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Abstract

This paper examines the use of computational fluid dynamics as a tool for aircraft design. It addresses
the requirements for effective industrial use, and trade-offs between modeling accuracy and computational
costs. Essential elements of algorithm design are discussed in detail, together with a unified approach
to the design of shock capturing schemes. Finally, the paper discusses the use of techniques drawn from
control theory to determine optimal aerodynamic shapes. In the future multidisciplinary analysis and
optimization should be combined to take account of the trade-offs in the overall performance of the
complete system.

1 Introduction

Computational methods first began to have a significant impact on aerodynamics analysis and design in
the period of 1965-75. This decade saw the introduction of panel methods which could solve the linear
flow models for arbitrarily complex geometry in both subsonic and supersonic flow [69, 167, 203]. It also
saw the appearance of the first satisfactory methods for treating the nonlinear equations of transonic flow
[137, 136, 76, 77, 51, 64], and the development of the hodograph method for the design of shock free
supercritical airfoils [19].

Algorithms have been the subject of intensive development for the past two decades. The principles
underlying the design and implementation of robust schemes which can accurately resolve shock waves and
contact discontinuities in compressible flows are now quite well established. It is also quite well understood
how to design high order schemes for viscous flow, including compact schemes and spectral methods. Adap-
tive refinement of the mesh interval (h) and the order of approximations (p) has been successfully exploited
both separately and in combination in the h-p method [140]. A continuing obstacle to the treatment of
configurations with complex geometry has been the problem of mesh generation. Several general techniques
have been developed, including algebraic transformations and methods based on the solution of elliptic and
hyperbolic equations. In the last few years methods using unstructured meshes have also begun to gain
more general acceptance. The Dassault-INRIA group led the way in developing a finite element method for
transonic potential flow. They obtained a solution for a complete Falcon 50 as early as 1982 [29]. Euler
methods for unstructured meshes have been the subject of intensive development by several groups since
1985 [120, 92, 91, 186, 18], and Navier-Stokes methods on unstructured meshes have also been demonstrated
[128, 129, 15].

Computational Fluid Dynamics (CFD) is now widely accepted as a key tool for aerodynamic design. Its
effectiveness is still hampered, however, by the long set-up and high costs, both human and computational
of complex flow simulations. The essential requirements for industrial use are:

1. assured accuracy

2. acceptable computational and human costs

3. fast turn around.
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Improvements are still needed in all three areas. In particular, the fidelity of modelling of high Reynolds
number viscous flows continues to be limited by computational costs. Consequently accurate and cost
effective simulation of viscous flow at Reynolds numbers associated with full scale flight, such as the prediction
of high lift devices, remains a challenge. Several routes are available toward the reduction of computational
costs, including the reduction of mesh requirements by the use of higher order schemes, improved convergence
to a steady state by sophisticated acceleration methods, fast inversion methods for implicit schemes, and the
exploitation of massively parallel computers.

Another factor limiting the effective use of CFD is the lack of good interfaces to computer aided design
(CAD) systems. The geometry models provided by existing CAD systems often fail to meet the requirements
of continuity and smoothness needed for flow simulation, with the consequence that they must be modified
before they can be used to provide the input for mesh generation. This bottleneck, which impedes the
automation of the mesh generation process, needs to be eliminated, and the CFD software should be fully
integrated in a numerical design environment. In addition to more accurate and cost-effective flow prediction
methods, better optimizations methods are also needed, so that not only can designs be rapidly evaluated,
but directions of improvement can be identified. Possession of techniques which result in a faster design
cycle gives a crucial advantage in a competitive environment.

A critical issue, examined in the next section, is the choice of mathematical models. What level of
complexity is needed to provide sufficient accuracy for aerodynamic design, and what is the impact on cost
and turn-around time? Section 3 addresses the design of numerical algorithms for flow simulation. Section
4 presents the results of some numerical calculations which require moderate computer resources and could
be completed with the fast turn-around required by industrial users. Section 5 discusses automatic design
procedures which can be used to produce optimum aerodynamic designs. Finally, Section 6 offers an outlook
for the future.

2 The Complexity of Fluid Flow and Mathematical Modeling

2.1 The Hierarchy of Mathematical Models

Many critical phenomena of fluid flow, such as shock waves and turbulence, are essentially non-linear. They
also exhibit extreme disparities of scales. While the actual thickness of a shock wave is of the order of a
mean free path of the gas particles, on a macroscopic scale its thickness is essentially zero. In turbulent
flow energy is transferred from large scale motions to progressively smaller eddies until the scale becomes so
small that the motion is dissipated by viscosity. The ratio of the length scale of the global flow to that of the
smallest persisting eddies is of the order Re

3
4 , where Re is the Reynolds number, typically in the range of 30

million for an aircraft. In order to resolve such scales in all three space directions a computational grid with
the order of Re

9
4 cells would be required. This is beyond the range of any current or foreseeable computer.

Consequently mathematical models with varying degrees of simplification have to be introduced in order to
make computational simulation of flow feasible and produce viable and cost-effective methods.

Figure 1 (supplied by Pradeep Raj) indicates a hierarchy of models at different levels of simplification
which have proved useful in practice. Efficient flight is generally achieved by the use of smooth and stream-
lined shapes which avoid flow separation and minimize viscous effects, with the consequence that useful
predictions can be made using inviscid models. Inviscid calculations with boundary layer corrections can
provide quite accurate predictions of lift and drag when the flow remains attached, but iteration between the
inviscid outer solution and the inner boundary layer solution becomes increasingly difficult with the onset
of separation. Procedures for solving the full viscous equations are likely to be needed for the simulation of
arbitrary complex separated flows, which may occur at high angles of attack or with bluff bodies. In order
to treat flows at high Reynolds numbers, one is generally forced to estimate turbulent effects by Reynolds
averaging of the fluctuating components. This requires the introduction of a turbulence model. As the
available computing power increases one may also aspire to large eddy simulation (LES) in which the larger
scale eddies are directly calculated, while the influence of turbulence at scales smaller than the mesh interval
is represented by a subgrid scale model.
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Figure 1: Hierarchy of Fluid Flow Models

2.2 Computational Costs

Computational costs vary drastically with the choice of mathematical model. Panel methods can be effective-
ly used to solve the linear potential flow equation with higher-end personal computers (with an Intel Pentium
microprocessor, for example). Studies of the dependency of the result on mesh refinement, performed by
this author and others, have demonstrated that inviscid transonic potential flow or Euler solutions for an
airfoil can be accurately calculated on a mesh with 160 cells around the section, and 32 cells normal to the
section. Using multigrid techniques 10 to 25 cycles are enough to obtain a converged result. Consequently
airfoil calculations can be performed in seconds on a Cray YMP, and can also be performed on Pentium-class
personal computers. Correspondingly accurate three-dimensional inviscid calculations can be performed for
a wing on a mesh, say with 192×32×48 = 294, 912 cells, in about 5 minutes on a single processor Cray
YMP, or less than a minute with eight processors, or in less than an hour on a workstation such as a Silicon
Graphics Indigo 2.

