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Abstract: This study evaluated measures for making comparisons of errors across time series. 
We analyzed 90 annual and 101 quarterly economic time series. We judged error measures on 
reliability, construct validity, sensitivity to small changes, protection against outliers, and their 
relationship to decision making. The results lead us to recommend the Geometric Mean of the 
Relative Absolute Error (GMRAE) when the task involves calibrating a model for a set of time 
series. The GMRAE compares the absolute error of a given method to that from the random walk 
forecast. For selecting the most accurate methods, we recommend the Median RAE (MdRAE) 
when few series are available and the Median Absolute Percentage Error (MdAPE) otherwise. 
The Root Mean Square Error (RMSE) is not reliable, and is therefore inappropriate for 
comparing accuracy across series. 
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1. Introduction  
 

Over the past-two decades, many studies have been conducted to identify which method 
will provide the most accurate forecasts for a given class of time series. Such generalizations are 
important because organizations often rely upon a single method for a given type of data. For 
example, a company might find that the Holt-Winters' exponential smoothing method is accurate 
for most of its series, and thus decide to base its cash flow forecasts on this method. This paper 
examines error measures for drawing conclusions about the relative accuracy of extrapolation 
methods. 
 

Conclusions about the accuracy of various forecasting methods typically require 
comparisons across many time series. However, it is often difficult to obtain a large number of 
series. This is particularly a problem when trying to specify the best method for a well-defined 
set of conditions; the more specific the conditions, the greater the difficulty in obtaining many 
series. Thus, it is important to identify which error measures are useful given few series, and 
which are appropriate for a larger number of series. 
 

Error measures also play an important role in calibrating or refining a model so that it 
will forecast accurately for a set of time series. That is, given a set of time series, the analyst may 
wish to examine the effects of using different parameters in an effort to improve a model. 
 

We first discuss issues involved in comparing the accuracy of different forecasting 
methods across time series. Next, we provide empirical comparisons of six error measures with 
respect to reliability, construct validity, and other criteria. Then we examine the selection of 



errors when one has a small number of series. Finally, we provide guidelines for the selection of 
an error measure. 

 
 
2. Making comparisons across series  
 

Comparisons of errors across series typically involve many methods and many series. 
Because the use of multiple measures can be cumbersome, a single error measure is desirable. 
We expected the choice of an error measure to vary, however, according to the situation. In 
particular, we expected the choice to depend on the number of time series available and on 
whether the task is to select the most accurate method or to calibrate a given model. 
 

This section examines technical issues that arise in the choice of an error measure. These 
include differences in scale across the series, the amount of change that occurs over the forecast 
horizon, and the presence of extreme forecast errors (outliers). We also discuss ways of 
summarizing error measures across series. 
 
2.1. Scaling  
 

The scale of the data often varies considerably among series. Series with large numbers 
might dominate comparisons. Despite this problem, the need for unit-free measures was not 
widely appreciated in the early 1980s as shown by Carbone and Armstrong (1982). They asked 
145 forecasting experts what error measures they preferred when generalizing about the accuracy 
of different forecasting methods. Practitioners selected the Root Mean Square Error (RMSE) 
more frequently than any other measure, although it is not unit-free. Academicians had an even 
stronger preference for the RMSE. 
 

The RMSE has been used frequently to draw conclusions about forecasting methods. For 
example, Zellner (1986) claimed that the Bayesian method was the most accurate method in the 
M-competition because its RMSE was lowest. However, Chatfield (1988), in a re-examination of 
the M-Competition data, showed that five of the 1001 series dominated the RMSE rankings. The 
remaining 996 series had little impact on the RMSE rankings of the forecasting methods. 
 

Researchers now seem to prefer unit-free measures for comparing methods. One such 
measure is the percentage of forecasts for which a given method is more accurate than the 
random walk (Percent Better). Another way to control for scale is to use percentage errors; that 
is, to calculate the error as a percentage of the actual value. Perhaps the most widely used unit-
free measure is the Mean Absolute Percentage Error (MAPE). A disadvantage of the MAPE is 
that it is relevant only for ratio-scaled data (i.e., data with a meaningful zero). (Our study, 
however, examined economic and demographic data, which typically involve ratio-scaled data.) 
Another disadvantage of the MAPE is that it puts a heavier penalty on forecasts that exceed the 
actual than on those that are less than the actual. For example, the MAPE is bounded on the low 
side by an error of 100%, but there is no bound on the high side. 
 



