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ABSTRACT

This paper introduces a limited-information two-step estimator for
models with rational expectations and serially correlated disturbances.
The estimator greatly extends the area of applicability of McCallum's
(1976) instrumental variables approach to rational expectations models.
Section T reviews McCallum's method and discusses in detail the problems
surrounding its use in many empirical contexts. Section II presents the
two-step two-stage least squares estimator (2S2SLS) and demonstrates its
efficiency relative to that of McCallum (1979). Section III provides a
comparison of several estimators for a two equation macroeconomic model
with rational expectations due to Taylor (1979).
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Introduction

This paper troduces a limited-information, two-step estimator Tfor
simultaneous ecuations models with autocorrelated disturbances, and shows how

it can ve appli
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greatly extends the area of applicability of lcCallum's (1976) ins

variable approach to rational sxpectations models, which treats reallizations
of random variables as thelr expected values measured with unprsdictabls fore-

cast error. It also Is useful in other contexts Tecause it ca

for moving averags as well as zulcregressive

}-4
4]

thus more versatil
wnich is designed to handle sutoregressive dependence only.

Recent research on estimation under the rational expectations hypothesis

-

has focused on complete systems of equations, in which expectaticnal consistency

llows the imposition of strong crcss—eguation contraints on varameters. The

4

constraints arise when unobservable expectational variables entering the structu~

ral equations are eliminated through use of the system's own Corecasts. Thus,
the estimation procedure makes efficient use of ail the system's information in

.
estimating each equation.

In view of this efficiency property of full-system estimation, zre there
any advantages to direct structural estimati
approach of McCallun (1976)7 e believe that there are at least two. Firs
the vdrocedure 1s feasible in sita
to be estimated by a full-information technique, and second, the limited-

T

information aprroach is robust to specificati

Wallis (1980), Eansen and Sargent (1979), and Hayashi (1980) discuss the
estimation of simultaneous systems under rational expsectatlions.



the one of primary interest. Full-system estimation, by employing information

from all the system's equations, ensures that a single misspecification in any

equation leads to inconsistent estimates of all the system's parameters.
Unfortunately, the problem of autocorrelated regression disturvances

limits the usefulness of the instrumental variable approach in practic

[¢]

-

Autocorrelstion may arise through serial dependence of the structural system's

ot

édisturbances, because of overlapping forecasts, or because of the dating of

expectational variable While solutions to this »rotlerm have been proposed--

for example oy MeCallum (1979) and Harashi (1980)--~little attention has teen
o - - . . 3

paid to the efficiency of the resulting paremeter estimates., In contrast

the procedure suggested in this paper reccgnizes thaet the estimation problem's
structure can bte exploited to yield a
The plan of the paper is as follows. Section I reviews the limited-
information method of McCallum (1976), =nd discusses in detall the problenms
surrounding its implementation in many empirical contexts. Section II develops
a two-step two-stage least squares (282SLS) estimator for an environment with
ially correlated errors and in which no strictly exogenous instruments are

available so that predetermined variables must be used as instruments. Tris

environment includes raticnal expectations models as & special case. The 2828L35
estimator is a generalization of the non-linear twec-stage ieast squares (12518)
estimator of Amemiya (1o7L), We apply voth estimators to the problams raised in

Section I and show that the estimates are consistent and thzat the 282318

estimates are asymptotically more =fficient than the NLZ2SLS estimates.

o

The existience of a robust sstimator suggests a simple diagncstic test
for specification error in raticnal sxpectations models. The idea is develcped

in Section III, velow.



In Section III, we use the 2528LS and NL25LS estima

parameters of a two-eguation macroeconomic model with rati

due to Taylor (1979). The estimates we obtain are, on the

those cbtained by Taylor using a full-informetion, minimum
J )

While the limited-information estimates are asymptotically

}_I
Uy
ct
-
b
-
[4)]
(@]
[65)
w
(4]
o)
3
3
@
3
&3]
&
O
o)
4]
H
0]
ct
(6]
=
)
o
Q
Q
l .
ct
ba
(@]
&
-
ck
8
]
48]
{0
|..l
3
-
o

Section IV offers scme concluding remarks. An 2pD
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of the paper's main propositions.
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I. Single-Ecuation Estimation under
Rational Expectations

In this section we describe McCallum's (1976) suggestion for estimating

single equations under the rational expe ctations hypothesis, and discuss =z major

ct

4y

0

s}
t

complication that arises-in practice when one abttempts to implement this
nique. Our aim is to moti zyate the introduction, in the nexv section, of an
estimator that circumvents this 41
totic efficiency over some consistent estimators now in use.

We initially consider an equation of the fornm

- - - = m 3
¥, [t_lzt ztjé *u, £ = 1, .., T (1)
wnere T is a scalar random variable, Uy is a disturbance with mean Zerec,
5§ is an (n+l) X 1 vector of unknown parameters, 2 is a vector consisting

t

of k endogencus random variables correlated with ut and n - k predetermine

variatles, and + 1% is the expected value of the endcgenous variable Zy s
- i)
conditicnal on information available gt time T - 1,
Z - ™ - I SR
t-1"t = ﬁ[Zt‘it_lj. (2)
We also assume Elu, |I, ] = 0. We regard (1) as one of a system of simul-

taneous equations that jointly determine the values of the endogenous variasbles,

\
i

and assume that 2z, is not an element of T,
% [
1
However 7 mav contein lagged values of Z.. The discussion 18
b4 . J O A
eas] extended to *the case in which z is a wvector, vut eguation (1)



As the expectation z is typically unobservable, direct estimation
o = o b

t-1% -

the structural form (1) cannot be accomplished using standard simultaneous-
equation techniques However, an instrumental-variables technique crovosed
by McCallum can be employ=d to obtain consistent estimates of &. To imple-
ment this approach, we note that by (2) we may write the reslizetion 1z, as
its expected value plus a mean-zero forecast error uncorrelated with any
variable in the conditioning set It—l’