Viscous simulations at high Reynolds numbers require vastly greater resources. Careful two-dimensional
studies of mesh requirements have been carried out at Princeton by Martinelli [124]. He found that on the
order of 32 mesh intervals were needed to resolve a turbulent boundary layer, in addition to 32 intervals be-
tween the boundary layer and the far field, leading to a total of 64 intervals. In order to prevent degradations
in accuracy and convergence due to excessively large aspect ratios (in excess of 1,000) in the surface mesh
cells, the chordwise resolution must also be increased to 512 intervals. Reasonably accurate solutions can be
obtained in a 512×64 mesh in 100 multigrid cycles. Translated to three dimensions, this would imply the
need for meshes with 5–10 million cells (for example, 512×64×256 = 8,388,608 cells as shown in Figure 2).
When simulations are performed on less fine meshes with, say, 500,000 to 1 million cells, it is very hard to
avoid mesh dependency in the solutions as well as sensitivity to the turbulence model.

A typical algorithm requires of the order of 5,000 floating point operations per mesh point in one multigrid
iteration. With 10 million mesh points, the operation count is of the order of 0.5×1011 per cycle. Given
a computer capable of sustaining 1011 operations per second (100 gigaflops), 200 cycles could then be
performed in 100 seconds. Simulations of unsteady viscous flows (flutter, buffet) would be likely to require
1,000–10,000 time steps. A further progression to large eddy simulation of complex configurations would
require even greater resources. The following estimate is due to W.H. Jou [100]. Suppose that a conservative
estimate of the size of eddies in a boundary layer that ought to be resolved is 1/5 of the boundary layer
thickness. Assuming that 10 points are needed to resolve a single eddy, the mesh interval should then be 1/50
of the boundary layer thickness. Moreover, since the eddies are three-dimensional, the same mesh interval
should be used in all three directions. Now, if the boundary layer thickness is of the order of 0.01 of the
chord length, 5,000 intervals will be needed in the chordwise direction, and for a wing with an aspect ratio
of 10, 50,000 intervals will be needed in the spanwise direction. Thus, of the order of 50× 5, 000× 50, 000
or 12.5 billion mesh points would be needed in the boundary layer. If the time dependent behavior of the
eddies is to be fully resolved using time steps on the order of the time for a wave to pass through a mesh
interval, and one allows for a total time equal to the time required for waves to travel three times the length
of the chord, of the order of 15,000 time steps would be needed. A more refined estimate which allows for
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32 cells

32 cells in the
boundary layer

512 cells around the wing to limit
the mesh aspect ratio (to about 1000)

256 cells
spanwise

Surface Mesh

Total:  512 x 64 x 256 =  8 388 608 cells

Figure 2: Mesh Requirements for a Viscous Simulation

the varying thickness of the boundary layer, recently made by Spalart et al. [182], suggests an even more
severe requirement. Performance beyond the teraflop (1012 operations per second) will be needed to attempt
calculations of this nature, which also have an information content far beyond what is needed for enginering
analysis and design. The designer does not need to know the details of the eddies in the boundary layer.
The primary purpose of such calculations is to improve the calculation of averaged quantities such as skin
friction, and the prediction of global behavior such as the onset of separation. The main current use of
Navier-Stokes and large eddy simulations is to try to gain an improved insight into the physics of turbulent
flow, which may in turn lead to the development of more comprehensive and reliable turbulence models.

2.3 Turbulence Modeling

It is doubtful whether a universally valid turbulence model, capable of describing all complex flows, could
be devised [62]. Algebraic models [35, 13] have proved fairly satisfactory for the calculation of attached
and slightly separated wing flows. These models rely on the boundary layer concept, usually incorporating
separate formulas for the inner and outer layers, and they require an estimate of a length scale which depends
on the thickness of the boundary layer. The estimation of this quantity by a search for a maximum of the
vorticity times a distance to the wall, as in the Baldwin-Lomax model, can lead to ambiguities in internal
flows, and also in complex vortical flows over slender bodies and highly swept or delta wings [47, 125]. The
Johnson-King model [98], which allows for non-equilibrium effects through the introduction of an ordinary
differential equation for the maximum shear stress, has improved the prediction of flows with shock induced
separation [168, 101].

Closure models depending on the solution of transport equations are widely accepted for industrial
applications. These models eliminate the need to estimate a length scale by detecting the edge of the
boundary layer. Eddy viscosity models typically use two equations for the turbulent kinetic energy k and
the dissipation rate ε, or a pair of equivalent quantities [99, 202, 183, 1, 133, 40]. Models of this type generally
tend to present difficulties in the region very close to the wall. They also tend to be badly conditioned for
numerical solution. The k − l model [176] is designed to alleviate this problem by taking advantage of the
linear behaviour of the length scale l near the wall. In an alternative approach to the design of models which
are more amenable to numerical solution, new models requiring the solution of one transport equation have
recently been introduced [14, 181]. The performance of the algebraic models remains competitive for wing
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flows, but the one- and two-equation models show promise for broader classes of flows. In order to achieve
greater universality, research is also being pursued on more complex Reynolds stress transport models, which
require the solution of a larger number of transport equations.

Another direction of research is the attempt to devise more rational models via renormalization group
(RNG) theory [206, 177]. Both algebraic and two-equation k−ε models devised by this approach have shown
promising results [126].

The selection of sufficiently accurate mathematical models and a judgment of their cost effectiveness
ultimately rests with industry. Aircraft and spacecraft designs normally pass through the three phases of
conceptual design, preliminary design, and detailed design. Correspondingly, the appropriate CFD models
will vary in complexity. In the conceptual and preliminary design phases, the emphasis will be on relatively
simple models which can give results with very rapid turn-around and low computer costs, in order to evaluate
alternative configurations and perform quick parametric studies. The detailed design stage requires the most
complete simulation that can be achieved with acceptable cost. In the past, the low level of confidence that
could be placed on numerical predictions has forced the extensive use of wind tunnel testing at an early stage
of the design. This practice was very expensive. The limited number of models that could be fabricated also
limited the range of design variations that could be evaluated. It can be anticipated that in the future, the
role of wind tunnel testing in the design process will be more one of verification. Experimental research to
improve our understanding of the physics of complex flows will continue, however, to play a vital role.

3 CFD Algorithms

3.1 Difficulties of Flow Simulation

The computational simulation of fluid flow presents a number of severe challenges for algorithm design. At
the level of inviscid modeling, the inherent nonlinearity of the fluid flow equations leads to the formation
of singularities such as shock waves and contact discontinuities. Moreover, the geometric configurations of
interest are extremely complex, and generally contain sharp edges which lead to the shedding of vortex
sheets. Extreme gradients near stagnation points or wing tips may also lead to numerical errors that can
have global influence. Numerically generated entropy may be convected from the leading edge for example,
causing the formation of a numerically induced boundary layer which can lead to separation. The need to
treat exterior domains of infinite extent is also a source of difficulty. Boundary conditions imposed at artificial
outer boundaries may cause reflected waves which significantly interfere with the flow. When viscous effects
are also included in the simulation, the extreme difference of the scales in the viscous boundary layer and
the outer flow, which is essentially inviscid, is another source of difficulty, forcing the use of meshes with
extreme variations in mesh interval. For these reasons CFD, has been a driving force for the development
of numerical algorithms.

3.2 Structured and Unstructured Meshes

The algorithm designer faces a number of critical decisions. The first choice that must be made is the nature
of the mesh used to divide the flow field into discrete subdomains. The discretization procedure must allow
for the treatment of complex configurations. The principal alternatives are Cartesian meshes, body-fitted
curvilinear meshes, and unstructured tetrahedral meshes. Each of these approaches has advantages which
have led to their use. The Cartesian mesh minimizes the complexity of the algorithm at interior points
and facilitates the use of high order discretization procedures, at the expense of greater complexity, and
possibly a loss of accuracy, in the treatment of boundary conditions at curved surfaces. This difficulty may
be alleviated by using mesh refinement procedures near the surface. With their aid, schemes which use
Cartesian meshes have recently been developed to treat very complex configurations [132, 169, 26, 105].