2.2. Amount of change  
 

Predictions are more difficult for series where large changes occur over the forecast 
horizon. The Percent Better avoids this problem by discarding information about the amount of 
change. Another approach is to employ relative errors and compare the forecast errors from a 
given model against those from another model. One candidate for an alternative model is the 
random walk. The random walk is attractive because it is simple and easily interpreted. Theil's 
U2 [Theil (1966, ch. 2)] compares the RMSE for a proposed model with the RMSE for the 
random walk [see Bliemel (1973) for a discussion of Theil's measure]. Theil's U2 has not been 
widely used by forecasters outside of economics. Only two percent of the 145 academicians and 
practitioners in the survey by Carbone and Armstrong (1982) preferred Theil's measure for the 
evaluation of forecasting methods. 
 

We propose the Relative Absolute Error, or RAE, as a simple and easily communicated 
alternative to Theil's U2. It is calculated for a given time series by dividing the absolute forecast 
error (at a given horizon, h) for a proposed model ( | Fm h – A h | ) by the corresponding error for 
the random walk (| Frw h - A h | ) Thus, if the proposed model had a forecast of 120, while the 
random walk had a forecast of 105 and the actual was 115, the RAE would be the absolute value 
of 120 minus 115 divided by the absolute value of 105 minus 115 (i.e., 5/10 or 0.50). 
 

For a single horizon, the RAE is equivalent to the relative absolute percentage error (the 
ratio of the absolute percentage error for a proposed model divided by the absolute percentage 
error for the random walk). Thus, the relative error measure adds another level of control (for 
change) to the MAPE, which, in turn, adds control (for scale) to the mean absolute error. For a 
single horizon (e.g., an annual forecast for year h in the future), the RAE and Theil's U2 are 
equivalent. They are not equivalent when cumulated over a forecast horizon, as we describe 
later. 
 

We believe that the primary advantage of the RAE over Theil's U2 is the ease of 
interpretation and communication. To see its advantage, try to explain Theil's U2 and the RAE to 
a practitioner. Or ask forecasters to describe Theil's U2 to you. 
 

Relative error measures do not relate closely to the economic benefits associated with the 
use of a particular forecasting method. For example, for the RAE, progressive reductions of 
errors from 40 to 20, then from 20 to 10, then from 10 to 5, and so forth would all be judged to 
be of equal importance. Thus, relative error measures are typically inappropriate for managerial 
decision making. 
 
2.3. Outliers  
 

A single series may dominate the analysis because it has a much larger or smaller error 
than that found for other time series in the summary. This situation might arise because of a 
mistake in recording the data. Outliers are especially troublesome when the goal is to select from 
among a set of forecasting methods. They are less of a problem for calibrating a model. 
 



The Percent Better (than a comparison model) is immune to outliers. The RAE, by 
controlling for differences in scale and the amount of change that occurs in series over the 
forecast horizon, is less likely to be affected by outliers. Nevertheless, the RAE can explode for 
series where the error from the random walk is very small. For example, if the random walk 
forecast had no error and the proposed model had some error, their ratio would be infinite. 
Outliers also can occur with small errors for the proposed model. 
 
2.4. Summarizing across series  
 

Various measures of central tendency are available to summarize the errors of each 
forecasting method across a set of time series. Arithmetic means can be used to summarize the 
Percent Better and the APE (thus providing the MAPE). Geometric means can be used to 
summarize relative error measures. For the RAE, then, we use the Geometric Mean of the RAE 
(GMRAE). We also use a geometric mean to summarize Theil's U2. 
 

Outliers create problems when one tries to summarize across series. For example, if the 
RAE for one series in a set were infinite, the GMRAE across this set of series would be infinite. 
Similarly, if the RAE for a single series were zero, the GMRAE would be zero. The effect of 
outliers can be reduced by trimming, which discards high and low errors. Using medians is an 
extreme way to trim as it removes all values higher and lower than the middle value. The Median 
APE (MdAPE) reduces the bias in favor of low forecasts, thus offering an advantage over the 
MAPE. The MdAPE also provides a standard trimming rule, and this aids in comparisons across 
studies that are reported in the literature. Winsorizing, which replaces extreme values with 
certain limits, can also be used to temper the impact of outliers. To its advantage, Winsorizing 
retains some information about the high and low errors. However, it does raise an issue as to the 
proper limits. We Winsorized all summaries based on the RAE. Values less than 0.01 were 
replaced by 0.01, and those greater than 10 were replaced by 10. The Appendix details how error 
measures were summarized in this study. 
 