N zln |1, ;1 =0 (3)
For the remainder of the raper we will use the assumption that :t—l contains
past observations of all the structural system's varisbles and of nt—l’ S0
that n, iz serially uncorrelated. Using (3), we may eliminate the expectationzl

.- - / e
variable from (1), obtaining

=~
O
+
o
1
O
3
O
+
Q]
=

where 51 is the first slement cf &. We now stack the T observations

timation of (5) is = standard errors-in-variables problem. Fecause of

the rational expectations assumption and the assumed distridbution of the {u,},
t
any exogenous or sndogencus variables lagged one cor mores periods ars uncor-

related with the ccmposite error

eligible instruments for consisternt estimaiion or 8.7 I the processes
T\
“Use OF contemporaneous values of erogenous varlxule

validity. Th ey n unc laf the

U, s but wiil < recast srror

can be forecast

4,



generating the simultaneous system are stationary, as we shall assune,

ur previous assumptions ensure that Elee'] is equal to a scalar

o]

. . s as 2 2 2 .
covariance matrix with diagonal elements O = (gu - 2510Jn - SWGH}' Letting
W 1 4

~
¥ denote the matrix of instruments and & denote the instrumental-variable

estimate of &, it follows that

2

_7 _ ,
(gra(xx) " txrg) ™ (6)

=

vields = consistent estimate of the asymdtotic variance of 8§ (conditicnal

~2 . .
X] = Elee']. Eere, o 1is ovta ned from esti-
kL

on X) provided that Elee’
mated residuzls in the ususal manner. The formula (A) is wvalid when X con-

tains lagged endogenous variables, so that estimation of & wunder the

o
N
’._l

ke

rational expectations assumption poses no speci problem for standard computer

4

packages provided one is willing to make the assumption concerning the

conditional wvariance of €.

While McCallum's procedure is appropriate For estimating (5), 2 major

difficuity often arises in practice which makes this procedurs inapplicable.

The difficulty is the critical assumption that € 1is serially uncorreiated. There

are many interesting rational expectations models where this will not be the case.
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equation (1). The dating scheme assumed in eguation (
tational varisbles be vredetermined, and excludes the plausible possibility
that current expectations of Tuture events may influence currenvly realized

Fal

economic varisbles. TFor example, if (1) is replaced ¥

P

OAssumptions concerning conditionzal variances are frequently more difficul
to justify on economic grounds than are assumttlons concerning conditicnal meapn
Tn certain models D 1is a consistent estimate of the asymptotic variance of &
under weakesr assumptions than those stated above.



use of McCallum's errors-in-variables aporoach yields the eguation
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= - - = { 5 + {
£ 0 tPeel %t s T 0 Meer T RO T & (7)

. , . 7
where nt+l is the error of forecast between pericds +t and © + 1. The

important difference vetween (7) and (L), as Hayashi (198C) has pointed out,
is that the composite error €, = u, - 6Wnt+1 will not in general te serially
T L 1

uncorrelated. The forecast error tetween pericds t - 1 and t, n., and

the innovation, u cceurring at time t  are lik=iv to

€ and €, , o be correlated A gecond, related provlem arises when the
o - 3 _~ N - i 3 e o [T T,
relevant forecast herizon is greatsr than the sampling interval, so that

successive forecast veriods overlap. In “his cass serizl correlation of ¢

-

-

is due to non-zero correlation between nN's across time. A third examo

1

XOCEE5.

e-noise

u

ocours when the structural disturbance u is not a whi

3

The serial correlation in € ©presents several Tamiliar problems.
Tirst, the instrumental variables estimator proposed by McCallum {1976) is
inefficient among the class of limited information estimators. Second, the

variance-covariance matrix reported by stendard regression packages will ce

This formulation often arises in medels dealing with rea2l intersst ratbtes
See for example Mishkin {1980).

8.

“ennan (1979) confronts a vroblem of this sort in estimating rartial-
adjustment models Hansen and Yodrick {16R0) and Huizinga (1981) dizeuss a
similar problem in a different context. The estimation of macro modsls of the
tyve emoloyed by Fischer (1977) and by Phelps and Taylor (1977) weould alzo in-
volve overlapping forecast =rrors.

9\,1 T (= Q s 1aa 1 - . - -~ . + = ~A oA A

MeCallum (1979) discusses how, in some csses, “he cerrect standard errors

ey be obtalned.



While these problems are standard, the conventional correcticns T
serial correlation are now known to lead to inconsistent parameter estimates

in the context of rational expectations models. This has been pointed

out for the general case by Bernanke (1977) and Hansen (1979). Flood and

ot

Carber (1980) have described in detail how the widsly used meihod of Fair (1970)

becomes inaprlicable. Intuitively, the inconsistency of generalized leass

m

squares (GLS) arises because the procedure transforms the model by replacing
variables with linear combinations of their past, present, and

Thus, even if the original instruments and error term are contempPoransOus.y

uncorrelated, the transformed instruments and the fransformed error Term nesd
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models it is assumed that the instruments are "strictly" exogesnous. That is,
the instruments are uncorrelatsd with the error term at all leads and lags.

This assumption is untenable in the rational expectations formulation

pecause part of theerror term is a forecast error likely to be contemporansously
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consider the case of Thell

~

mator (G2SL3) an
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- - . - ; -
Because Fair's method 13 not a GLS vrecedure, the following exmlanation
. - ; - / Ie) - .
is not d&irectly relevant. See Flood and Garber (1980) For =z discussion of way
R - ] - “
Pair's method lesads %to inconsistznt estimates.
11
In the sbandard simultaneous esuation Iframeworx Thls estimator 1s
o UG T - R o s s o+ o =
efficient among the class of limited informetion =stimators.