Body-fitted meshes have been widely used and are particularly well suited to the treatment of viscous
flow because they readily allow the mesh to be compressed near the body surface. With this approach, the
problem of mesh generation itself has proved to be a major pacing item. The most commonly used procedures
are algebraic transformations [11, 52, 55, 178], methods based on the solution of elliptic equations, pioneered
by Thompson [192, 193, 179, 180], and methods based on the solution of hyperbolic equations marching out
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from the body [184]. In order to treat very complex configurations it generally proves expedient to use a
multiblock [201, 170] procedure, with separately generated meshes in each block, which may then be patched
at block faces, or allowed to overlap, as in the Chimera scheme [23, 24]. While a number of interactive
software systems for grid generation have been developed, such as EAGLE, GRIDGEN, and ICEM, the
generation of a satisfactory grid for a very complex configuration may require months of effort.

The alternative is to use an unstructured mesh in which the domain is subdivided into tetrahedra.
This in turn requires the development of solution algorithms capable of yielding the required accuracy on
unstructured meshes. This approach has been gaining acceptance, as it is becoming apparent that it can lead
to a speed-up and reduction in the cost of mesh generation that more than offsets the increased complexity
and cost of the flow simulations. Two competing procedures for generating triangulations which have both
proved successful are Delaunay triangulation [48, 15], based on concepts introduced at the beginning of the
century by Voronoi [199], and the moving front method [121].

3.3 Finite Difference, Finite Volume, and Finite Element Schemes

Associated with choice of mesh type is the formulation of the discretization procedure for the equations of
fluid flow, which can be expressed as differential conservation laws. In the Cartesian tensor notation, let xi

be the coordinates, p, ρ, T , and E the pressure, density, temperature, and total energy, and ui the velocity
components. Using the convention that summation over j = 1, 2, 3 is implied by a repeated subscript j, each
conservation equation has the form

∂w

∂t
+

∂fj
∂xj

− ∂fvj

∂xj
= 0. (1)

where fj are the inviscid (convective) fluxes, and fvj are the viscous fluxes. For the mass equation

w = ρ, fj = ρuj.

For the i momentum equation

wi = ρui, fij = ρuiuj + pδij , fvij = σij ,

where σij is the viscous stress tensor. For the energy equation

w = ρE, fj = pHuj, fvj = σjkuk − k
∂T

∂xj
,

where k is the coefficient of thermal conductivity. The pressure is related to the density and energy by the
equation of state

p = (γ − 1)ρ
(
E − 1

2
uiui

)
(2)

in which γ is the ratio of specific heats and the stagnation enthalpy is given by

H = E +
p

ρ

while
E = cvT +

1
2
uiui

where cv is the specific heat at constant volume. In the Navier-Stokes equations the viscous stresses are
assumed to be linearly proportional to the rate of strain, or

σij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ λδij

(
∂uk

∂xk

)
, (3)

where µ and λ are the coefficients of viscosity and bulk viscosity, and usually λ = −2µ/3. The coefficient of
thermal conductivity and temperature are given by the relations

k =
cpµ

Pr
, T =

p

Rρ
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where cp is the specific heat at constant pressure, R is the gas constant, and Pr is the Prandtl number.
The finite difference method, which requires the use of a Cartesian or a structured curvilinear mesh,

directly approximates the differential operators appearing in these equations. In the finite volume method
[122], the discretization is accomplished by dividing the domain of the flow into a large number of small
subdomains, and applying the conservation laws in the integral form

∂

∂t

∫
Ω

wdV +
∫
∂Ω

f · dS = 0.

Here F is the flux appearing in equation (1) and dS is the directed surface element of the boundary ∂Ω of
the domain Ω. The use of the integral form has the advantage that no assumption of the differentiability
of the solutions is implied, with the result that it remains a valid statement for a subdomain containing a
shock wave. In general the subdomains could be arbitrary, but it is convenient to use either hexahedral cells
in a body conforming curvilinear mesh or tetrahedrons in an unstructured mesh.

Alternative discretization schemes may be obtained by storing flow variables at either the cell centers or
the vertices. These variations are illustrated in Figure 3 for the two-dimensional case. With a cell-centered
scheme the discrete conservation law takes the form

o o 

3a: Cell Centered Scheme.

o 
o 

3b: Vertex Scheme.

Figure 3: Structured and Unstructured Discretizations.

d

dt
wV +

∑
faces

f ·S = 0, (4)

where V is the cell volume, and f is now a numerical estimate of the flux vector through each face. f may
be evaluated from values of the flow variables in the cells separated by each face, using upwind biasing to
allow for the directions of wave propagation. With hexahedral cells, equation (4) is very similar to a finite
difference scheme in curvilinear coordinates. Under a transformation to curvilinear coordinates ξj , equation
(1) becomes

∂

∂t
(Jw) +

∂

∂ξi

(
J

∂ξi
∂xj

fj

)
= 0, (5)

where J is the Jacobian determinant of the transformation matrix
[
∂xi

∂ξj

]
. The transformed flux J ∂ξi

∂xj
fj

corresponds to the dot product of the flux f with a vector face area J ∂ξi

∂xj
, while J represents the transfor-

mation of the cell volume. The finite volume form (4) has the advantages that it is valid for both structured
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and unstructured meshes, and that it assures that a uniform flow exactly satisfies the equations, because∑
faces S = 0 for a closed control volume. Finite difference schemes do not necessarily satisfy this constraint

because of the discretization errors in evaluating ∂ξi

∂xj
and the inversion of the transformation matrix. A

cell-vertex finite volume scheme can be derived by taking the union of the cells surrounding a given vertex
as the control volume for that vertex [65, 82, 158]. In equation (4), V is now the sum of the volumes of the
surrounding cells, while the flux balance is evaluated over the outer faces of the polyhedral control volume.
In the absence of upwind biasing the flux vector is evaluated by averaging over the corners of each face. This
has the advantage of remaining accurate on an irregular or unstructured mesh. An alternative route to the
discrete equations is provided by the finite element method. Whereas the finite difference and finite volume
methods approximate the differential and integral operators, the finite element method proceeds by inserting
an approximate solution into the exact equations. On multiplying by a test function φ and integrating by
parts over space, one obtains the weak form

∂

∂t

∫ ∫ ∫
Ω

φwdΩ =

∫ ∫ ∫
Ω

f ·∇φdΩ−
∫ ∫

∂Ω

φf ·dS (6)

which is also valid in the presence of discontinuities in the flow. In the Galerkin method the approximate
solution is expanded in terms of the same family of functions as those from which the test functions are
drawn. By choosing test functions with local support, separate equations are obtained for each node. For
example, if a tetrahedral mesh is used, and φ is piecewise linear, with a nonzero value only at a single node,
the equations at each node have a stencil which contains only the nearest neighbors. In this case the finite
element approximation corresponds closely to a finite volume scheme. If a piecewise linear approximation
to the flux f is used in the evaluation of the integrals on the right hand side of equation (6), these integrals
reduce to formulas which are identical to the flux balance of the finite volume scheme.

Thus the finite difference and finite volume methods lead to essentially similar schemes on structured
meshes, while the finite volume method is essentially equivalent to a finite element method with linear
elements when a tetrahedral mesh is used. Provided that the flow equations are expressed in the conservation
law form (1), all three methods lead to an exact cancellation of the fluxes through interior cell boundaries, so
that the conservative property of the equations is preserved. The important role of this property in ensuring
correct shock jump conditions was pointed out by Lax and Wendroff [108].