 
3. Comparing the error measures  
 

This section describes the data, reliability, construct validity, and other criteria. The 
statistical analysis was done using the Macintosh version of Statview. An associate 
independently confirmed the results using SPSS-X (version 4) on a Sun computer. This direct 
replication identified one data entry error and one procedural error. 
 
3.1. Data  
 

The data and forecasts were drawn from annual and quarterly time series from the M-
competition [Makridakis et al. (1982)].1  They were stratified by demographic, macroeconomic, 
industry, and company categories. Ten equal-sized stratified subsamples were created; they 
contained 18 annual and 20 quarterly series (one subsample of quarterly data contained 21 rather 

                                                 
1 These data and forecasts were provided by Everette Gardner, Michele Hibon, and Spyros Makridakis. For these 
analyses, we used all annual and quarterly series whose identification numbers ended in a 2, 3, 4, 6, or 7. 



than 20 series). Then we randomly selected five annual and quarterly subsamples. This 
procedure yielded a total of 90 annual series and 101 quarterly series. 
 

The data, all ratio scaled, come from several countries and from different time spans. We 
used only one starting point to forecast each series and the starting points differed among series. 
 
3.2. Reliability  
 

Reliability addresses the question of whether repeated application of a procedure will 
produce similar results. To assess reliability, we examined the extent to which an error measure 
produced the same accuracy rankings for extrapolation methods when it was applied to different 
samples from a set of time series. Specifically, we calculated one-year-ahead forecast errors for 
each forecasting method for all five subsamples of 18 annual series each. We ranked 11 
forecasting methods: linear trend, moving average, single exponential smoothing, ARR 
exponential smoothing, Holt's exponential smoothing, Brown's linear exponential smoothing, 
Brown's quadratic exponential smoothing, automatic AEP, Bayesian, and two methods using 
combined forecasts from these methods. For details on these methods see Makridakis et al. 
(1982). For each horizon, we ranked the forecasting methods for accuracy according to each of 
six error measures. We repeated this procedure for six-year-ahead forecast errors. Then we did 
similar analyses for one quarter-ahead and eight-quarter-ahead forecasts for the five subsamples 
of quarterly series using 13 methods (the original 11 methods plus the seasonally adjusted 
random walk and HoltWinters). 
 

Exhibit 1 
Reliability of the error measures 

(Average Spearman correlations for pairwise comparisons among five subsamples.) 
 

Quarterly  Annual Error 
Measure 1-ahead 8-ahead  1-ahead 6-ahead 

Average 

RMSE 0.14 –0.13  0.26 0.54 0.20 
MdAPE 0.14 0.22  0.46 0.79 0.40 
MAPE 0.59 0.61  0.49 0.30 0.50 

GMRAE 0.38 0.17  0.81 0.74 0.53 
MdRAE 0.39 0.43  0.79 0.72 0.58 
Percent 
Better 

 
0.60 

 
0.59 

  
0.82 

 
0.78 

 
0.70 

 
To what extent did rankings based on a given error measure hold up across the five 

subsamples? We analyzed this question by calculating Spearman rank-order correlation 
coefficients, rs, for the accuracy rankings between each pairing of the subsamples. We then 
averaged these ten pairwise correlations. Exhibit 1 summarizes results for each of the error 
measures by period and horizon. 
 

Rankings of methods based on the RMSE were highly unreliable. For example, the 
average rs for 8-ahead quarterly forecasts was –0.13. Across the four tests, the average pairwise 
correlation for the RMSE was only 0.20. Given such a low level of reliability, the use of the 



RMSE would require many series. Prior research using this criterion would be suspect except 
where the comparisons involved many series. 
 

The average rs for the MAPE was 0.50 over the four tests. Surprising to us, the MdAPE 
was not more reliable than the MAPE; its average rs was 0.40. 
 