1

These assumptions are sufficient to guarantee that the composite error term

€, 1s a first order moving average process. If we use X 1o dencte the

variance-covariance matrix of €, the generslized two stage least sqguares

. . . L 12
estimator 1s gilven by

where X denotes the inztrument matrix, assumed to inc

. 13 . . . . .
variables. In order for this estimator <o be consistent, it is rnecessary that

T =L . ‘o . .
1/T (X7 7e) converge in probability to zero as T (the sample szize) goes to

infinity. This is unlikely in general becauss a2 typical element ¢f the column
-1
vector X'Z is
T T -1
X'Ze, = I I L2 € (9)
k=1 2—1

. . , .th . N
where in is the value of the i instrumental variable at time k. How
. -

o

L, Dbveing the variance-covariance matrix of a first order moving average pro-

cess 1s a band symmetric matrix with zercs on all but the main and firs

iy - -1 C 1h
off-diagconals. However, L will contain all non-zero elements.” Therefcrs
equation (9) will contain terms involving the product of X, 5 end e_. These
t+1,1 t
bl

need not converge to zero in probability (after dividing by T) Tbecause part of

12 . a=1 -1
In practice L would be used in place of I = but this difference

is immaterial here.

13 .
Exogencus variables are those which are uncorrelated at 21l leads and
lags with the structural error u.
lh e J_ Py v_l > -
In fact, for this varticular case z will be of the same Torm as
he variance-covariance matrix f:r a flrsu—orier autoregressive process.
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Et is the forecast error in predicting 241 which 1s in general correlated

15,16

The inconsistency of standard GLS procedures in the raticnal expec-
tations framework discussed here essentially l=aves one with two options.
First, one cén continue to use the errors in variables approach of MeCallum
(1976) without attempting to correct for the serial correlation in & and
. . . . . 1T
adjust the sitandard errors of the estimates accordingly. Secondly, one
could search for an estimator which corrects for the serial correlation in
£ aqd still preserves consistency of the parameter estimates. In line with
this second option, the next section turns to the proposed twoc-shep two-
stage least squares estimator. It i1s shown there that this yields more efficient

estimates than Tollowing strategy one.

If it is known that certain X's do not appear in the reduced form
, Or the particular form of X is such that it contains zeros in
ic locations, a version of generalized two-stage least square with a
e Y 10sen 1ist of instruments may be applicable. These can only be
cial cases, however.

l6In a recent article, Revankar (1980) preyoses 2 three-step GLS estimator
for estimating models where the error term is the sum of a white-noise and an
autoregressive part. That estimator, like that of Fair {(1970) and Theil (1961),
is inconsistent for the model discussed sbcve. Inconsistency in the rational ex-
pectations framework 1s also a problem for the estimator of TDhrymes, Berner and
Curmins (197L).

- 1
3,

e}
o

17

'This option is discussed in MeCallum (197S), along with a discussion of
overcoming the problem of using lagged endogenous variables as instruments in
the case of serially correlated structural errors.

l8Hayashi (1980) proposes an estimator which, like twc-step two-stage least
. S . . . . - I LR I
squares, corrects for serial correlation and maintains consistency. Hayashi's
estimator cannot be shown o be mors efficient than option one, however.
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II. 7Two Step Two-Stage Least Squares

In this section we describe a two siep procedure for estimating the
unknown h X 1 parameter vector ¢ in the nonlinear model
7= 9f(8) + € (10)

where f 1is a differentiable, cne-to-one function taking the vector & into

A . 19 ..

a space of higher dimensiorn. It is assumed that

E(e_|w. ) =0, £ =1,2, ... (11)

VIR v
vhere N, is any arbitrary subset of the set {9, , W s W s vees
- L t-1 £=-2

€ s €, - s ...} and the W!s are observable vector valued random variables
t-m t-m—-1 "

to be used as instruments. As the notation suggests, ths ¥
be known at time t - m and should be thought ©
Wt = Xt—m' This particulsr formulation of the egu uaticon to be estimated
includes the rational expectations models discussed in Sectlion I as 2 special
case and mekes it apparent that our technique is applicable in a general
simuitaneous equation setting with predetermined, rather tnan strictl;
exogenous, instruments.

To see how the models discussed in the previcus secticn can be exyressad

in terms of equations (10) and (11), return to the specification,

[}
no

vy, = [,z z, ]

{
4 2oy Zols(8)

0q

t

19 ‘ .
This section describes a non-linear extension of The estimator
proposed in Obstfeld (1978).

20 o g . - , . . -
Certain other standard assumptions, including staticnarity ana
correlations betwesn W and &, are describved in detail in the Apvendix

where proofs of all propositions can be found.
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and suppose ut follows a first order autoregressive scheme,

= + By |I. ) =0 21
W TP T Vo A L

o~

After imposing rational expectations and guasi-differencing, equation (11)

becones,

7, = o7yy * oy, 205(8) = [z B,y 10s(8) + vp- &) (Sngy + 08 (8

whers ss before 1, is the forecast error and

element of g(8). By choosing

= 1 7
O = (732 4 By 2 By q)
£(8) = p + g(8) - peld) and
= - Iy
e, = V- & (8In g+ 05, (Sny

(8§) represents the first

it is clear that =sguation (1L) becomes equation (10). TWote also, that wnile

the composite error, €, 1s correlated with its own value lagged once,

d.22

dies out after one perio Furthermore, E(e I ,) =0
- i T

this

N

oV

construction so that endogenous or exogenous variables lagged one Or more

[
(W]

neriods may be used in forming the vector Wt. Thus all conditions for outting

the model in terms of eguations (10) and (1l) are met. If u, 1in equation

t

21 .
t-1
variables dated +-1 and before so that this assumption is, of course,
stronger than the assumption that {vt} is
hat the system's lagged endogenous variables are predeternined with re
;

t
the innovations Vt'

o

white-noise process. It

22 . . . s vy = _ - . N
This is true provided that :(V£|nt ) =0 for > 0 which
-]
be a reasonable assumption. Recall that E(ntn~) =0 for s %t
o

ea
and E(n,v, .) =0 for J >0 by raticnal expectations.