3.4 Non-oscillatory Shock Capturing Schemes

3.4.1 Local Extremum Diminishing (LED) Schemes

The discretization procedures which have been described in the last section lead to nondissipative approxi-
mations to the Euler equations. Dissipative terms may be needed for two reasons. The first is the possibility
of undamped oscillatory modes. The second reason is the need for the clean capture of shock waves and
contact discontinuities without undesirable oscillations. An extreme overshoot could result in a negative
value of an inherently positive quantity such as the pressure or density. The next sections summarize a
unified approach to the construction of nonoscillatory schemes via the introduction of controlled diffusive
and antidiffusive terms. This is the line adhered to in the author’s own work.

The development of non-oscillatory schemes has been a prime focus of algorithm research for compressible
flow. Consider a general semi-discrete scheme of the form

d

dt
vj =

∑
k �=j

cjk(vk − vj). (7)

A maximum cannot increase and a minimum cannot decrease if the coefficients cjk are non-negative, since
at a maximum vk − vj ≤ 0, and at a minimum vk − vj ≥ 0. Thus the condition

cjk ≥ 0, k �= j (8)

is sufficient to ensure stability in the maximum norm. Moreover, if the scheme has a compact stencil, so that
cjk = 0 when j and k are not nearest neighbors, a local maximum cannot increase and local minimum cannot
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decrease. This local extremum diminishing (LED) property prevents the birth and growth of oscillations.
The one-dimensional conservation law

∂u

∂t
+

∂

∂x
f(u) = 0

provides a useful model for analysis. In this case waves are propagated with a speed a(u) = ∂f
∂u , and the

solution is constant along the characteristics dx
dt = a(u). Thus the LED property is satisfied. In fact the

total variation

TV (u) =
∫ ∞

−∞

∣∣∣∣∂u∂x
∣∣∣∣ dx

of a solution of this equation does not increase, provided that any discontinuity appearing in the solution
satisfies an entropy condition [107]. Harten proposed that difference schemes ought to be designed so that the
discrete total variation cannot increase [66]. If the end values are fixed, the total variation can be expressed
as

TV (u) = 2
(∑

maxima −
∑

minima
)
.

Thus a LED scheme is also total variation diminishing (TVD). The converse is not necessarily true, since it
is possible for adjacent maxima and minima to be shifted an equal amount, say upwards, so that the total
variation is unchanged, while the local maximum is increased. Positivity conditions of the type expressed in
equations (7) and (8) lead to diagonally dominant schemes, and are the key to the elimination of improper
oscillations. The positivity conditions may be realized by the introduction of diffusive terms or by the use of
upwind biasing in the discrete scheme. Unfortunately, they may also lead to severe restrictions on accuracy
unless the coefficients have a complex nonlinear dependence on the solution.

3.4.2 Artificial Diffusion and Upwinding

Following the pioneering work of Godunov [61], a variety of dissipative and upwind schemes designed to have
good shock capturing properties have been developed during the past two decades [185, 27, 109, 110, 166,
144, 66, 143, 188, 8, 80, 207, 74, 204, 17, 16, 15]. If the one-dimensional scalar conservation law

∂v

∂t
+

∂

∂x
f(v) = 0 (9)

is represented by a three point scheme

dvj
dt

= c+
j+ 1

2
(vj+1 − vj) + c−

j− 1
2
(vj−1 − vj) ,

the scheme is LED if
c+
j+ 1

2
≥ 0, c−

j− 1
2
≥ 0. (10)

A conservative semidiscrete approximation to the one-dimensional conservation law can be derived by sub-
dividing the line into cells. Then the evolution of the value vj in the jth cell is given by

∆x
dvj
dt

+ hj+ 1
2
− hj− 1

2
= 0, (11)

where hj+ 1
2
is an estimate of the flux between cells j and j + 1. The simplest estimate is the arithmetic

average (fj+1 + fj)/2, but this leads to a scheme that does not satisfy the positivity conditions. To correct
this, one may add a dissipative term and set

hj+ 1
2
=

1
2
(fj+1 + fj)− αj+ 1

2
(vj+1 − vj) . (12)

In order to estimate the required value of the coefficient αj+ 1
2
, let aj+ 1

2
be a numerical estimate of the wave

speed ∂f
∂u ,

aj+ 1
2
=




fj+1−fj

vj+1−vj
if vj+1 �= vj

∂f
∂v

∣∣∣
v=vj

if vj+1 = vj
. (13)
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Then

hj+ 1
2
− hj− 1

2
= −

(
αj+ 1

2
− 1

2
aj+ 1

2

)
∆vj+ 1

2

+
(
αj− 1

2
+

1
2
aj− 1

2

)
∆vj− 1

2
,

where
∆vj+ 1

2
= vj+1 − vj ,

and the LED condition (10) is satisfied if

αj+ 1
2
≥ 1

2

∣∣∣aj+ 1
2

∣∣∣ . (14)

If one takes
αj+ 1

2
=

1
2

∣∣∣aj+ 1
2

∣∣∣ ,
one obtains the first order upwind scheme

hj+ 1
2
=
{

fj if aj+ 1
2
> 0

fj+1 if aj+ 1
2
< 0 .

This is the least diffusive first order scheme which satisfies the LED condition. In this sense upwinding
is a natural approach to the construction of non-oscillatory schemes. It may be noted that the successful
treatment of transonic potential flow also involved the use of upwind biasing. This was first introduced by
Murman and Cole to treat the transonic small disturbance equation [137].

Another important requirement of discrete schemes is that they should exclude nonphysical solutions
which do not satisfy appropriate entropy conditions [106], which require the convergence of characteristics
towards admissible discontinuities. This places more stringent bounds on the minimum level of numerical
viscosity [123, 191, 142, 145]. In the case that the numerical flux function is strictly convex, Aiso has recently
proved [2] that it is sufficient that

αj+ 1
2
> max

{
1
2

∣∣∣aj+ 1
2

∣∣∣ , ε sign(vj+1 − vj)
}

for ε > 0. Thus the numerical viscosity should be rounded out and not allowed to reach zero at a point
where the wave speed a(u) = ∂f

∂u approaches zero. This justifies, for example, Harten’s entropy fix [66].
Higher order schemes can be constructed by introducing higher order diffusive terms. Unfortunately these

have larger stencils and coefficients of varying sign which are not compatible with the conditions (8) for a
LED scheme, and it is known that schemes which satisfy these conditions are at best first order accurate in
the neighborhood of an extremum. It proves useful in the following development to introduce the concept of
essentially local extremum diminishing (ELED) schemes. These are defined to be schemes which satisfy the
condition that in the limit as the mesh width ∆x → 0, local maxima are non-increasing, and local minima
are non-decreasing.