As expected, the relative error measures were the most reliable. The GMRAE's reliability 
was 0.53, while those for the MdRAE and Percent Better were 0.58 and 0.7O, respectively. 
To illustrate the differences in reliability, we calculated what sample sizes would yield the same 
statistical significance as provided by the Percent Better for 18 annual one-ahead forecasts.2 The 
necessary sample sizes are: 18 series using GMRAE, 19 using MdRAE, 49 using MAPE, 55 
using MdAPE, and 170 using RMSE. 

  
Exhibit 2 

Agreement among accuracy rankings for a set of 18 annual series  
(Spearman correlations for one-year horizon.) 

 
Error measure MAPE MdAPE Percent 

Better* 
GMRAE MdRAE 

RMSE 0.44 0.42 0.11 0.03 –0.31 
MAPE  0.83 0.17 0.68   0.28 
MdAPE   0.09 0.40   0.06 
Percent Better*    0.46   0.65 
GMRAE       0.79 

*To keep the sign consistent, we used ‘Percent Worse’ rather than ‘Percent Better’ for the 
correlation. 

 
3.3. Construct validity 
 

Reliability examines whether the same results are produced, but it does not demonstrate 
that the proper thing is being measured. Construct validity asks whether a measure does, in fact, 
measure what it purports to measure. We were interested in the extent to which the various 
measures assess the ‘accuracy’of extrapolation methods. To examine this, we compared rankings 
of the forecasting methods by each of the error measures. If they are measuring the same thing, 
and doing so reliably, the intercorrelations among the various measures should be high. 
 

We first examined rankings of one-ahead forecasts for a set of 18 annual series. These 
results, given in Exhibit 2, show substantial agreement among some rankings of the methods, 
such as the 0.68 correlation between MAPE and GMRAE. But the rankings by some error 
measures were not highly correlated with the rankings by other measures, such as the 0.03 
between the RMSE and the GMRAE. Thus, the choice of an error measure can affect 
conclusions about the relative accuracy of forecasting methods. As an extreme example, the 

                                                 
2 To compute the equivalent sample sizes, we first obtained the significance of the reliability for the percent better 
measure for the 18 annual 1-ahead forecasts, where rs was 0.82. Z = rs times the square root of (N- 1); thus, Z = 
3.38. We then asked what sample size would be required to achieve this Z-score given the estimated rs for each of 
the error measures in the annual 1-ahead column of Exhibit 1. 



rankings based on RMSE were negatively correlated with those from the MdRAE. Overall, the 
average Spearman correlation between pairs of measures was 0.34, indicating only modest 
construct validity. The three relative error measures, however, produced rankings that were 
similar to one another. The average Spearman rho among these rankings was 0.63 (see the three 
correlations in the bottom right-hand corner of Exhibit 2). 
 

If the different measures assess the same thing, then their intercorrelations should 
increase as the reliability of the measures is increased. Conversely, if they were measuring 
independent constructs, an increase in reliability should not increase their intercorrelations. We 
examined whether the six error measures converged with one another as the number of series 
was increased from 18 to 90. They did. Compare Exhibit 2 with Exhibit 3. Twelve of the 
correlations increased, one did not change, and only two decreased. The average Spearman rho 
among the six measures for the 18 series in Exhibit 2 was 0.34, while that for all 90 series was 
0.68. This increase supports the belief that the different error measures are measuring the same 
construct. 
 

As a further test of construct validity, we examined whether the accuracy rankings of 
methods obtained by using one error measure were similar to the rankings obtained by other 
error measures. First, we constructed a consensus ranking by averaging the rankings from each 
of the six error scores for the full sample of 90 annual series and for the 101 quarterly series. 
Then, each error measure's ranking of forecasting methods was correlated with the consensus 
ranking. Exhibit 4 summarizes the results. Most of the measures were strongly correlated with 
the consensus. These results suggest that the measures each provide reasonable measures of 
accuracy when the number of series is fairly large. In particular, the relative errors and absolute 
percentage errors provided similar accuracy rankings 
 

Exhibit 3 
Agreement among accuracy rankings for 90 annual series 

 (Spearman correlations for one-year horizon.) 
Error measure MAPE MdAPE Percent 

Better* 
GMRAE MdRAE 

RMSE 0.51 0.82 0.29 0.79 0.79 
MAPE  0.73 0.35 0.79 0.70 
MdAPE   0.47 0.97 0.96 
Percent Better*    0.46 0.58 
GMRAE     0.95 

*To keep the sign consistent, we used ‘Percent Worse’ rather than ‘Percent Better’ for the 
correlation 



 
Exhibit 4 

Correlation with the consensus  
(Spearman correlations for the full samples.) 

