implicit restriction in the latter approach that the supply and

demand errors are identical, we prefer to employ the former one. For model (5)

this implies that we add structural disturbance terms to the supply and demand

equations (3) and (4). We use a multiplicative error specification to avoid

hete roskedasticity and because it guarantees that Qs and Qd are zero for C =

and Qs is zero for C = W in the stochastic version of our model as well:

Qs = Qs(C;W,X)exp(cs),

Qd = Qd(c ;X)exp(cd).

(6)

(7)

As is usually done we shall assume that the errors e and E
d are independently

2
and identically normally distributed with zero means and variances (12 and ad.

It is not sufficient to include error terms in the supply and demand

equations alone. Since we have two endogenous variables, Q and C, we need at

least two error terms being 'active' for each regime. As under the excess

demand regime both Q and C are determined from the supply function, we need an

4
additional error term to be included in the determination of Ced Using°

4. A similar procedure is common practice in production function studies,

where an error term is introduced in the factor demand equations obtained from
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equation (3) the first order condition 
3e(Ced;W'X)laCed = 0 

yields

Ced = y + Tr(W y). Aiming at a multiplicative error specification here as

well we found it convenient to employ the following equation for Ced

ed
W —

= exp(-4), (8)

where the error (1) is restricted to the positive reals only, and Eexp(—) = it

is imposed in order to satisfy Ced = y + n(W—y) on average. We shall assume

that (1) is independently5 gamma distributed with density function

g(cf;a,11)) = r(a)-14'—ae—lexp(-00, where r(a) is the (complete) gamma
(
0
cm a-1

jintegral z exp(—z)dz. As we want to impose zero probability density on the

event C = y we shall impose a > 1. The scale parameter tp has to be positive.

It follows directly from the moment generating function of the gamma

distribution, M(t) := Eexp(tcp) = (1 — tip)—a, that the condition Eexp(—)

gives rise to the restriction

alog(1 + = —logn.

We shall use (9) to substitute for ip so that the gamma distribution that we

employ for cb only yields a as an additional parameter to be estimated.

The likelihood function of our model is derived from the joint density

function of the endogenous variables Q and C. It is demonstrated in the

appendix that the latter takes the following form:

h(Q,C) =f f(C, 
s 
,Q)dC

es 
+ f f(C ,C,OdCed (10)

where f(.) is the joint density function of Ced  Ces and Q as it can be

derived from equation (6), (7) and (8) using the maximum condition

C = max(Ced, Ces). Instead of deriving the general form of f(.) it is more

the first order conditions for a maximum of (expected) profits given the
available technology.
5. One may doubt the independence of cp and cs since both errors account for
discrepancies between our specification of the supply side and the data.
Specification errors in supply equation (3) are likely to show up in both (6)
and (8). To our defense we can point at common practice in production function
studies that usually assume independence of 'technical' and 'allocative'
inefficiency. The former refers to errors in the supply function per se,
whereas the latter refers to errors in the demand equations derived from first
order conditions. Also, Thurik (1984), p.43, reports correlation coefficients
between the residuals of (6) and (8) that are less than .25 in absolute value.
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practical to work out the two right hand side terms separately and directly

derive the required expressions from the 'special' version of the general

model (5) that one obtains under each one of the two regimes.

We first need some notation. We have already introduced g(.; a,110 to

denote the gamma density function of 4). Let G( ,a) denote the corresponding

standardized (i = 1) gamma distribution function. Similarly let n( ,c) and

N(.) denote the normal density function with zero mean and variance a2, and

the standard normal distribution function respectively. We also define the

residuals

es := q qs(c;W,X),

:= q - qd(c,X),

p := log(W y) - log(C - y 9

where we have (partly) changed to logarithms, i.e., q := log Q and c := log C.

Notice that these residuals6 are functions of observables only.

Nowincaseofanexcessderaandwehaveq.e,c=ceo whereasces and

q are unobserved. Taking logarithms in equations (6)-(8), and substituting

for qs and c d we directly obtain

- q - q (c;W,X)

ed 
= q - q

d
(c, X),

(1)

9

= 1 g(W - y) log(C - 1)

The regime only applies when ces < c, which, given the shape of our supply and

demand curves, is equivalent to q
d q, compare Figure 1A. This, in turn, is

d 
equivalent to 6 e

d 
, as can be seen from the definition of e

d and equation

(11b). Consequently the first term in the joint density function of q and c is

given by

q,c,

e
d

where f (.) is the joint density function of q, c and e It can easily be

6. Only es is a proper residual since all observations, no master the ruling

regime, have to satisfy the supply function. The other two, e and p, can only

be counted as observations of the error processes e
d and 4) to the extent that

the correct regime applies.
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obtained from (11) as follows. First factorize fel(q,c,c as

fl (c\f2 (̂ 100 (ediri,c'.) From (11c) we obtain f 
d
(c) as (C/C—y)g(p;a,1),

the first factor being the Jacobian 4/3c in absolute value. From (11a)
2 'f (qIc) is directly obtained as n(e

s 
;a
s
), whereas f

3 
(e

d 
lq,c) is simply

ed ed
d  sn(e ,o.