states

O]

cect

seens

I is assumed to include 21l the system's exogenous and endogenous

pfe}

to
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(12) is not a first order autoregressive process but rather a first order

moving average process,

= + . E T = O (15)
By T T PV (v 1Ty ) >
we can again satisfy the formulation of equations (10) and (11). In this

case no quasi-differencing is needed since the composite error V£ OV 4 -

Do~

gl(d)nt+l is uncorrelated with itself after two periocds and
> {9 £
v o+ + ¢ (3 = 0, {(16)
(rg v 0yt O T )
We merely need to use variables lagged =zt least fwice ©o form W+.
Obviously, then, allowing Uy in equation (12) to ke a general ARMA

process provides no problams For Titting the rational expectations model to Th

form of equations (10) and (11). A higher order autoregressive component can

be handled by more quasi-differencing and a higher order moving average component
. . ca o v s 23 . i qse s ia
can be handled ©y moving the information set back in time. In additicn, it

1

should be clear <hat the dating of the expectations provide

w

no probtlems. Re-

placing .z ., in equation (12) with the arbitrary P requires raising

d”

only two peints. First, when forecasts ares made for several periods ahead
and data are collected every periocd rational expectations does not guarantes
serially uncorrelated forecast errors in successive periods. Thus the forecast
error component of the composite error, g, need not always te white nolse.

“+

orecast horizon spvearing in eguation (12) is x

Hy

However, if the longest

veriods, rational expectations dces guarantee that the forecasts are

231n the present setting, consistent sstimation deoes reguire knowledge
of a maximum lengtn for non-zero structura¢ disturbance corrslations. Hatanakxsa
(1975), Sims (4970), and others have argued that this identifying information
will frequently be unavailable. In practice, therefore, cne must view hypo-
ne as tests of joint hypotheses including assumptions abcut lags.

thesis test
3 -

t s
Salemi and Sargent (1979) adopt this pragmatic approach.



1k

uncorrelated after k lags. Thus multi-period forecasts will only affect

the value of m in equation (11). The second voint is that when tz*+l is
v

+

replaced by an arbitrarily dated expectation in equation (12), if the earliest
expectation 1is t—jzt+k’ the matrix Wt nust have all variables dated at
time t - j - 1 or before. Rational expectations guarantees that any such
information is uncorrelated with-the present forescast error component of the
composite error.

Having shown how rational expectations models can be put in the Torn

of equations (10) and (11), we return to the issue of sstimation. One way %o

~
estimete & would be to use the estimator & of ¢§ obtained by minimizin

o

the functicn

$(8) = (v - ar(8) ) wCir) W {y - a£{d)). (17)

This estimator is the nonlinear version of that proposed by McCallum (1976,
1979) and is, of course, the non~linear two stage least sguares (NL2SLS)
estimator of Amemiya (197L).

The asymptotic properties of the NL2SLS estimator are given in

Proposition 1 below, where the matrix { 1s defined as follows. Let w!
9 " o 4 J.t + 1 + <+ L 4 £
ve the transpose of the < row of the instrument matrix, and define
g, = €, W!'. Assume that
C t T
s '
plin - a,q,
To<co hd
t
m
is finite, and set
a,q
\ . t t-%
R(%) = plim L = .
N <
T 2 ¢
Note +] r(2) = =] 1] = = 11 = 8lqg q, . ,']" = R(-L)", wh=n &all
Note that R{2) Zlaa, o' Bla, pq, ') = Blage, o0 (=2)",
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processes are Jjointly covariance stationary. Finally, define

m
2= I R (18)
. 2=-m

where m 1is as given in equation (11). Q will necessarily be non-singular.

Iy
Proposition 1. The nonlinear two stage least squares estimate & is consistent

N
for 8. Asymptotically, VT(8 - 8) has a normal distrib

and variance-covariance matrix

, -] -1 , - —- =] =1
plin 70 (7w(w) e ) G Tecrn e vtrwten et (19)
T>co
where
of or of
vV =0 =9 e ] ). (20)
4 4 86
%%is 50,1 a8

Proof of this, and of all subseguent propositions, is given in the Appendix.

Proposition 1 provides a formal justification for following the ovtion

described in section I of using MeCallum's standard.errors in varisbles

5

approach, provided one uses the correct formula for the variance o

Fy

th

(]
]
!
o+
2o
3:
o
ot
]
0]

. . . 24 o s \ .
given in equation (19). The failure of NL2SLS to ccrrect for sgerial

correlation in €, however, raises the possibility that using a distance
. \ . N . oot x L o
metric other then W(W'W) "W' may yield more efficient estimates. In

particular, consider the estimator d of § +that minimizes

A8) = (y - 9£(8)) "W @t wi(y ~ qz(8)). (21)

It should be noted in passing that equation (2L) is not wha*t the
standerd regression package will report, however. The standargd vackage wi
set = W'W so that equation (19) becomes plim To(V'W(w'Ww)~tw'v)-1. This
was pointed out by McCallum (1979) where the 1ssue of the correct variance
matrix for NL2SLS is discussed. ‘

L=

(
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In order to motivate this estimator, consider the following derivation
which parallels the standard derivation of the linear two stage least squares
estimator (see Dhrymes (197h)) and shows how 4 arises as an Aitken estimator.

Premultivly equation (10) by W' +to obtain

W'y = W' £(8) + W'e . (22)

Honlinear least squares applied to (22) would give a consistent estimate
of &, but since wvar(W'e) is not provortional to the identity matrix, this

N

estimate is likely to ve inefficient relative to +the one given by some kind

by

of generalized least squares. TFollowin line, let R Ybe the Cholesky

nd

m

decompositicn of the matrix & Iin equation (18) (so that Q = RR')

v -

consider the transformed model,

RNy = 3hwrar(s) + B he (23)

Application of nonlinear least squares to (&3) yields the estimate d which

)

minimizes A(S). This is readily verified in the linear case since oréinary

least squares on eguation (23) with £(3) = § ¥ields

- - -1
§ = (QWQ "W'Q) TQ'WQ W'y (24)

which satisfies the - first order conditions for minimizing A{S). This

-~ .

expression for d 1in the linear case is szlso useful because by substituting
. / -~ . . .

equation (10) into equation (24) one sees that consistency depends only on

having ©lim(1/T)W'e = 0; and this follows from eguation (11).