Quarterly  Annual Error 
Measure 1-ahead 8-ahead  1-ahead 6-ahead 

Average 

RMSE 0.65 0.17  0.80 0.86 0.62 
Percent 
Better 

0.81 0.79  0.64 0.51 0.69 

MdRAE  0.69 0.92  0.96 0.96 0.88 
MdAPE  0.78 0.88  0.96 0.93 0.89 
GMRAE 0.80 0.85  0.93 0.97 0.89 
MAPE 0.83 0.87  0.80 0.94 0.90 

 
The RMSE had the lowest correlation to the consensus (r = 0.62), probably due to the 

RMSE's poor reliability. The low correlation also may be due to the RMSE's emphasis on 
assessing large errors; it is the only measure here that uses a squared error term. 
 

Although the Percent Better is a reliable measure, it was not highly correlated with the 
consensus (rs = 0.69). This low correlation is probably because the Percent Better is the only 
measure that ignores the magnitude of the errors. 
 
3.4 Other criteria  
 

Other criteria should also be considered when selecting an error measure. These criteria 
include expense, understandability, sensitivity, and relationship to decision making. The first two 
are easily dealt with; while medians are somewhat more expensive to calculate than means, none 
of the measures is expensive given current computer capabilities. All of the methods considered 
here are relatively easy to understand; however, squared error terms may be more difficult for 
some people to understand. 
 
Sensitivity: For calibration, it is desirable to have a sensitive error measure so as to reveal the 
effects of changes. The measure should indicate the effect on accuracy when a change is made in 
a parameter for a given model. 
 

Median error measures are not sensitive. In developing rules for rule-based forecasting 
[Collopy and Armstrong (1992)], we found medians to be of little value because of their low 
sensitivity. Percent Better is not sensitive because once a method is more accurate than the 
random walk for a given series, further improvements in forecasting that series produce no 
change when summarizing across series. Similarly, the Percent Better gives no credit for 
reducing the error from an extremely poor forecast to the point where it is almost as accurate as 
that for the random walk. 
 
Relationship to Decision Making: None of the error measures is ideal for aiding decision making. 
However, the RMSE describes the magnitude of the error in terms that would be relatively more 
useful to decision makers. Consistent with this, Carbone and Armstrong (1982) found that 



practitioners preferred the RMSE to all other error measures. The MAPE and MdAPE are less 
appealing because percentages do not have obvious implications for decision making. For 
example, in inventory control, losses would be related to dollars of additional inventory or to 
opportunity costs from lost sales, not to percentage errors. Relative measures have the least 
relationship to decision making. The Percent Better does not recognize the amount of 
improvement at all. The GMRAE, as noted above, gives as much credit for an improvement in a 
relatively constant series as for a corresponding percentage improvement in a series that changes 
substantially. 
 
 
4. Selection of error measures given few series  
 

We examined two procedures for comparing methods when the number of series is small. 
One is to use a consensus based on a variety of error measures. The other procedure is to use 
errors over the forecasting horizon, which we refer to as the cumulative-horizon error. 
 
4.1. Consensus error measures  
 

Forecasts are used in different ways and for different decisions. As a result, multiple error 
measures might be relevant. However, the use of multiple measures makes the comparisons more 
difficult. A consensus would simplify comparisons. Also because each error measure has defects, 
a consensus based on multiple measures might compensate for these defects. 
 