d 
) as a consequence of the independence of 6d, e and cb. Integration

over ed results in a factor 1 — N(ed/ad). Collecting factors, we end up with

  g(p;a01)) ( ;a ){1

Under excess supply we have q = qs, q = qd from which c is implicitly

determined as ces, whereas ced is unobserved. As the alternative to (11) we

now obtain

C = q q (c;W X

6 = q — q (c,X) (=

(i) = log(W — y) — log (C5

The regime only applies when ced < c, or, equivalently, cp > p, so that the

second term of the joint density function of q and c is given by

CO

hes(q c) =
5(q,c,c0dcp,
e 

where fe5(q,c,4) is the joint density function of q, c and cp. Again we
1 2 1factorize fe5(q,c,) 

as fes 
(q,c)fes(lq,c). We obtain fes(q,c) by changing

variables from the joint normal density function of es and ed using (12a) and

(12b). This yields a factor n(es;as)n(ed;ad) and a Jacobian factor

13qd(c,X)/ac 3qs(c;W,X)/3c1, which, using equations (3) and (4)2 equals

(u — we)CgC — y) + (1 — w)eCRW — C). The density function f2 
s
(1q,c) is

e 
g(p;(1,40, so that the integration over cf) results in a factor 1 —

Collecting factors, we find

h 
s(q,c) =1 

f  
C )C— Ie 

70eCtrife ;a
— G(p/ip;c1)1.

Adding a subscript i to indicate observations, the likelihood function can now

be formulated as
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L = h (qi,ci) + hes(qi, )1, (13)

i=1

where N is the total number of observations.

Although the likelihood function obtained looks rather awkward its

general structure is transparant: for each observation we obtain a weighted

sum of the joint density functions of q and c under each of the two possible

regimes. The weights are the unconditional probabilities that the condition

under which the regime applies is satisfied. These probabilities do not add to

unity, contrary to the conditional probabilities that a given observation on q

and c has been generated under the excess supply regime or the excess demand

regime.7 It is shown in the appendix that these probabilities are equal to

,c = h (q
' 

c)/(h (q,c) + h(c)),
es es  es

(14)

,c
ed
(q
'

c)/(h
es
(q c) + h

ed
(q
'
c)).

Once the model has been estimated we can use these expressions to obtain

estimates of the two regimes probabilities for each observation in the sample.

This is most interesting from a policy point of view as it provides us with an

estimate of the extent to which the sector under study operates supply

constrained or demand constrained. It also allows us to check whether a short

cut is possible based on the assumption that all observations effectively came

from one regime only.

We conclude this section with a few remarks on the unboundedness of our

likelihood function (13). In the appendix we show that the likelihood becomes

unbounded in switching models of this type when variances tend to zero and

other parameters take such values that completely one-sided samples are

implied. For the present model this can occur when ad tends to zero and the

demand side parameters take such values that all observations satisfy

< Q (C,X), with equality for one observation at least. The likelihood also

becomes unbounded in the opposite situation where the supply side parameters

take such values that all observations satisfy (W - y)/(C y) < i, with

equality for one observation at least, when the variance of cp tends to zero.

In that case the distribution of (I) degenerates to a unit step function, where,

for given y, the step is located at the largest value of (W - y)/(C - y) in

7. We refer to Gersovitz (1980) and Kiefer (1980) for a discussion of the

issue of regime classification in disequilibrium models.
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the sample. As we have imposed Eexp(-4) = it this fixes the value of it for

which this may occur. The variance of (I) is al 2p . As we have imposed a > 1 it

can only be equal to zero when ip equals to zero. From (9) it is clear then

that in this situation the likelihood can only become unbounded when a tends

to infinity.

4. ESTIMATION METHODS

Estimation of our model proceeds in two steps. First we compute classical

maximum likelihood estimates of the model parameters. An estimate of the

covariance matrix is obtained in the usual way as minus the inverse of the

Hessian matrix of the log—likelihood function evaluated at the point estimates

obtained. Secondly, we check whether these asymptotic results adequately

summarize the properties of our actual likelihood function. For this purpose

we use a Bayesian methodology applying numerical integration by means of Monte

Carlo methods. We obtain posterior means and the posterior covariance matrix

of the parameters of the model. We also compute marginal posterior density

functions for individual parameters of interest. The methods employed allow

for the computation of marginal posterior density functions of arbitrary

functions of the parameters as well. We exploit this feature to compute the

posterior mean and variance, and the posterior density function of the average

probability of the excess supply regime for the observations in our sample.

Thus we get an idea about the information content of the data with respect to

the regime distribution.