3.4.3 High Resolution Switched Schemes: Jameson-Schmidt-Turkel (JST) Scheme

Higher order non-oscillatory schemes can be derived by introducing anti-diffusive terms in a controlled
manner. An early attempt to produce a high resolution scheme by this approach is the Jameson-Schmidt-
Turkel (JST) scheme [95]. Suppose that anti-diffusive terms are introduced by subtracting neighboring
differences to produce a third order diffusive flux

dj+ 1
2
= αj+ 1

2

{
∆vj+ 1

2
− 1

2

(
∆vj+ 3

2
+∆vj− 1

2

)}
, (15)
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which is an approximation to 1
2α∆x3 ∂3v

∂x3 . The positivity condition (8) is violated by this scheme. It proves
that it generates substantial oscillations in the vicinity of shock waves, which can be eliminated by switching
locally to the first order scheme. The JST scheme therefore introduces blended diffusion of the form

dj+ 1
2

= ε
(2)

j+ 1
2
∆vj+ 1

2

− ε
(4)

j+ 1
2

(
∆vj+ 3

2
− 2∆vj+ 1

2
+∆vj− 1

2

)
,

(16)

The idea is to use variable coefficients ε
(2)

j+ 1
2
and ε

(4)

j+ 1
2
which produce a low level of diffusion in regions where

the solution is smooth, but prevent oscillations near discontinuities. If ε
(2)

j+ 1
2
is constructed so that it is of

order ∆x2 where the solution is smooth, while ε
(4)

j+ 1
2
is of order unity, both terms in dj+ 1

2
will be of order

∆x3.
The JST scheme has proved very effective in practice in numerous calculations of complex steady flows,

and conditions under which it could be a total variation diminishing (TVD) scheme have been examined
by Swanson and Turkel [187]. An alternative statement of sufficient conditions on the coefficients ε

(2)

j+ 1
2
and

ε
(4)

j+ 1
2
for the JST scheme to be LED is as follows:

Theorem 1 (Positivity of the JST scheme) Suppose that whenever either vj+1 or vj is an extremum
the coefficients of the JST scheme satisfy

ε
(2)

j+ 1
2
≥ 1

2

∣∣∣αj+ 1
2

∣∣∣ , ε
(4)

j+ 1
2
= 0. (17)

Then the JST scheme is local extremum diminishing (LED).
Proof: We need only consider the rate of change of v at extremal points. Suppose that vj is an extremum.

Then
ε
(4)

j+ 1
2
= ε

(4)

j− 1
2
= 0,

and the semi-discrete scheme (11) reduces to

∆x
dvj
dt

=
(
ε
(2)

j+ 1
2
− 1

2
aj+ 1

2

)
∆vj+ 1

2

−
(
ε
(2)

j− 1
2
+

1
2
aj− 1

2

)
∆vj− 1

2
,

and each coefficient has the required sign. ✷

In order to construct ε
(2)

j− 1
2
and ε

(4)

j− 1
2
with the desired properties define

R(u, v) =

{ ∣∣∣ u−v
|u|+|v|

∣∣∣q if u �= 0 or v �= 0
0 if u = v = 0,

(18)

where q is a positive integer. Then R(u, v) = 1 if u and v have opposite signs. Otherwise R(u, v) < 1. Now
set

Qj = R(∆vj+ 1
2
,∆vj− 1

2
), Qj+ 1

2
= max(Qj , Qj+1).

and
ε
(2)

j+ 1
2
= αj+ 1

2
Qj+ 1

2
, ε

(4)

j+ 1
2
=

1

2
αj+ 1

2
(1−Qj+ 1

2
). (19)



3 CFD ALGORITHMS 12

3.4.4 Symmetric Limited Positive (SLIP) Scheme

An alternative route to high resolution without oscillation is to introduce flux limiters to guarantee the
satisfaction of the positivity condition (8). The use of limiters dates back to the work of Boris and Book [27].
A particularly simple way to introduce limiters, proposed by the author in 1984 [80], is to use flux limited
dissipation. In this scheme the third order diffusion defined by equation (15) is modified by the insertion of
limiters which produce an equivalent three point scheme with positive coefficients. The original scheme [80]
can be improved in the following manner so that less restrictive flux limiters are required. Let L(u, v) be a
limited average of u and v with the following properties:

P1. L(u, v) = L(v, u)

P2. L(αu, αv) = αL(u, v)

P3. L(u, u) = u

P4. L(u, v) = 0 if u and v have opposite signs: otherwise L(u, v) has the same sign as u and v.

Properties (P1–P3) are natural properties of an average. Property (P4) is needed for the construction of a
LED or TVD scheme.

It is convenient to introduce the notation

φ(r) = L(1, r) = L(r, 1),

where according to (P4) φ(r) ≥ 0. It follows from (P2) on setting α = 1
u or 1

v that

L(u, v) = φ
( v

u

)
u = φ

(u

v

)
v.

Also it follows on setting v = 1 and u = r that

φ(r) = rφ

(
1
r

)
.

Thus, if there exists r < 0 for which φ(r) > 0, then φ
(

1
r

)
< 0. The only way to ensure that φ(r) ≥ 0 is to

require φ(r) = 0 for all r < 0, corresponding to property (P4).
Now one defines the diffusive flux for a scalar conservation law as

dj+ 1
2
= αj+ 1

2

{
∆vj+ 1

2
− L

(
∆vj+ 3

2
,∆vj− 1

2

)}
. (20)

Set

r+ =
∆vj+ 3

2

∆vj− 1
2

, r− =
∆vj− 3

2

∆vj+ 1
2

.

and

L(∆vj+ 3
2
,∆vj− 1

2
) = φ(r+)∆vj− 1

2

L(∆vj− 3
2
,∆vj+ 1

2
) = φ(r−)∆vj+ 1

2
.

Then,

∆x
dvj

dt
=
{
αj+ 1

2
− 1

2
aj+ 1

2
+ αj− 1

2
φ(r−)

}
∆vj+ 1

2

−
{
αj− 1

2
+

1

2
aj− 1

2
+ αj+ 1

2
φ(r+)

}
∆vj− 1

2
. (21)

Thus the scheme satisfies the LED condition if αj+ 1
2
≥ 1

2

∣∣∣aj+ 1
2

∣∣∣ for all j, and φ(r) ≥ 0, which is assured
by property (P4) on L. At the same time it follows from property (P3) that the first order diffusive flux is
canceled when ∆v is smoothly varying and of constant sign. Schemes constructed by this formulation will
be referred to as symmetric limited positive (SLIP) schemes. This result may be summarized as
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Theorem 2 (Positivity of the SLIP scheme) Suppose that the discrete conservation law (11) contains
a limited diffusive flux as defined by equation (20). Then the positivity condition (14), together with the
properties (P1–P4) for limited averages, are sufficient to ensure satisfaction of the LED principle that a local
maximum cannot increase and a local minimum cannot decrease. ✷

A variety of limiters may be defined which meet the requirements of properties (P1–P4). Define

S(u, v) =
1
2
{sign(u) + sign(v)}

which vanishes is u and v have opposite signs.
Then two limiters which are appropriate are the following well-known schemes:

1. Minmod:
L(u, v) = S(u, v)min(|u|, |v|)

2. Van Leer:

L(u, v) = S(u, v)
2|u||v|
|u|+ |v| .

In order to produce a family of limiters which contains these as special cases it is convenient to set

L(u, v) =
1
2
D(u, v)(u+ v),

where D(u, v) is a factor which should deflate the arithmetic average, and become zero if u and v have
opposite signs. Take

D(u, v) = 1−R(u, v) = 1−
∣∣∣∣ u− v

|u|+ |v|
∣∣∣∣
q

, (22)

where R(u, v) is the same function that was introduced in the JST scheme, and q is a positive integer. Then
D(u, v) = 0 if u and v have opposite signs. Also if q = 1, L(u, v) reduces to minmod, while if q = 2, L(u, v)
is equivalent to Van Leer’s limiter. By increasing q one can generate a sequence of limited averages which
approach a limit defined by the arithmetic mean truncated to zero when u and v have opposite signs.