The relationship between 34 and otzsr GLS estimators can best be

appreciated by observing that if W satisfies one additional condition, &
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. 2 ] . .
reduces to plim W'C_W, Z_ .= Elee']. > In this case there is an alternative
T T
T
derivation of d. This derivation btegins with factoring ZT = AA'  and
premultiplying the regression equation (11) by A obtaining,
— —_ /4 -— —_ ~\
v = 0r(8) + ¢, E(eg) =1, (25)
=, -1 = -1 = -1_ . e arer
where v =A "7, 0=A7Q, and € = A "e. ext, form the matrix W = A'W

The key observation to be made is that the transformations leave the corre-
lation Tbetween the instruments and the regressors and that between the
instruments and the disturbances unchanged,

plim(1/T)W'Q

M0

plim(1/T)W'

P

Thus W may be used as

(25) by nonlinear two stage least

by minimizing A(S) and

We now turn to
A(S)

minimizes and the

25

- .o . = . R
That condition is L(Et s Nt, ey W —m> = “(EJEt—S) for all m > s = 0.
In contrast, Theil's gzener leedtho—stage least squares transforming

the instruments by the transposs of A - rather than A'. As rointed out in

section T, this creates a correlation of plim Q/T)W'Q‘le between the transiormed

. Moo -

instruments and the transformed error. And while plim(1/T )%’“ = 0, plin (1/T) w'Q

# 0. T—>00 Toco

= -1 . .
= plim(1/T)W'AA ~Q = plin(L/TW'Q
Toro0 <0
- . aa—1 . .
= plim(1/T)W'AA "€ = plim(1l/T)W'e .
Terc0 oo

an instrument matrix in estimating $ 1in equation
squares. This estimate, however, i1s obtained
26
is therefore the estimator 4.~
the .asymtotic properties of the sstimator 4 which

efficiency of 3 relative to NLZSLS.
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Proposition 2. The estimator d 1is consistent for J. Asymptotically

VT(d - 8) has a normel distribution with mean zero and variance covariance matrix,

2 o= -1
plim T (V'WQ "W'V) ~.
Tco
Proposition 3. The estimator d is more efficient than the NL2SLS

A

~
estimator § in the sense that the asymptotic variance matrix of § minus
the asymptotic variance matrix of d 1s positive cefinite.

While Proposition 3 provides a major Justification for u

wn

fd

o]
0Q

jon)
“

one

obvious vrowvlem remains. In practice, © 1is not known a priori and must be

D]

estimated. Fortunately, as Hansen (1979) has shown, the followirg procedure

L

vields a consistent estimate of . Using NL2SL3, obtain the estimated resi-
£ =y, -0.7(8). £i 4. = £ and form
duals & =y, - O (§). Define 4y L o
A Q.Q._y
R(2) = =t por p<m (26)
N T

Finally, let

m N
T R(L). (27)
L=-m

2
1}

The ability %o consistently estimate { allows us to define the

two-step two-stage least sguares (2S2SL8) estimator of § as the vals

o
[¢)]
O
-
(@2}

that minimizes the quadratic form of eguation {(21) with  replaced by =
-

consistent estimate, §. The first step involves doing NL2SLS to obtain a set

of residuals used to estimate Q. The second step involves minimizing A(S),
. . . . . s 27 . C
as given in equation (21), replacing Q with Q. The following proposition
27

Since writing this paper it has been brought to our zatte
the 282SLS estimatcr has independently been proposed by White (1980
cross section model with heteroskasdicity. Hansen (1980) has also i
proposed a related estlmator
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states the relationship between the estimator 4 (formed with s known )

and the 282SLS estimator.

Proposition L. The 92323818 estimator and the estimator d have the same

~
asymptotic distribution provided that 0 is a consistent estimator of Q.

2efore closing this section several additional poin

as descrived earlier, there areconditions under which 0 = W'L W, 2, = T(eg?).
A ~ N B )
In this case one would use { = W'me, where ¥, can be found directly from

~ 2
the &£ of NL2SLS in the usual fashion. Hote that when L. =0 L, 282SLs and
¥12SL3 are the same estimator.

Second, when equation (10) is just identified, so that the number of
instruments equals the number of parameters, h, 1O be =stimated, th
sfficiency gain from minimizing A(8) instead of $(8). 1Inthis special case

- A
V'W is invertible andboth vi(d - §) and VYI(8 - &) converge in distribution
)"'l )"l) 30

to #(0, plim T(V'wW) ~Q(V'W

usual single-esquation form of GLS, 292818 does no% require inversion of a T x T
matrix, where T 1s the number of observations. Instead, only the X X X

S
matrix § need be inverted, where ¥ is the number of instruments. This en-
hances the computations because X is typically much smaller than T.
ITI. An Apolication

Tn this section, we use the nonlinear two stage least squarss and the

298ee footnote 25.

30m s s — - . '
This i1s reminiscent of the relaticnship between three-sta;

squares and two-stase least squares. In the just identilied care, th
s+ g0 = a4 pos o3 3 :
stage least squares 1s no more efficient than two-stage least sguares.
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two-step two-stage least squares techniques to estimate Taylor's (1979) ma-
croeconomic model of the United States. The purpose of the application 1is

to compare the limited-information 2S2SL3 and NL2SLS estimates, which do not
depend on cross-equation constraints, with each other and with the full system

estimates reported by Taylor. Compariscn of the NL2SLS and 282818 estimates

)

allows us to determine whether the efficiency gain from doling the second step
of 282SLS is important empirically, as well as theoretically.