4.1. Maximum likelihood

The first step in our analysis consists of finding the maximum of the

likelihood function (13). The main problem is, of course, that the likelihood

function is known to become unbounded when either ad goes to zero or a tends

to infinity, and other parameters take suitable values as well. Compare the

discussion at the end of the preceeding section. Actually we are not really

interested in the properties of the likelihood in this region of the parameter

space as zero variances of the errors have a priori probability (density) zero

in the rather simple and highly stylized model we analyse 8. What we are really

looking for is a (local) maximum located in a domain in parameter space that

8. Note that %lite contrary to this statement, the usual 'non—informative'
prior p(a) = a—i does give high credit to this state of nature.
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excludes this anomalous region. Hartley and Mallela (1977) have shown that the

usual asymptotic properties of maximum likelihood apply to such a point,

provided the true parameter vector is located in the interior of the domain

considered.

This leaves us with the need to include a penalty function such that the

unboundedness region is effectively suppressed without affecting the shape of

the likelihood in a more realistic domain of the parameter space. One possible

way to proceed is to impose a strictly positive lower bound on ad and an upper

bound on a, but it is rather difficult to make up one's mind as to what values

are acceptable. So we adopted another strategy. When the likelihood becomes

unbounded we obtain an almost entirely one—sided sample with all observations

assigned to one regime with probability 1, except for one or two observations•

that are assigned with probability 1 to the other regime. From equation (14)

it is clear that regime probabilities are obtained without extra costs as a

by—product when evaluating the likelihood function. This suggests to constrain

the range of acceptable values for the average probability of, say, the excess

supply regime in the sample Siz), in order to keep the optimization path away

from the unboundedness region in the parameter space, we added the following

penalty function to the log—likelihood function:

P = b(1 iles/B1 
) ii3es

(1 —

=

P
es 2

1 — B

es

if f P <B
es — 1

iff P > B ,
es u

elsewhere,

(15)

where b is a scaling factor that serves to vary the intensity of the penalty,

and B1 and Bu ar lower and upper bounds for the average probability of the

excess supply regime in the sample

N_ 
= N 1P

.
E P

es 
,c.)

es 1
•1=1

(16)

compare equation (14). Note that this penalty function is continuously

differentiable with respect to 15'es
, which in turn is a complicated, but

continuously differentiable function of the model parameters. This guarantees
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that the function to be maximized has a continuous gradient, which is

desirable in view of the optimization routine that we used.9

4.2. Likelihood diagnostics

From now on we shall reinterprete our likelihood function as the kernel

of a joint posterior density function of the model parameters. Obviously, this

entails the use of a constant prior for our further analysis. The switch to a

Bayesian methodology allows us to investigate global properties of the

likelihood surface by means of numerical integration methods. Van Dijk (1984)

has demonstrated that numerical integration, hence Bayesian analysis, is

feasible even in relatively high dimensional parameter space, when using Monte

Carlo simulation methods. Posterior means and (co-)variances and marginal

posterior density functions can be computed, both of parameters of interest

and of interesting functions of those parameters, like multipliers, adjustment

speed, etc.

In this subsection we shall briefly describe the methodology involved.

More details can be found in Van Dijk (1984) and in Van Dijk, Kloek and

Boender (1985) (in this volume).

Let p(0) be the kernel of a joint posterior density function of a

parameter vector 0. Suppose we want to investigate the distribution of some

scalar function f(0) of 0. Evaluation of, say, its first two moments requires

the computation of

Ef(e0 _ ff(0)p(0)d0 
[p(0)(18

2r.,„,
Ef(0)2 - Jiy) 

p(e)de 
jP(0)(10 2

(17)

(18)

where the integration is over the entire domain of 0. The posterior density

function of f(8) can be approximated once we are able to evaluate posterior

probabilities of the type Pr(al < f(0) < a2), where (a1,a2) is a small

interval in the range of possible values for f(0). These probabilities,

9. We used NAG-library routine E04JBF, with numerical first derivatives. One
optimization run takes between 500 and 1000 functions evaluations, which costs
between 50 and 100 seconds cpu on a CDC Cyber 170-855. To evaluate N(z) and
r(a) we used NAG routines S15ABF and S14ABF respectively. Values for the
incomplete gamma integral G(z;a) were obtained by means of an expansion
presented by Lau (1980) (algorithm AS 147).
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however, can easily be seen to be equal to the expectation of a dummy function

D(0) defined as

0) = iff a
1 
< f(0) 

—
< a

2
,

elsewhere.

(19)

Consequently, the general numerical problem involved is how we can compute

integrals of the type

= fg(6)p(6)d6

for arbitrary functions g(6).