When the terms are regrouped, it can be seen that with this limiter the SLIP scheme is exactly equivalent
to the JST scheme, with the switch is defined as

Qj+ 1
2

= R
(
∆vj+ 3

2
,∆vj+ 1

2

)
ε
(2)

j+ 1
2

= αj+ 1
2
Qj+ 1

2

ε
(4)

j+ 1
2

= αj+ 1
2

(
1−Qj+ 1

2

)
.

This formulation thus unifies the JST and SLIP schemes. The SLIP construction, however, provides a
convenient framework for the construction of LED schemes on unstructured meshes [87]

3.4.5 Essentially Local Extremum Diminishing (ELED) Scheme with Soft Limiter

The limiters defined by the formula (22) have the disadvantage that they are active at a smooth extrema,
reducing the local accuracy of the scheme to first order. In order to prevent this, the SLIP scheme can be
relaxed to give an essentially local extremum diminishing (ELED) scheme which is second order accurate at
smooth extrema by the introduction of a threshold in the limited average. Therefore redefine D(u, v) as

D(u, v) = 1−
∣∣∣∣ u− v

max(|u|+ |v| , ε∆xr)

∣∣∣∣
q

, (23)

where r = 3
2 , q ≥ 2. This reduces to the previous definition if |u|+ |v| > ε∆xr.
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In any region where the solution is smooth, ∆vj+ 3
2
−∆vj− 1

2
is of order ∆x2. In fact if there is a smooth

extremum in the neighborhood of vj or vj+1, a Taylor series expansion indicates that ∆vj+ 3
2
, ∆vj+ 1

2
and

∆vj− 1
2
are each individually of order ∆x2, since dv

dx = 0 at the extremum. It may be verified that second
order accuracy is preserved at a smooth extremum if q ≥ 2. On the other hand the limiter acts in the usual
way if

∣∣∣∆vj+ 3
2

∣∣∣ or ∣∣∣∆vj− 3
2

∣∣∣ > ε∆xr , and it may also be verified that in the limit ∆x → 0 local maxima
are non increasing and local minima are non decreasing [87]. Thus the scheme is essentially local extremum
diminishing (ELED).

The effect of the “soft limiter” is not only to improve the accuracy: the introduction of a threshold
below which extrema of small amplitude are accepted also usually results in a faster rate of convergence to
a steady state, and decreases the likelyhood of limit cycles in which the limiter interacts unfavorably with
the corrections produced by the updating scheme. In a scheme recently proposed by Venkatakrishnan a
threshold is introduced precisely for this purpose [196].

3.4.6 Upstream Limited Positive (USLIP) Schemes

By adding the anti-diffusive correction purely from the upstream side one may derive a family of upstream
limited positive (USLIP) schemes. Corresponding to the original SLIP scheme defined by equation (20), a
USLIP scheme is obtained by setting

dj+ 1
2
= αj+ 1

2

{
∆vj+ 1

2
− L

(
∆vj+ 1

2
,∆vj− 1

2

)}
if aj+ 1

2
> 0, or

dj+ 1
2
= αj+ 1

2

{
∆vj+ 1

2
− L

(
∆vj+ 1

2
,∆vj+ 3

2

)}
if aj+ 1

2
< 0. If αj+ 1

2
= 1

2

∣∣∣aj+ 1
2

∣∣∣ one recovers a standard high resolution upwind scheme in semi-discrete
form. Consider the case that aj+ 1

2
> 0 and aj− 1

2
> 0. If one sets

r+ =
∆vj+ 1

2

∆vj− 1
2

, r− =
∆vj− 3

2

∆vj− 1
2

,

the scheme reduces to
∆x

dvj

dt
= −1

2

{
φ(r+)aj+ 1

2
+
(
2− φ(r−)

)
aj− 1

2

}
∆vj− 1

2
.

To assure the correct sign to satisfy the LED criterion the flux limiter must now satisfy the additional
constraint that φ(r) ≤ 2.

The USLIP formulation is essentially equivalent to standard upwind schemes [144, 188]. Both the SLIP
and USLIP constructions can be implemented on unstructured meshes [86, 87]. The anti-diffusive terms are
then calculated by taking the scalar product of the vectors defining an edge with the gradient in the adjacent
upstream and downstream cells.

3.4.7 Systems of Conservation Laws: Flux Splitting and Flux-Difference Splitting

Steger and Warming [185] first showed how to generalize the concept of upwinding to the system of conser-
vation laws

∂w

∂t
+

∂

∂x
f(w) = 0 (24)

by the concept of flux splitting. Suppose that the flux is split as f = f+ + f− where ∂f+

∂w and ∂f−

∂w have
positive and negative eigenvalues. Then the first order upwind scheme is produced by taking the numerical
flux to be

hj+ 1
2
= f+

j + f−
j+1.
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This can be expressed in viscosity form as

hj+ 1
2

=
1
2
(
f+
j+1 + f+

j

)− 1
2
(
f+
j+1 − f+

j

)
+
1
2
(
f−
j+1 + f−

j

)
+

1
2
(
f−
j+1 − f−

j

)
=

1
2
(fj+1 + fj)− dj+ 1

2
,

where the diffusive flux is
dj+ 1

2
=

1
2
∆(f+ − f−)j+ 1

2
. (25)

Roe derived the alternative formulation of flux difference splitting [166] by distributing the corrections due
to the flux difference in each interval upwind and downwind to obtain

∆x
dwj

dt
+ (fj+1 − fj)− + (fj − fj−1)+ = 0,

where now the flux difference fj+1 − fj is split. The corresponding diffusive flux is

dj+ 1
2
=

1
2

(
∆f+

j+ 1
2
−∆f−

j+ 1
2

)
.

Following Roe’s derivation, let Aj+ 1
2
be a mean value Jacobian matrix exactly satisfying the condition

fj+1 − fj = Aj+ 1
2
(wj+1 − wj). (26)

Aj+ 1
2
may be calculated by substituting the weighted averages

u =

√
ρj+1uj+1 +

√
ρjuj√

ρj+1 +
√
ρj

,H =

√
ρj+1Hj+1 +

√
ρjHj√

ρj+1 +
√
ρj

(27)

into the standard formulas for the Jacobian matrix A = ∂f
∂w . A splitting according to characteristic fields is

now obtained by decomposing Aj+ 1
2
as

Aj+ 1
2
= TΛT−1, (28)

where the columns of T are the eigenvectors of Aj+ 1
2
, and Λ is a diagonal matrix of the eigenvalues. Now

the corresponding diffusive flux is
1
2

∣∣∣Aj+ 1
2

∣∣∣ (wj+1 − wj),

where ∣∣∣Aj+ 1
2

∣∣∣ = T |Λ|T−1

and |Λ| is the diagonal matrix containing the absolute values of the eigenvalues.