Taylor's model consists of the following four equations:

e
v, = By B.; + 8. (n -p. )+ 3 (m -~ v, ) +Bm, + Bt +8
Iy Sl t-1 V2 3( t 't) i ‘E—L) 5y ~5 0 T
T,o=T + v ® 4 Y.+ v
i - G
t 0 g1 Yo Tl T Y
u, =n, - f9.¢
t t 17t-1
v, =g, - 0. .
t t 2 t-1
Here, y, 1s the deviation cf the log of real expenditure from trend, m_ iz th
19} )
log of the ncminal money supvly, ». 1s the lcg of the price level, 7w_ denotes
D - p,, and €, and n, are mean-zero disturbances such that var(e, ,n )’
t+1 G t ¥ 't
=T, E[(Et,nt)' (Et_j,nt_j)] =0 for j > 0. The superscript "e" attached

to a variable denotes its expected value, conditional on information available

gt time t - 1. This information is assumed to include the followinz meriod's

price level, v, , and money stock, m,. These two variatles are therefore pre
[ 9
determined at time t, and so, uncorrelsated with the disturbances n, =and €
9]

Equations (2%9) and (30) both involve a forward expectation--an sxpecta
tion of a future rather than current variable. wrther, both-structural

disturbances are assumed to be serially devendent. Thus the efficiency of
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instrumental-variable estimation can be improved by the
described in Section II.

The full-system estimates obtained Ly Taylor (1979) and the single
equation estimates ars reported in Table 1. ZEquations (i) and (iv) are the
output and vrice equations estimated by Taylor, who arplied 2 minimum dis-

tance technique to the rational-expectations reducsd form of (28) -(31). EZqua-

tions (ii) and (v) give the NL2SL3 estimates and equations (iii

7. m m
T3> Ppo1 Tpozr Pee3
3

ones used by Taylor.

Qu
gn
a1
o
[0]
=
L
O
a1
w
C
[}
[0
15}
O
[§)]
)
[B)
-

]

Given the ragnitude of the asymptotic stan
cients produced by VL2SL3, 2S2SLS and the full-system method are quite simi-
lar. Only the coefficients of the time trend and constant in the output
equation change sign when a single equation estimator i1s used. The lag pat-
tern implied by Taylor's output equaticn is unchanged. In particular, the
negative sign on expected inflation in the output eguatlion, indicating a
"perverse' aggregate demand response, remains.

The most notable differences between the single eguation and full

system estimates 1s found in the estimated output ef

1 < s D - . . N
3 Thus, trend cutput was taken to Dbe the CIA's revised rotential out-
put series, while other series {231 seasonally =2diusted) came from the Citi-
o - atad & used

a

bank data base. It should z2lso be pointed out t

here is estimated in the freguency domain, not

necause § is the value of the spectrum of q, = g, W, and is done tO ensure
9]

v

that 2 is positive definite.
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real money stock and changes in 7. The 2S2SLS estimates of 83 and Q4
are smaller in absolute value than those found by Taylor, and are not sig-
nificant at the 5 percent level. However, thelr sum 33 + Bh(= L091)  is
close to being significant (the t-ratio is 1.76), and is similar to the one
found by Taylor. The 28281 estimates imply a long-run outdut elasticity

of .576 with respect to rezl money. ©On the basis of Taylor

timates, this elasticity is calculated to Dbe .599., With regards to the efl-

b ly

fect of expected inflsted, the Taylor estimates are a2 short run elasticity
of -.LL7 and a long-run elasticity of -2.85. The 282SL8 estimates are -.653

and -4.83, respectively, which are noticeably larger.

[6)]
[
]
=
I
(&)
ey
(¢}
o]
3
@]
(@]
Y
o
[¢]

Turning to the issue of efficiency, the entrie
that for this model, 2S2SLS produces a noticeable increase in efficizncy
over NL2SLS. The average ratio of 2S2SLS standard errors to NL2SLS starndard
errors is .76 in the output equation and .65 in price equation. The better
relative performance of 2825LS in the price equation is presumably due to the
larger number of over-identifying restrictiocns. Examination of the individual
standard errors shows that the efficiency gain attributable to the second sted
of 282818 is fairly evenly spread across all parameters in the output equation,
and relatively more important for the constant term in the price egquaticn.
As regards the relative efficiency of full and limited information estima~
tors, the results presented in Table 1 1nd”" ate that the decline in effi-
ciency due to the limited information nature of 282SLS is, in this case,
only moderate. The average ratio of full system to 28238LS standard errors

. . . . . . 2
is .82 in the output eguation and .31 in the price equatlon.3

2 -

None of the above calculations do not -ineilude the standard-err
time trend in equation (29) since it is smaller than ths reported stands
for the full system estimate. This would, of course, be reversed in lar
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The last issue to be discussed in this section is this issue of mis-
specification. As we have argued above, an advantage of the instrumental-

variable technique is its robustness to specification error in other equations.

This fact may be exploited to obtain a diagnostic test cf specification.

U)

ll,

@]

For example, if there is reason to suspect a speci ation error in the out-

put equation, one may estimate the price equation in isolation by 2528LS,
and compare the resulting estimates oI Y and Y. <%to those produced by
1

full-information estimation. If these differ greatly is evidence of some

o .

misspecification in the outvut eguation which is spread to the vrice eguation

through imposition of the rational expe ctations nyoothesis on the system's re-

duced-Torm coefficisants.

More precisely, we can proceed as follows. Lt v = [Yl,ygl e the
estimate obtained by applying an efficient estimation procedure under the null
hypothesis to the system. Let g = [gl,gz] be the coefficients obtained Ej
estlmat ng the price équation directly using a limited-information rational

expectations estimator of the previous section Of course, g 1s ineffi-

cient under the null hypotnesis that the output equation is not misspecified,

but is consistent under either hypothesis. DNow form the test statistic

H=(g-7v) [var(g) - var (111 (g =Y. (32)

. o er 2 .-
As shown by Hausman (1978), the asymptotic distribution of 4 1= X with

[

two degrees of Treedom under the null hypothesis.

b3

~
given in equation (32) is exactly that, a Wald Test, since var(g - Y) =

~
ver(g) - var(y) asymototically. The test is testing whether (g - v) is

[
163

significently" different from zero. This insight maxes clear why 252813

to e preferred to NLZSLS for carrying out these specification tests. 37
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using 252SLS to get the g estimates, one will get a smaller var(g) and

f=)

a tighter estimate of g - Y; this leads to a more powerful test.