The integration method we employ is based on so-called importance 

sampling. Let I(6) be a density function associated with a probability

distribution from which we can easily generate (pseudo-)random drawings by

means of a computer. Then

= fg(6)   1(6)d6 = E Ig(6)  

where EI denotes the mathematical expectation with respect to 1(6). From the

law of large numbers it follows directly that Aj can consistently be estimated

from a random sample 6j; j = 1,...,J, drawn from a distribution with density

I(0) as

-1
P(O.)

g(0.)  J 

j=1

(20)

We call I(6) the importance function as it specifies the density of the

sampling proces for each point in the domain of integration, i.e., its

relative importance. The numerical precision of the estimate (20) crucially

depends upon the variance of g(6)p(6)/I(6). Therefore it is desirable to

select an importance function that approximates the posterior density 
function

as closely as possible. Several alternative methods of Monte Carlo 
integration

originate in different principles to select or construct an appropriate

importance function. We shall discuss two methods that have proved to be

successful in some applications.
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• The first method is Simple Importance Sampling (SIS) where we use a

member of the multivariate Student-t family of density functions as our

importance function. The multivariate normal density function is a limiting

member of this family. Maximum likelihood estimates are used to specify the

values of the location and scale parameters. Tail behaviour can be varied by

choosing different values for the degree of freedom parameter. As we expected

the posterior density function to have relatively fat tails we opted for one

degree of freedom in the present application of the method. The actual

integration results suggest that a somewhat larger value might have been more

appropriate, though.

The other technique we employ is Mixed INtegration (HIN). Its distinctive

feature is that it employs a 'mixture' of classical numerical quadrature and

importance sampling. Importance sampling is used to generate directions in

parameter space, whereas for each direction a one dimensional classical

integration step is performed. Contrary to SIS, which is based on a symmetric

importance function, MIN is robust towards asymmetric tail behaviour, or

multivariate skewness, of the posterior density function.

Actually, the MIN technique proceeds by changing variables in the

integrand of jg using a transformation of the k-vector 8 of parameters into a,

pair (p,). The (k-1)-vector n represents the direction of the vector

8 - 80, 80 being the posterior mode. The scalar p satisfies
2 -1p = — e pv — e0 ' ) v being the importance covariance matrix. A sign0 

convention for p is added to ensure that the transformation is one-to-one. The
k-1actual transformation employed involves a Jacobian determinant If 1J001

where, as indicated, the factor lAn)1 only depends on n. Letting 8(p,)
denote the inverse transformation we obtain forl

= fg(e(ponpmpowpik-livw .
)1 dpdn

J 
Ifg(e(p,n))p(8001))1pik,-1

lip

E1J1 If g(0(p,n))p(8(p0))1 dpl
p

where EIJI denotes the mathematical expectation with respect to IJ(n)I

considered as the kernel of a density function for n. From the transformation

employed it can easily be shown that random drawnings nj can be generated from

a distribution which has a density function proportional to IJ(n)1 by simply



19

generating random drawings 6i from a multivariate normal with me
an vector 60

and covariance matrix V, and then applying the transformatio
n involved.

Accordinglywecanestimatelusingjrandoradrawings n as 10j

if ,pfe(,,,,.11,,f0(,,,.)li
6.‘ gj//F% \P 1 1J"1

j=1 p

ld 1.

For each random drawing ni we have to compute the value of the 
integral

over p, for which we use a 16—point Gaussian quadrature. Numerical 
convergence

is checked by running separate integrations over subranges of the doma
in of p.

Thus the actual number of function evaluations per integration step is

considerably larger than 16. The numerial quadrature step complicate
s the

computation of marginal posterior density functions according to equatio
n

(19). The value obtained for the integral over p has to be 'redis
tributed'

over the various intervals (a1,a2) that partition the domain of each of the

parameters. A crude but effective solution consists of assigning the

contribution of each of the parameter points at which the integrand 
is

evaluated to the interval in which this parameter point happens t
o fall.

5. RESULTS

We have estimated our model with data from a 'survey of Dutch 
independent

supermarkets and superettes conducted in 1979 by the Research Institut
e for

Small and Medium—Sized Business EIM.11 The sample consists of 215 
shops with

floorspace ranging from approximately 110 to 1600 m
2. For these establishments

a large number of operational, financial and environmental variables h
ave been

observed. For this study we only make use of a limited number of these

variables. Our selection was primarily based on the results earlier obtaine
d

by Thurik (1984), where the reader can also find a detailed account of the

available variables.

We first discuss the specification of the shift factors (X) and S
(X) of

our supply and demand functions (3) and (4). Some preliminary exercises

indicated that the following specification performed rather well:

10. Proportionality is sufficient as we always compute ratios of
 integrals, so

that the integration constants cancel. Compare equations (1
7) en (18).

11. The data can be obtained from the authors upon request.
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131
gX) = exp(30)(1 + M)H

6(X) = exp((5 6 F)(1 + M)

where M is the fractional gross margin (Q - PV)/PV, PV being the purchasing

value of sales Q, H is occupancy costs per square meter, and F is the relative

share of sales of fresh products, as e.g., dairy products, bread, fruits and

vegetables. Meat and meat products are not included in this variable.

The factor (1 4- M) in (21) is a proxy for prices, that we do not observe.