To assess the value of a consensus error measure, we first prepared a consensus ranking 
for the forecasting methods in each subsample by averaging the ranks. We posed this question: If 
the analyst used only the GMRAE for a sample of series, would the conclusions differ from 
those based on a consensus from the same subsample? Therefore, we compared the consensus 
rankings of forecasting methods with those provided by the GMRAE. This test required some 
criterion; for this, we asked which measure for this sample would provide the most appropriate 
conclusion about the relative accuracy of the methods for the full sample of 90 series. We used 
the MdAPE to rank methods for the full sample of series; that is, this ranking was treated as 
‘truth’ for purposes of this test. Exhibit 5 presents the results in the first two columns. For annual 
one-ahead forecasts, GMRAE rankings for subsamples of 18 series were highly correlated on 
average (rs = 0.88) with the rankings when all 90 series (‘Full Sample’) were ranked using the 
MdAPE. This is similar to the correlation obtained when we used the consensus to rank the 
accuracy of the methods in the subsample (rs = 0.81). The consensus offers modest 
improvements for the quarterly data (0.56 versus 0.41), but none for the annual (0.81 versus 
0.85). This result suggests that the consensus would be more useful where the reliability is lower. 
(Exhibit 1 shows that reliability was lower for quarterly than for annual data for 10 of the 12 
comparisons.) 



 
Exhibit 5 

Comparison of consensus and GMRAE for calibration using a small number of series 
(Average Spearman correlations.) 

 
Situation Full sample 

MdAPE vs. 
Subsample 

  Full sample 
consensus vs. 
Subsample 

 

 GMRAE Consensus  GMRAE Consensus 
Quarterly 1-ahead 
Quarterly 8-ahead 
Quarterly average 
Annual 1-ahead 
Annual 6-ahead 
Annual average 

0.46 
0.35 
0.41 
0.88 
0.81 
0.85 

0.57 
0.56 
0.56 
0.81 
0.81 
0.81 

 0.59 
0.41 
0.50 
0.89 
0.85 
0.87 

0.69 
0.65 
0.67 
0.83 
0.88 
0.56 

 
We repeated the analysis with 'truth' based on the consensus rankings for the 90 series as the 

criterion. As shown in the last two columns of Exhibit 5, the results were similar to those using 
the MdAPE as the criterion. The consensus again offered modest gains for the quarterly data 
(0.67 versus 0.50) and no gains for the annual data (0.86 versus 0.87). 
 
4.2. Cumulative-horizon error  
 

Instead of basing comparisons of methods on a single forecast horizon, such as a one-
ahead or a six-ahead annual forecast, one might summarize across forecast horizons (e.g., the 
error over the next six annual forecasts). One advantage of the cumulative-horizon error is 
simplicity. Using this single measure for calibration would be preferable to examining the error 
measure for each forecast horizon. 
 

To examine the impact of cumulating errors across horizon, we focused on the RAE. As 
we have said, the RAE is like Theil's U2 for single horizon forecasts. However, the RAE differs 
from Theil's U2 when errors are cumulated over the forecast horizon (e.g., for annual forecasts 
covering years one through six.) To obtain Theil's U2 over the forecast horizon, one calculates a 
geometric mean of the errors for each horizon for a given series. In contrast, the Cumulative 
RAE takes the arithmetic sum of the absolute error for the proposed method over the forecast 
horizon and divides it by the corresponding error for the random walk. It is calculated for a series 
as follows: 
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where F is the forecast value, m designates the forecasting method being evaluated, rw 
designates the random walk, h represents the forecast horizon, A is the actual value, and H is the 



number of periods in the forecast horizon. To summarize across series, the geometric mean 
(designated as GMCumRAE) or the median (MdCumRAE) can be used. 
 

Exhibit 6 
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Exhibit 6 illustrates the Cumulative RAE. The error for the model to be evaluated (Model 

m) is the area between the forecast for that model (Fm) and the actual outcome; these are the 
areas A + D + B. This is divided by the deviations between the forecast from the random walk 
(Frw) and the actual outcome; these are the areas A + D + C. 
 

The CumRAE should be less influenced by outliers than the RAE. Given a larger number 
of forecasts, it is less likely that the random walk error will be near zero (making the 
denominator in the RAE very small). It is also less likely that the proposed model will be almost 
perfect (making the numerator very small). To test this, we calculated RAEs from all of the 
methods for all of the series, quarterly and annual. We defined outliers as values lower than 0.01 
or greater than 10. Exhibit 7 summarizes the percentages of outliers for the short-range, long-
range, and cumulative-horizon RAEs. The single horizon forecasts had some outliers, but 
outliers were less common for the cumulative horizons than for single horizons. For the annual 
data, only 0.3% of the CumRAEs were outliers, while for the quarterly data only 0.7% were 
outliers. 