N

Unfortunately, for the model dealt with here, the specification test

described by equation (22) is infeasible. This results from the fact that

\ ~
while wvar(g) - var(y) is guaranteed to be positive semi-definite asymp-
totically, there is no guarantee that this will hold in finite samples. TFor
the Taylor model and our finite sample, the off-diagonal terms of var(g)
exceed the off-diagonal terms of the var(y) by an zmount which is suffi-

-
cient to meke var(z) - var(y) nonpositive definite, sven though it has

positive diagonal terus.

IV. Conclusion

In this vpaper, we have developed a flexidle, two-step extenszion of non-
linear two-stage least squares that i1s more efficient than that technigque when
equation disturbances are serially correlated and there are no stri ctlj exogencus

variables. The estimetor, called two-step two-stage lL=22st squares, is attractive

] disturbance

'3

te j
,_l
4]
o
=,
o3
D
o1

because it is compubationslly tractable and may be ap
exnibit moving-average as well as sutoregressive cependence.
Our main interest here has been the application of the two-sted estimator

to equations containing expectational variables among the regressors, McCallum

(1976) has shown how consistent parameter estimates can be cbt ained under the
rational expectations hypothesis by exploiting the fact hat realized wvariables

equal their conditional expectaticns plus a forecast srror orthogonal to all

1

variables included in the oondltlonLng set. The itwo-step two-stage least squares

3
)
ct

33There may also be = problem vecause Taylor's standard srrors are
exactly correct. See Taylor (1979) footnote 7.
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estimator enhances the anplicability of MeCallum's errors-in-variahles aporoach
by extending it to equations in which (i) expectations of “uture events (or
"forward" expectations) influence current econcmic behavior, (ii) equations'
structural disturbances are not independen?ly, identically distributed and (iii)
equations contain multi-period forecasts. The existence of s simple, limited-
information alternative to full-systenm rational-expectations estimation & la
Hansen-Sargent (1980) and Wallis (1980) is important, because the full-informa-
tion method, when computationally feasible, requires careful and correct svecifi-
cation of all equationsz of the system, including those which may be of secondary
interest. In addition, the limited-information technique can be used to obtain

an easy, diagnostic test for misspecification in rational expectaticns systems.

As an application, we employed the two-step technique to estimats the
price and output eguations of Taylor's (1979) rational-expectations macro-model
of the United States. The instrumental-variable estimates squared quite well

with the full-system results reportad by Tavlor.
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Appendix
This appendix provides proofs of Propositions 1 thrcugh L4 of Section II.
The formal model throughout the appendix is,
Vi T Qtf(é) toE, t=1,2,...T (33)
where yt and Et are scalar random varizbles, Qt is a k¥ x 1 random vector, and
£(8) is a one-to-one function taking the h x 1 parameter vector o intc a space

of higher dimension. In addition, it is assumed that,

(Al) The paremeter ¢ is identified and is an interior point in a compact space,

(A2) There exists ar n x 1 random vactor Wt such that E(e

where Nt is any arbitrary subset of the set

S
{ wt,nt_l,wt_g, I T,
(A3) Yoo Qt and W, are jointly stationary and ergodic,
19 (%
(AW) (1/T)(3f/36')Q'W converges in probability to a matrix of full

column rank uniformly in &,

(45) (1/7)(3°

f/aéiaﬁ) converges in probability to a consitant matrix
. L . . . .th
uniformly in & for i = 1,2, . . h where §, is the i
1
element of §,
(A6) Vo Qt and Wt have finite second and fourth moments,
(AT) E(wtw ) is nonsingular, and
2. ! , e msa.
TW.W_) exists and is finite.
Y]
We first prove consistency of the estimators in Propositions 1,2, and L.
The procf is essentially the same in all three cases, a trivial extension of
the consistency proof found in Amemiya (1974). We therefore present the proof

only for two-step, two-stage least squares with a kncwn 2 and describe how to

modify the proof for NL2SLS and 282SLS with an estimated .
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(¥) Given the model above, the two-step, two-stage least squares estimator

. . *

with known @, d, is a consistent estimator for the true value of §, § .
Proof:

By the Mean Value Theorem,

. .
(@ = 8 ) (3L)

oy ¥ af *
RW'Qr(d) - RW'Qr( &) = RW'Q ==, (a-46) (35)
38 st
o1 = R'R. Such a nonsingular R will exist because by (A8) and (A2)

Q exists and is a symmetric, positive definite matrix. Upon substituting
#

Qr(s )

y - € into equation (35) and dividing by T, one gets

A-3B

af *
RW'Q 5| (a -8 )(1/T) (36)
)

where A = R(W'e)/T and B = RW'(y-Qf(d))/T. Now plim A = O because R is

T>c0

nonstochastic, E(W'e) = 0 by (A2), and by (A3) W and € are ergodic. In
2
)

*

addition, plim B = O because 0 < B'B = (1/T) A(d) 5,(1/T2) A(S ) = A'A,

T-c0
Thus the right-hand side of equation (35) converges in probability to O.

However, by (Al4) and the fact that R is nonsingular, this can only be

%
true if plim 4 = ¢
T
QED

In order to modify this proof for NL2SLS all that is necessary is to

- -]
replace A( ) with ¢( ) and redefine R so that (W'W/T) 1. R'R. That (W'W/T) ~
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exists is guaranteed asymptotically by (AT) and (A3). This leaves only the

additional assumption of plim R existing, which is assumed to hold. To modify
T-»c0

the proof for 2S2SLS with an estimated {2, all that is necessary is that R be

defined by Q—l = R'R and the additional assumption that plim R exists.

T>c0
Before leaving the issue of consistency, one additional point is in order.

The two-ste2p, two-stage least squares estimator with estimated (I is consisient
~
provided only that plim (W'e/T) = 0 and does not require {? to be consistent. Of
Mo

that

[¢]
O

course misspecification of the true ) may lead to W being picked

plim (W'e/T) # 0, however.
Torco

We now turn to proving the asymptotic distribution of NL2SLE is as stated
in Proposition 1. We again follow the proof of Amemiya (1974) and rely on the

Central Limit Theorem used by Hansen (1979).