Being equal to Q/PV its role is to transform the value of sales Q into its

volume, that we assume proportional to the purchasing value PV. In (22) the

factor 1-1-M is present for the same reason, but also because we expect prices

to influence the level of demand. Consequently, we interprete the parameter 62

as a price elasticity, expected to be negative. It is customary in retail

productivity studies to assume that productivity increases with factor

prices 12. High factor costs urge the shopkeeper to exploit his resources

efficiently. Housing being a production factor in the retail industry, we have

included occupancy costs in (21), where it serves as a proxy for efficiency.

We expect the parameter to be positive. Occupancy costs are likely to be

correlated with the quality of the site too. Thus one can argue equally well

that H has to be included in (22), where it serves as a proxy for

attractiveness, i.e. environmental factors influencing demand. Including H in

(22) instead of (21) we obtained entirely unacceptable estimates, though. We

have also tried to include H in both (21) and (22). Constraining the

elasticities to be non-negative, we invariably obtained zero elasticity of

demand, so we continued with the specification according to (21) and (22). We

expect the parameter 61 in (22) to be positive as the availability of fresh

products is likely to exert a positive influence on demand.

Confronting our model with the available data the first step to be taken

was to find the maximum of the likelihood function - or equivalently: the

posterior mode - and to evaluate the inverse Hessian matrix of the log-

likelihood at the optimum. Initially optimization runs did not properly

converge due to misspecification of gX) and 6(X), and the presence of

outliers. During the proces of selecting equations (21) and (22) we also

deleted 7 out of the 215 available observations. These showed up as clear

12. For references see, for instance, Journal of Retailing Special Issue on
Productivity, Vol.60, nr.3, Fall 1984.
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outliers, either because of an extremely bad fit on the supply curve (3), or

because of a very low likelihood value (13). The first two columns of Table 1

give the optimisation results obtained with the remaining 208 sample points.

Taking Bl = 1 — Bu .1 and b = 50 in penalty function (15) a unique local

maximum obtains. According to the implied estimates of the regime

probabilities the average probability of the excess supply regime in the

sample is .242. Although this implies that the penalty is not active at the

final point, it does play an important role during the iterations leading to

this point: leaving out the penalty function we repeatedly (but not

invariably) end up in the unboundness region with the optimization routine

failing to converge.

Now turning to the point estimates obtained, we first notice that we have

deleted the threshold y figuring in equations (3) and (4) since it invariably

ended up at the imposed lower bound of zero. Thurik (1984) reports the same

result for this particular data set. The other supply side parameters take

plausible values and appear to be fairly well determined. There is a strong

effect of occupancy costs on sales performance ( 1 = .75), on which we have

already commented. There are slight but significant diseconomies of scale

(e < 1) and on average sales performance is maximal when about two—thirds of

the available area is selling area Or = .66). The demand side appears to be

somewhat less well determined, except for the elasticity with respect to

selling area, u, which is close to unity. The price elasticity 82 has a very

large standard error, probably because gross margin is a bad proxy for selling

prices. We have deleted it in our further experiments in order to economize on

the size of the model. It can be checked that the effect is negligable by

comparing the first two columns of the table. The share of fresh products

sold, with elasticity 81F, shows up relatively weak as well. The null

hypothesis of no effect is rejected at the 957 level on a likelihood ratio

test, though, twice the logarithm of the likelihood ratio being equal to 5.34.

We have tried to improve upon the specification of our demand equation by

including a locational dummy in (22) indicating whether the establishment is

located at a large shopping centre or not. This proved to be insignificant,

twice the logarithm of the likelihood ratio being only .90. We have also

included a dummy indicating whether or not the establishment contains a

butcher's shop, but this consistently ended up at the imposed lower bound of

zero.
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Table 1

Parameter estimates

(standard errors in parentheses

••••

par. e • NL 2=0) MIN SIS Thurik

(21) 2.942 (.261) 2.943 (.261) 2.945 (.264) 2.950 (.265) 3.046

01 (21) .749 (.052) .749 (.052) .748 (.053) .747 (.053) .724

e (3) .865 (.026) .865 (.026) .865 (.026) .866 (.027) .857
ir (3) .642 (.015) .643 (.015) .644 (.017) .644 (.016) .683

(6) .223 (.011) .223 (.011) .226 (.011) .226 (.011) .220

(22) 6.524 (.296) 6.451 (.158) 6.487 (.182) 6.493 (.183)

(22) 1.390 (.540) 1.377 (.531) 1.363 (.617) 1.351 (.598)

62 (22) -.362 (1.24) 0. 0. 0.

(4) .910 (.050) .907 (.049) .906 (.056) .904 (.059)

(7) .195 (.027) .195 (.027) .209 (.034) .210 (.035)

(9) 5.492 (.633) 5.503 (.633) 5.558 (.647) 5.568 (.633)

1 g L -317.913 -317.955

.242 .240es .227 (.066) .225 (.063)

.1.1111111.1111./.0

.111,..•

-332.987

Finally, considering the error terms of our model, the standard

deviations of the supply and demand errors es and ed are about 207, which is

acceptable for cross-sectional data. The same figure obtains for the error (I)

in equation (8) for the optimal partitioning of the floorspace. Its standard

deviation can easily be obtained from equation (9) and the estimates for a and
it as 100a24) = 19.7%.