3.4.8 Alternative Splittings

Characteristic splitting has the advantages that it introduces the minimum amount of diffusion to exclude
the growth of local extrema of the characteristic variables, and that with the Roe linearization it allows
a discrete shock structure with a single interior point. To reduce the computational complexity one may
replace |A| by αI where if α is at least equal to the spectral radius max |λ(A)|, then the positivity conditions
will still be satisfied. Then the first order scheme simply has the scalar diffusive flux

dj+ 1
2
=

1
2
αj+ 1

2
∆wj+ 1

2
. (29)

The JST scheme with scalar diffusive flux captures shock waves with about 3 interior points, and it has been
widely used for transonic flow calculations because it is both robust and computationally inexpensive.
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An intermediate class of schemes can be formulated by defining the first order diffusive flux as a combi-
nation of differences of the state and flux vectors

dj+ 1
2
=

1

2
α∗

j+ 1
2
c (wj+1 − wj) +

1

2
βj+ 1

2
(fj+1 − fj) , (30)

where the factor c is included in the first term to make α∗
j+ 1

2
and βj+ 1

2
dimensionless. Schemes of this class

are fully upwind in supersonic flow if one takes α∗
j+ 1

2
= 0 and βj+ 1

2
= sign(M) when the absolute value of

the Mach number M exceeds 1. The flux vector f can be decomposed as

f = uw + fp, (31)

where

fp =


 0

p
up


 . (32)

Then
fj+1 − fj = ū (wj+1 − wj) + w̄ (uj+1 − uj) + fpj+1 − fpj , (33)

where ū and w̄ are the arithmetic averages

ū =
1
2
(uj+1 + uj) , w̄ =

1
2
(wj+1 + wj) .

Thus these schemes are closely related to schemes which introduce separate splittings of the convective and
pressure terms, such as the wave-particle scheme [160, 12], the advection upwind splitting method (AUSM)
[116, 200], and the convective upwind and split pressure (CUSP) schemes [86].

In order to examine the shock capturing properties of these various schemes, consider the general case of
a first order diffusive flux of the form

dj+ 1
2
=

1
2
αj+ 1

2
Bj+ 1

2
(wj+1 − wj) , (34)

where the matrix Bj+ 1
2
determines the properties of the scheme and the scaling factor αj+ 1

2
is included for

convenience. All the previous schemes can be obtained by representing Bj+ 1
2
as a polynomial in the matrix

Aj+ 1
2
defined by equation (26). Schemes of this class were considered by Van Leer [109]. According to the

Cayley-Hamilton theorem, a matrix satisfies its own characteristic equation. Therefore the third and higher
powers of A can be eliminated, and there is no loss of generality in limiting Bj+ 1

2
to a polynomial of degree

2,
Bj+ 1

2
= α0I + α1Aj+ 1

2
+ α2A

2
j+ 1

2
. (35)

The characteristic upwind scheme for which Bj+ 1
2
=
∣∣∣Aj+ 1

2

∣∣∣ is obtained by substituting Aj+ 1
2
= TΛT−1,

A2
j+ 1

2
= TΛ2T−1. Then α0, α1, and α2 are determined from the three equations

α0 + α1λk + α2λ
2
k = |λk| , k = 1, 2, 3.

The same representation remains valid for three dimensional flow because Aj+ 1
2
still has only three distinct

eigenvalues u, u+ c, u− c.

3.4.9 Analysis of Stationary Discrete Shocks

The ideal model of a discrete shock is illustrated in figure (4). Suppose that wL and wR are left and
right states which satisfy the jump conditions for a stationary shock, and that the corresponding fluxes are
fL = f(wL) and fR = f(wR). Since the shock is stationary fL = fR. The ideal discrete shock has constant
states wL to the left and wR to the right, and a single point with an intermediate value wA. The intermediate
value is needed to allow the discrete solution to correspond to a true solution in which the shock wave does
not coincide with an interface between two mesh cells.

Schemes corresponding to one, two or three terms in equation (35) are examined in [88]. The analysis of
these three cases shows that a discrete shock structure with a single interior point is supported by artificial
diffusion that satisfies the two conditions that
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Figure 4: Shock structure for single interior point.

1. it produces an upwind flux if the flow is determined to be supersonic through the interface

2. it satisfies a generalized eigenvalue problem for the exit from the shock of the form

(AAR − αARBAR) (wR − wA) = 0, (36)

where AAR is the linearized Jacobian matrix and BAR is the matrix defining the diffusion for the interface
AR. This follows from the equilibrium condition hRA = hRR for the cell j + 1 in figure 4. These two
conditions are satisfied by both the characteristic scheme and also the CUSP scheme, provided that the
coefficients of convective diffusion and pressure differences are correctly balanced. Scalar diffusion does not
satisfy the first condition. In the case of the CUSP scheme (30) equation (36) reduces to(

ARA +
α∗c
1 + β

)
(wR − wA) = 0

Thus wR − wA is an eigenvector of the Roe matrix ARA, and − α∗c
1+β is the corresponding eigenvalue. Since

the eigenvalues are u, u+ c, and u− c, the only choice which leads to positive diffusion when u > 0 is u− c,
yielding the relationship

α∗c = (1 + β)(c− u), 0 < u < c

This leads to a one parameter family of schemes which support the ideal shock structure. The term β(fR−fA)
contributes to the diffusion of the convective terms. Allowing for the split (31), the total effective coefficient
of convective diffusion is αc = α∗c+ βu. A CUSP scheme with low numerical diffusion is then obtained by
taking α = |M |, leading to the coefficients illustrated in figure 5

α

1-1

1 1

-1

M M-1 1

(M) (M)β

Figure 5: Diffusion Coefficients.

3.4.10 CUSP and Characteristic Schemes Admitting Constant Total Enthalpy in Steady Flow

In steady flow the stagnation enthalpy H is constant, corresponding to the fact that the energy and mass
conservation equations are consistent when the constant factor H is removed from the energy equation.
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Discrete and semi-discrete schemes do not necessarily satisfy this property. In the case of a semi-discrete
scheme expressed in viscosity form, equations (11) and (12), a solution with constant H is admitted if the
viscosity for the energy equation reduces to the viscosity for the continuity equation with ρ replaced by
ρH . When the standard characteristic decomposition (28) is used, the viscous fluxes for ρ and ρH which
result from composition of the fluxes for the characteristic variables do not have this property, and H is not
constant in the discrete solution. In practice there is an excursion of H in the discrete shock structure which
represents a local heat source. In very high speed flows the corresponding error in the temperature may lead
to a wrong prediction of associated effects such as chemical reactions.

The source of the error in the stagnation enthalpy is the discrepancy between the convective terms

u


 ρ

ρu
ρH


 ,

in the flux vector, which contain ρH , and the state vector which contains ρE. This may be remedied by
introducing a modified state vector

wh =


 ρ

ρu
ρH


 .

Then one introduces the linearization

fR − fL = Ah(whR − whL).

Here Ah may be calculated in the same way as the standard Roe linearization. Introduce the weighted
averages defined by equation (27). Then

Ah =


 0 1 0

−γ+1
γ

u2

2
γ+1
γ u γ−1

γ

−uH H u


 .

The eigenvalues of Ah are u, λ+ and λ− where

λ± =
γ + 1
2γ

u±
√
(
γ + 1
2γ

u)2 +
c2 − u2

γ
. (37)

Now both CUSP and characteristic schemes which preserve constant stagnation enthalpy in steady flow can
be constructed from the modified Jacobian matrix Ah [88]. These schemes also produce a discrete shock
structure with one interior point in steady flow. Then one arrives at four variations with this property, which
can conveniently be distinguished as the E- and H-CUSP schemes, and the E- and H-characteristic schemes.