 
Exhibit 7 

Frequency of RAE outliers (percentages) 
 Less than 

0.01 
Greater 
than 10 

Totals 

Annual    
1-ahead 
6-ahead 
Cumulative 

0.4 
0.4 
0.0 

1.7 
2.0 
0.3 

2.1 
2.4 
0.3 

Quarterly    
1-ahead 
8-ahead 
Cumulative 

0.8 
0.4 
0.1 

3.3 
3.1 
0.6 

4.1 
3.5 
0.7 

 
To assess whether the protection against outliers and the gain in reliability could be 

achieved without a substantial loss in validity, we analyzed  the effect of generalizing from 
cumulative-horizon forecast errors, rather than from single-horizon errors. We did this for 
quarterly and annual data and for one-ahead and in-ahead forecasts. Exhibit 8 summarizes the 
results. To our surprise, the GMCumRAE did not perform as well as did the single horizon one-
ahead GMRAE; the GM-CumRAE rankings for the subsamples were not as highly correlated to 
the full sample one-ahead rankings as were the one-ahead rankings for the  subsamples (0.51 
versus 0.77). Thus, there appears to be a loss in validity for the one-ahead  forecasts. The 
GMCumRAE might, however, be more useful for smaller samples of series than those we 
examined.  
 

Exhibit 8 
Stability of cumulative horizon RAEs vs. horizon RAEs 

(Average Spearman correlations.) 
 

Time 
interval 

Full sample 1-ahead 
vs. Subsample 

Full sample h-ahead 
vs. Subsample 

 1-ahead Cumulative h-ahead Cumulative 
Quarterly 
Annual  
Average 

0.64 
0.89 
0.77 

0.33 
0.69 
0.51 

0.44 
0.87 
0.65 

0.47 
0.91 
0.69 

 
We expected the CumRAE and Theil's U2 to give comparable results for the cumulative-

horizon error. To examine this, we used these two error measures to rank the accuracy of the 11 
methods used for the 90 annual series. The results were indeed similar, as the Spearman rank 
order correlation was 0.996. We used the same procedure to compare the accuracy rankings for 
the 13 methods used for the 101 quarterly series; the Spearman correlation was also very high, at 
0.991. 

  
 



5. Guidelines for selecting error measures  
 

To aid in the selection of an error measure, we rated each error measure as good, fair, or 
poor for each criterion. We based the ratings for reliability and construct validity on the 
empirical results. The other ratings represent our subjective judgments. None of the error 
measures that we examined was superior on all criteria. Exhibit 9 shows the ratings. 
 

Exhibit 9 
Ratings of the error measures 

 
 
Error measure 

 
Reliability 

Construct 
validity 

Outlier 
protection 

 
Sensitivity 

Relationship 
to decisions 

RMSE 
Percent Better 
MAPE 
MdAPE 
GMRAE 
MdRAE 

Poor 
Good 
Fair 
Fair 
Fair 
Fair 

Fair 
Fair 

Good 
Good 
Good 
Good 

Poor 
Good 
Poor 
Good 
Fair 

Good 

Good 
Poor 
Good 
Poor 
Good 
Poor 

Good 
Poor 
Fair 
Fair 
Poor 
Poor 

 
Calibration requires a sensitive error measure. When a change is made in a model, it 

should be easy to see how this affects its performance. Good sensitivity is provided by only three 
of these measures: RMSE, MAPE, and GMRAE. We recommend the GMRAE because the 
RMSE has poor reliability, and because the MAPE is biased in favor of low forecasts. 
 

For selection among forecasting methods, the primary criteria are reliability, construct 
validity, protection against outliers, and the relationship to decision making. Sensitivity is not so 
important for selecting methods. When only very small sets of series are available, the MdRAE 
is appropriate; it is as reliable and as valid as the GMRAE, and it offers better protection against 
outliers. Given a moderate number of series, reliability becomes a less important issue. The 
MdAPE would be appropriate because of its closer relationship to decision making. 
 

The RMSE is unreliable. Related to this is its poor protection against outliers. We do not 
recommend the RMSE for assessing the level of accuracy. As noted, it was not useful for the 
1001 series in the M-competition [Chatfield (1988)]. 
 