Now turning to the regime probabilities, Figure 2 displays the cumulative

distribution of our estimates of Pes in the sample. We have already referred

to the average value of these estimates, which is .24. It can be checked from

the figure that the median value is about .15, and that more than 807 of the

observations have a probability of excess supply less than one half. This

illustrates that according to these estimates the majority of the observations

are strongly supply determined. This may partly explain why the demand side is

not so well determined. It also entails that Thurik's (1984) model, which

assumes excess demand for all observations, may be an acceptable
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Fig. : Cumulative distribution of estimates of Pes
in the sample.

approximation. This is reflected in the last column of Table 1, where we have

reestimated our supply side under this assumption. Point estimates are only

slightly different. The demand side is not identified when all observations

are assumed to be supply determined.
13 Neither can log—likelihood values be

compared in the usual way since the models are not properly nested.

It is possible, in principle, to compute estimates of the standard error

of 
es 

by evaluating the square root of (3P es 
/38PV (3-1; 

es 
/38), where V8 

is the
6 

estimated covariance matrix of the parameters. As the programming of the

gradient vector of 
-13es 

is not a trivial task, we prefer to deal with matters

of precision in the context of the Bayesian approach, to which we shall turn

now.

13. We can assume that all observations satisfy the demand equation 
as well,

but then we obtain an equilibrium model, and this entails the necessity to

introduce a third endogenous variable in the model, i.e., one that adjus
t fast

enough to close temporary disequilibria.
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We gain further insight in the shape of the likelihood surface once we

shift from a classical maximum likelihood (ML) approach to a Bayesian

methodology. For that purpose we first have to specify the prior information

that we want to use. As we are interested in the shape of the likelihood

function per se we opt for uniform priors on relatively wide, but bounded

intervals for all our parameters. The bounds that we employ determine the

domain in parameter space where we perform integrations using SIS and MIN

techniques. They have been selected using the earlier ML results and some

preliminary integration runs. The domain of integration was further restricted

by imposing 61 > 0, and the regularity condition u > ire that we discussed in

Section 2. The domain includes values for the demand side parameters for which

we have an excess demand for all observations14 , i.e., Q < Qd (C;X), with

equality for at least one observation. In this situation the likelihood

increases without bound when ad goes to zero, which is the lower bound we

employ for this parameter.

Obviously it is very dangerous to perform numerical integration when the

integrand has a pole in the domain of integration. We even cannot be sure that

the expectations we try to estimate exist. One possible way to proceed is to

get rid of the pole by restricting ad to be strictly positive. Then, of

course, the sensitivity of the final results with respect to the actual choice

of the lower bound for ad becomes the central issue. It can be addressed by

repeating the integrations for different choices. This, however, is very

costly, so we choose to take the more risky approach and check during our

integration runs whether any signs of actual problems of this type could be

detected. Both with SIS and MIN we have checked for outliers, i.e., random

drawings that contribute more than expected to the value of the integral

obtained. For the same purpose we have also monitored the convergence of the

integration runs, both with SIS and MIN. Finally, we have tested for the

occurrence of multiple modes when integrating along the directions randomly

selected in the context of the MIN procedure. On these checks we have not

obtained even the slightest indication that unboundedness problems might

interfere. Unimodality was always confirmed, integration runs always converged

14. Since we use a bounded interval for a our domain of integration excludes
unboundedness of the likelihood function originating in the opposite event
of a general excess supply. Compare the discussion at the end of Section
3. We have not checked the sensitivity of the integration results with
respect to the value of the upperbound for a, as the results obtained did
not indicate any influence whatsoever.

•
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fast and smoothly, and the distribution of the values of the integrand

obtained for all random drawings was always quite acceptable. Consequently we

are inclined to conclude that either the mass involved in the unboundedness

region is negligable, or, when this is not the case, this region is

sufficiently isolated and concentrated at the boundary of the domain of

integration to cause no practical problems.

Now turning to the integration results, the third and fourth columns of

Table 1 present the posterior means and standard deviations obtained with the

MIN and SIS method respectively. The methods estimate the same expectations,

so differences in the results are only due to sampling variance in the Monte

Carlo procedure. This variance is easily computed for SIS, whereas it can be

approximated for MIN, compare Van Dijk (1984), subsection 3.8. The differences

between the MIN and SIS estimates of the posterior means fall within 2a—bounds

so computed. The MIN results are based upon 2000 random directions, with on

average 90 function evaluations per quadrature for each of the directions

obtained. SIS results are based on 50,000 function evaluations. As the methods

converge relatively fast acceptable results are already available after 5-

10,000 function evaluations.

Comparing the integration results with the ML estimates the similarity is

striking. For the supply side parameters the results are virtually identical.