(¥*) Given the model above, the NL2SLS estimator defined by that ¢ wnich
minimizes the value of equation (17), has the property that if § is

the true value of 6,

o A % ~ - | - [l FRN
Vv T (8§ -8) $ N(0,plim T(V'W(W'W) Loy iy www) Loy
T
-1 -1
where D = V'W(W'W) “Q(W'W) “W'V and

of
VzQé_gv 6*

Proof:

By expanding the first order conditiors for minimizing equation (17)
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. *
around the true value § we obtain,

-1

~ Py . 2
® 129 J
fT8 -8 - l;f'gggg-‘6+__ SR (37)

RS . e a *
where again § 1is on the line segment joining § and & . In addition,

5 3¢ 1 . -1
2l = -2 = QUW(W'W) "W'e (38)
ad 5* as! 6* ;
and
2, of () A of | 3
) o = 2 37, QW(W'W) TW'Q =%, - 2 H (39)
s5ast |k 90T P00

. . .th .
where H is the matrix whose 1 row is,

24
B |
ew(ww) "ty 35135']5*' (40)

Now (1// T)W'e converges in distribution to N(0,Q) because it is equal

to (1//'T)

1

A
(q. = €.W,) and the q. here satisfy the same criteria that
1 i i'i i

I o1

the z, do in Hansen (1979). This convergence in distribution, along with

(A4) and (AT) - which assure the convergence in probability of

(1/T) %,’ « Q'w('w'w/fr)'l - imply that,
(S .

(1// T) %g- . $ w(o,plim (V'W/T)(WW/T) " I(wwW/T)
6 .

T

“Lewrv/m)). (L)

In addition,

2
. 13¢ .1 of! , -1 £
plim T <%, K = pilm T35 | % QW(W'W) "W'Q %g} o (L2)

because plim (1/T)H = 0 by (AS5), (A7) and the fact that plim (7/T) W'e = 0.

Teo T
The existence of the probability limit on the right-hand side of equation

(42) is guaranteed by {(AkL).
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Combining equations (L1) and (42) and a lemma of Amemiys (1973) which

2 2
guarantees that plim %5%' + = plim %8_2—8%" % Yields the desired result,
T-»c0 § ' o $

~ * 3 — - — —
VT (S8 - 6) % n(0,prim TPV wlw) "Ny (v wwn) Ty T (43)
>0
where D = V'W(W'W) ro(ww) TNy,
QED
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The proof of the asymptotic distribution of two-step, two-stage least
squares with an estimated § is the same as the proof when {0 is known so we

~

provide a proof only for the case where one uses a consistently estimated Q.

(#%%) Given the model above, the 2825LS estimator defined by that 4 which
A
minimizes equation (21) - replacing Q with a consistent estimate 0 -

#
has the property that if § is the true value of §,

N
e
s

S

— * - -]
v T (d -8) g N(0,plim Tg(v'm Jw'v) =)

Toco

Proceding as in the proof of (¥%) we can obtain the analcgues of

equations (37) - (40) where we merely replace ¢ in equation (37)

with A and (W'W)_l in equations (38) - (L0) with Q_l to get an
— * .
expression for v T (d - & ). We then can use the fact that v T (W'e)
converges in distrivution to N(0,R) to show,
3 4, . AT IFNAC) [
(1/T) == , » u(0,plin (V W/T)IQTTQ QT (WV/T)) . (45)
8 Torco
However note that the asymptotic variance in equation (45) can e
rewritten as plim (V'W/T)Q-l(W'V/T) since ) is a consistent esiimate
T—>c0
of . Combiring this with the fact that ,
: 2 . “l e
plim (1/7%) 5551 « = plim (rrw/m)Q (W' /T) L&)

Toco 5 Toroo

yields the desired result,

YT (a- 6*) $ w(0,plim 22 (v gty ) 7). LT)

QED
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Before procéding to the last proof of this appendix, it is useful to
examine more clearly why the asymptotic distribution of the two-step, two-stage
estimator does not depend on whether {I is estimated consistently or known a priori.
In the standard Generalized Least Squares case one has to have the information
matrix be block diagonal to obtain such a result. The reason that 2828LS is
different is that while most GLS procedures need (1//”5){w'§'la) to converge
in distribution, 2S2SL3S needs only the asymptotic distiributicn of (l//ﬁf)W'e.

Ay %
The only place { arpears in vE (d = 8 ) is in terms which converge in
probability.

We now turn to the last proof, which formalizes that 2825LS is more efficient

than NLZ2SLS.

(#%%%) Given the model above, the 282818 estimator is more efficient than
the NL2SLS estimator in the sense that the asymptotic variance of
the NL2SLS estimator minus the asymptotic variance of the 2828LS
estimator i1s a positive semi-definite matrix.

Proof':
In order to show A - B is positive semi-definite it is suffecient to
show that B—l - Afl is positive semi-definite. Hence we will show,
v Ny - vrewrn) T v (e w) i) Ty v wGew) Ty (ae)
is positive definite. By factofing a V'W and W'V from equation

(48) we see that it is positive semi-definite if and only if,

Qt - (w'w)'lw'v{v'w(w'w)'lg(w'w)'lw'v}“lv'w(w'w)‘l {4

\O
~—

is. But egquation (L9) can be put in the fornm,

(R'R)"T - m(a'r'RE) TE (

U1l
<O
~—
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where = R'R and H = (W'W)—lW'V. We can now use the fact that if R is

an m x k matrix of rank X and H is a k x r matrix of rank r {(r <Xk),
then equation (50) is positive semi-definite. (See Schmidt (1976) pl63 ).

Note “hat as defined R is k x k and nonsingular since it is the Cholesky

. . s D oo N . . . -1
deccmpositon of a positive definite and symmetric matrix and 4 = (W'w) W'

v