 
6. Limitations  
 

Our analysis applies only to the choice of errors for generalizing from comparisons 
across multiple time series. The conclusions do not necessarily apply to the examination of a 
single time series. In that case, the selection of an error measure should relate more closely to 
any decisions that may be based on the forecast. 
 

Because we examined only ratio-scaled economic and demographic data, we do not know 
whether our conclusions apply to other types of data. Also, our study used only extrapolation 
methods. Other measures may be desirable for judgmental and econometric methods. 



 
While our study examined many commonly used errors measures, it ignored others. The 

adjusted MAPE (or MAPE-A) divides the absolute error by the average of the actual and 
predicted; this compensates for the MAPE's favorable treatment of forecasts that are too low. 
The R2, widely used because of its availability in statistical packages, provides information 
about covariation. The mean absolute deviation (MAD) is extensively used in inventory control 
as it is closely related to decision making. Turning point errors are of interest to economists. 
These measures are discussed in Armstrong (1985, pp. 346-356). They do not exhaust the 
possibilities. For example, the Root Median Square Error (RMdSE) would avoid the outlier 
problem and might provide a reliable measure. Another candidate is the root mean square 
percentage error (RMSPE). 

 
Our study ignores large errors, which are sometimes the primary concern. For example 

large errors have disproportionate impacts for forecasts involving weather (droughts, floods, or 
hurricanes), electrical power (shortages), and cash flow (if low for a financially weak company). 
Other error measures might be appropriate in these situations. For example, the RMSE might be 
appropriate here if scaling is not a problem. 
 

The selection of an error measure is dependent upon the situation. None of the error 
measures was superior on all criteria. To calibrate the parameters of a given model, we 
recommend the GMRAE. To select among forecasting methods, we recommend the MdRAE 
when using a small number of time series, and the MdAPE when many series are available. 
 

The RMSE has been widely used for comparing forecasting methods. Our study suggests 
that the RMSE should not be used for generalizing about the level of accuracy of alternative 
forecasting methods because of its low reliability. The MAPE should not be used if large errors 
are expected because it is biased in favor of low forecasts. Consensus errors offered slight 
advantages where reliability was suspect. Cumulative horizon errors were examined, but they 
produced no benefits. 
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Appendix 
 
 The following notation is used for the definitions of error measures that follow: 
 
 m is the forecasting method, 
 rw is the random walk method, 
 h is the horizon being forecast, 
 s is the series being forecast, 
 Fm,h,s is the forecast from method m for horizon h of series s, 
 Ah,s is the actual value at horizon h of series s, 
 H is the number of horizons to be forecast, and 
 S is the number of series being summarized. 
 
The absolute percentage error (APE) for a particular forecasting method for a given horizon of a 
particular series is defined as 

 

sh,

sh,sh,m,
sh,m, A

AF
APE

−
=  

The APEs for a particular forecasting method are summarized across series by 
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 + 1 if S is even, where the observations are rank-ordered by APEm,h,s. 

 
The relative absolute error (RAE) for a particular forecasting method for a given horizon of a 
particular series is defined as 

sh,sh,rw,
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−

−
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The Winsorized RAEs are defined by 
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Because we always recommend Winsorizing of the RAE, we drop the W below and in the text. 
The Winsorized RAEs for a particular forecasting method are summarized across series by 
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or by 
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 + 1 if S is even, where the observations are rank-ordered by RAEm,h,s 

The RAEs for a particular forecasting method are summarized across all of the H horizons on a 
particular series by 
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The CumRAE is Winsorized in the same way as the GMRAE is Winsorized. The CumRAEs for 
a particular forecasting method are summarized across series by 
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 + 1 if S is even, where the observations are rank-ordered by Winsorized 

CumRAEm,s 
The root mean squared errors (RMSEs) for a particular forecasting method are summarized 
across series by 
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Theil’s US for a particular forecasting method on a particular series is 
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To summarize across series, a geometric mean is calculated by 
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Percent Better is calculated as 
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otherwise. 0

 sh,sh,rw,sh,sh,m, AFAFif1 −<−  

 
Consensus Rank for the six measures we examined was calculated by 
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Where Ri,m is the ranking given by measure i to method m. 
 
For simplicity, we generally eliminate the subscripts in the text. 