The asymptotic standard errors of the ML estimates of the demand side

parameters are consistently somewhat too low as compared to the (exact!)

posterior standard deviations. Point estimates are close together here as

well. Mode and mean being so close together, the posterior density function

and hence the likelihood function, is likely to be almost symmetrical. This is

confirmed by the shape of the marginal posterior density functions of the

model parameters. Figure 3 gives some examples, that are representative for

the general pattern we found. The apparent symmetry of the likelihood function

explains why SIS, which is based on a symmetrical importance function,

performs so well. According to the estimated sampling variance it is even

slightly more efficient than the MIN technique on the present model. In

conjunction with the fast convergence of both methods, i.e. small sampling

errors, this strongly indicates that the likelihood surface has a regular

shape that can adequately be represented by a member of the multivariate

Student—t family of density functions.

We have also computed integration results for the average probabilit
y of

the excess supply regime, P . es 
Its marginal density function is depicted in
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Figure 4. According to this result the data strongly 
reject the excess supply

hypothesis for the majority of the observations, the 
probability density being

practically zero for values larger than one half. 
The skewness of the density

function is reflected in the fact that the mean is 
slightly smaller than the

mode. A nice feature of the integration methodology
 employed is that we can

get estimates of the precision practically without 
additional costs.

The standard deviation of 'yes 
is estimated as .065. This confirms the idea

that, given the specification of our supply and dema
nd sides, the data are

quite informative with respect to the regime distrib
ution.
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We conclude our discussion of the estimation results with Figure 5 which

gives the marginal posterior density function of ad. It shows that values for

ad less than .05 have a probability density practically equal to zero. This is

in accord with the finding that unboundedness problems seem to play no role

whatsoever in the integration results that we have presented.

. CONCLUSION

From the statistical point of view our switching model of retailing

services performs reasonably well. We have, of course, made some preselection,

both in terms of model specification and data, but not more so than it is

customary in empirical econometric work. Contrary to what we had expected, the

likelihood surface seems to have a very regular and symmetrical shape, so that

the standard asymptotic ML results are fully adequate as a summary of the

sample information, given our model specification.

Unboundedness of the likelihood function, that can be shown to exist in

our model, did not interfere, neither in the classical 'optimization', nor in

the Bayesian 'integration' stages of the estimation proces. Apparently the

'spikes' associated with this phenomenon are sufficiently concentrated and

isolated at the boundary of parameter space not to frustrate the numerical

procedures that we have used for the diagnosis of the likelihood function of

our model.

The integration methods that we have used, i.e., Simple Importance

Sampling and Mixed Integration, perform very well. This is not a surprise in

view of the regularity of the likelihood surface. It is still an open question

whether the techniques perform equally well in a less friendly environment.

Now turning to the model that we have investigated, its main purpose was

. to help creating a framework for further research into the influence of

environmental factors on floorspace productivity. More knowledge is needed in

this field in view of the desire of EIM to build and maintain a decision

support system for retailers and consultants. The presence of both a supply

side and a demand side in the model also allows us to estimate the degree of

over—capacity for branches in the retail industry. This may be valuable from a

policy point of view.

The estimation results allow for two main conclusions. The first is that

occupancy costs are a supply factor, not a demand factor. It is a supply

factor, probably, because the efficiency of the shopkeeper is positively
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correlated with the factor prices he has to pay: only efficient producers can

afford to employ expensive resources. It is not a demand factor, probably,

because occupancy costs are not a good proxy for environmental factors

influencing demand. The second conclusion is that there is no drastic

overcapacity in the small Dutch independent grocery trade in 1979. Given the

observations in our sample the average probability of excess supply is

estimated as 23% with a standard deviation of 647. In view of the fact that

small independent grocers have the least competitive power in the grocery

trade, it is likely that in 1979 no overcapacity occurred in the Dutch grocery

trade as a whole.
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Appendix.

Some properties of the minimum of two random variables.

This appendix is included for expository purposes mainly. To accomodate

the non-technical reader we use only elementary tools of mathematical

statistics. The results derived are not new, similar derivations can be found

in Maddala and Nelson (1974), Goldfeld and Quandt (1975), Quandt (1982),

Maddala (1983) and others.

We shall deal with the canonical form of the model for a market in

disequilibrium, where transactions y are the minimum of stochastic supply ys

dand demand y with joint density function g(ys ,y ). We shall first derive the

density function of y. Then we obtain expressions for the conditional regime

probabilities Pr(y < y
si
y) and Pr(y < y

d 
y). We shall also demonstrate the

unboundedness of the likelihood function associated with a random sample of

observations on y. Finally, we show that the introduction of an additional

endogenous variable that is not directly affected by the regime switch is

straightforward.

We directly obtain the density function f(y) by differentiation of the

distribution function F(Y) := Pr(y < Y). As the two regimes are disjoint we

have:

F(Y) = Pr(Yd < Y y
d 
< y)+ Pr

g(ys )dysdyd

ys 
<Y

S
< Y

d
Y )

yco

f f 
gcyY 

s,_ 
) 
d,

Y dy •
-co 

Y
d -co ys

Differentiation with respect to Y, and subsequent replacement of Y by y yields

the density function f(y):

f(Y) - 
3F(Y)
 ay I =y (Y) + f Y 2 (A.1)

where

(A.2):=

co

g(yS,y)dyS,

fed(y) := f g(y,yd)dy

Notice that in each of the two terms the domain of integration consists of the

(A.3)
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range of admissible values of the unobserved side of the market, given the

observed level of transactions y. In case of a 'maximum'—condition, as in the

main text, this entails that integration bounds will be — and y instead of y

and co.

Now turning to the regime probabilities we shall derive the following

property:

pr(yd < ySl y = fes(y)/f(y) (A.4)

For that purpose we introduce the auxiliary random variable z := y
d — y5. Let

h(y z) be the joint density function of y and z, as it can be obtained from

y ) by changing variables. We obtain the conditional density function of

z given y as h(y,z)/f(y). Then

r ysly) = Pr(z Oly) 
=rh(z,y) 

dz = 1 fh
f(Y) f(Y)

,y)dz.

To evaluate the right hand side integral we transform back to (y
s,yd) again.

As z > 0 corresponds to yd < ys and, obviously, h(z,y) transforms into

g(y-s ,yd ), we end up with fes(y). This proves (A.4). Similarly we have

( s < dY Y IY) ed(Y)/f(Y). (A.5

It follows directly from (A.1) that both regime probabilities add to unity, as

it should be.

We shall now demonstrate the unboundedness of the likelihood function L

associated with a random sample yi; i = 1, N of observations on y:

:=II f(y) =
iEI

II 
ifes

iEI

i) fed(y ) (A.6)

where I is the index set {1, ..., N}. Without loss of generality we

concentrate on finding a set of parameter values associated with the density

function g(ys,yd.) such that L tends to infinity when of ydthe variance a2

tends to zero. This only occurs when we impose some, relatively weak,

conditions on g(ys ,yd ). As it is rather difficult, and not very rewarding, to

try and find necessary conditions we shall be content with the following set

dd(y.)of sufficient conditions, where g (ys) and 
g are the marginal density

s dfunctions of y and y respectively:
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ASSUMPTION: A set of admissible parameter values exists such that

g(ys,yd) = gs(ys)gd(yd)

Vi E

<0

-- 3i' I: y., — Ey
d

1

The first two conditions state the independence of y5 and yd and the strict

positivity of gs(.) on the sample. In practice these conditions can always be

met. The other two conditions are crucial in the proof. When, for instance,

the model for y contains a constant term, i.e., Ey = c x!fi, where x1 . is 
a

vector of explanatory variables and (3 a vector of parameters, (A.9) and (A.10)

can be satisfied for any value of by choosing c equal to the maximum of

• x'13. over all observations. Without a constant term, however, no value of

0 may exist for which (A.9) can be satisfied, and the likelihood function will

be bounded.

Now turning to the proof we Choose a set of parameter values such that

(A.7)—(A.10) are satisfied and let ad tend to zero. Substituting A.2) and

(A.3) and using (A.7) we obtain from (A.6)

[gd(Y)fl GS(Ydl e(yi){1 Gd(yi)}1, A.11)

where Gs(.) and Gd(.) are the distribution functions of ys and yd

respectively. When ad tends to zero the distribution of y degenerates. The

density gd(y) will tend to infinity for y = Eyd, and to zero elsewhere. The

distribution Gd(y) tends to zero for y < Eyd, to one half for y = Eyd, and to

unity for y > Eyd. Using these properties, and the fact that the distribution

of ys is not affected by ad, it can easily be checked from (A.8)—(A.10) that

all factors in (A.11) will be strictly positive, whereas the factor

corresponding to observation i' tends to infinity. This completes the proof.,

When, finally, we introduce an additional endogenous variable, say an

equation for prices p, we can reinterprete all results obtained so far as

applying to the conditional distribution of y given p. Conditioning on p on

both sides of (A.3), and multiplying with the marginal density function gP(p)
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of p, we obtain the joint density function fi(y,p) of y and p as

where

v(y,p) = gp(p)ifes(ylp) fe (y i p)1 =
'
es
(Y P) fi

Co

es
(y,p) := f gi(y

s
,y,p)dy ,

ed
f' (37,0 :=

d d
,10)dY

Y,P),

g'(.) being the joint density function of ys, yd and p. Conditioning on p on

both sides of (A-4) and (A.5) we obtain the regime probabilities conditional

on y and p as

Y1 13)/f(YIP

Pr(Y
d 
< Y IY,P) = 1 - Pr(Y <

d

The likelihood function factorizes as

Y,p)•

(Y,P)/P(Y,P) (A.15)

(A.16)

L = II f'(y4,p.) = fl e(Pi)II f(YilPi
' 1 id -

Assuming strict positivity of gP(p.) for all i, compare assumption (A.8), the

unboundedness of L follows from the unboundedness of the second factor as

before.
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