3.4.11 High Order Godunov Schemes, and Kinetic Flux Splitting

Some of the most impressive simulations of time dependent flows with strong shock waves have been achieved
with higher order Godunov schemes [204]. In these schemes the average value in each cell is updated by
applying the integral conservation law using interface fluxes predicted from the exact or approximate solution
of a Riemann problem between adjacent cells. A higher order estimate of the solution is then reconstructed
from the cell averages, and slope limiters are applied to the reconstruction. An example is the class of
essentially non-oscillatory (ENO) schemes, which can attain a very high order of accuracy at the cost of
a substantial increase in computational complexity [37, 173, 171, 172]. Methods based on reconstruction
can also be implemented on unstructured meshes [17, 16]. Recently there has been an increasing interest
in kinetic flux splitting schemes, which use solutions of the Boltzmann equation or the BGK equation to
predict the interface fluxes [50, 41, 54, 155, 205].
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3.5 Multidimensional Schemes

The simplest approach to the treatment of multi-dimensional problems on structured meshes is to apply
the one-dimensional construction separately in each mesh direction. On triangulated meshes in two or
three dimensions the SLIP and USLIP constructions may also be implemented along the mesh edges [87].
A substantial body of current research is directed toward the implementation of truly multi-dimensional
upwind schemes in which the upwind biasing is determined by properties of the flow rather than the mesh
[70, 154, 111, 46, 174]. A thorough review is given by Pailliere and DeConinck in reference [146].

Residual distribution schemes are an attractive approach for triangulated meshes. In these the residual
defined by the space derivatives is evaluated for each cell, and then distributed to the vertices with weights
which depend on the direction of convection. For a scalar conservation law the weights can be chosen to
maintain positivity with minimum cross diffusion in the direction normal to the flow. For the Euler equations
the residual can be linearized by assuming that the parameter vector with components

√
ρ,
√
ρui, and

√
ρH

varies linearly over the cell. Then
∂fj(w)
∂xj

= Aj
∂w

∂xj

where the Jacobian matrices Aj =
∂fj

∂w are evaluated with Roe averaging of the values of w at the vertices.
Waves in the direction n can then be expressed in terms of the eigenvectors of njAj , and a positive distribution
scheme is used for waves in preferred directions. The best choice of these directions is the subject of ongoing
research, but preliminary results indicate the possibility of achieving high resolution of shocks and contact
discontinuities which are not aligned with mesh lines [146].

Hirsch and Van Ransbeeck adopt an alternative approach in which they directly construct directional
diffusive terms on structured meshes, with anti-diffusion controlled by limiters based on comparisons of
slopes in different directions [71]. They also show promising results in calculations of nozzles with multiply
reflected oblique shocks.

3.6 Discretization of the Viscous Terms

The discretization of the viscous terms of the Navier Stokes equations requires an approximation to the
velocity derivatives ∂ui

∂xj
in order to calculate the tensor σij , equation (3). Then the viscous terms may be

included in the flux balance (4). In order to evaluate the derivatives one may apply the Gauss formula to a
control volume V with the boundary S. ∫

V

∂ui

∂xj
dv =

∫
S

uinjds

where nj is the outward normal. For a tetrahedral or hexahedral cell this gives

∂ui

∂xj
=

1
vol

∑
faces

ui nj s (38)

where ui is an estimate of the average of ui over the face. If u varies linearly over a tetrahedral cell this is
exact. Alternatively, assuming a local transformation to computational coordinates ξj , one may apply the
chain rule

∂u

∂x
=
[
∂u

∂ξ

] [
∂ξ

∂x

]
=

∂u

∂ξ

[
∂x

∂ξ

]−1

(39)

Here the transformation derivatives ∂xi

∂ξj
can be evaluated by the same finite difference formulas as the velocity

derivatives ∂ui

∂ξj
In this case ∂u

∂ξ is exact if u is a linearly varying function.
For a cell-centered discretization (figure 6a) ∂u

∂ξ is needed at each face. The simplest procedure is to
evaluate ∂u

∂ξ in each cell, and to average ∂u
∂ξ between the two cells on either side of a face [97]. The resulting

discretization does not have a compact stencil, and supports undamped oscillatory modes. In a one dimen-
sional calculation, for example, ∂2u

∂x2 would be discretized as ui+2−2ui+ui−2
4∆x2 . In order to produce a compact
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stencil ∂u
∂x may be estimated from a control volume centered on each face, using formulas (38) or (39) [163].

This is computationally expensive because the number of faces is much larger than the number of cells. In
a hexahedral mesh with a large number of vertices the number of faces approaches three times the number
of cells.

This motivates the introduction of dual meshes for the evaluation of the velocity derivatives and the flux
balance as sketched in figure 6. The figure shows both cell-centered and cell-vertex schemes. The dual mesh

i j
σ

dual cell

6a: Cell-centered
scheme. σij evaluated at
vertices of the primary
mesh

σ
i j

dual cell

6b: Cell-vertex scheme.
σij evaluated at cell cen-
ters of the primary mesh

Figure 6: Viscous discretizations for cell-centered and cell-vertex algorithms.

connects cell centers of the primary mesh. If there is a kink in the primary mesh, the dual cells should be
formed by assembling contiguous fractions of the neighboring primary cells. On smooth meshes comparable
results are obtained by either of these formulations [124, 125, 117]. If the mesh has a kink the cell-vertex
scheme has the advantage that the derivatives ∂ui

∂xj
are calculated in the interior of a regular cell, with no

loss of accuracy.
A desirable property is that a linearly varying velocity distribution, as in a Couette flow, should produce

a constant stress and hence an exact stress balance. This property is not necessarily satisfied in general
by finite difference or finite volume schemes on curvilinear meshes. The characterization k-exact has been
proposed for schemes that are exact for polynomials of degree k. The cell-vertex finite volume scheme is
linearly exact if the derivatives are evaluated by equation (39), since then ∂ui

∂xj
is exactly evaluated as a

constant, leading to constant viscous stresses σij , and an exact viscous stress balance. This remains true
when there is a kink in the mesh, because the summation of constant stresses over the faces of the kinked
control volume sketched in figure 6 still yields a perfect balance. The use of equation (39) to evaluate ∂ui

∂xj
,

however, requires the additional calculation or storage of the nine metric quantities ∂ui

∂xj
in each cell, whereas

equation (38) can be evaluated from the same face areas that are used for the flux balance.
In the case of an unstructured mesh, the weak form (6) leads to a natural discretization with linear

elements, in which the piecewise linear approximation yields a constant stress in each cell. This method
yields a representation which is globally correct when averaged over the cells, as is proved by energy estimates
for elliptic problems [19]. It should be noted, however, that it yields formulas that are not necessarily locally
consistent with the differential equations, if Taylor series expansions are substituted for the solution at the
vertices appearing in the local stencil. Figure 7 illustrates the discretization of the Laplacian uxx + uyy

which is obtained with linear elements. It shows a particular triangulation such that the approximation is
locally consistent with uxx + 3uyy. Thus the use of an irregular triangulation in the boundary layer may
significantly degrade the accuracy.

Anisotropic grids are needed in order to resolve the thin boundary layers which appear in viscous flows
at high Reynolds numbers. Otherwise an excessively large number of grid cells may be required. The use of
flat tetrahedra can have an adverse effect on both the accuracy of the solution and the rate of convergence
to a steady state. This has motivated the use of hybrid prismatic-tetrahedral grids in which prismatic cells
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Figure 7: Example of discretization uxx + uyy on a triangular mesh. The discretization is locally equivalent
to the approximation uxx = ua−2ub+uc

h2 , 3uyy = 3ud−6ue+3ub

h2 .

are used in the wall regions [147]. A review of many of the key issues in the design of flow solvers for
unstructured meshes is given by Venkatakrishnan [197].

3.7 Time Stepping Schemes

If the space discretization procedure is implemented separately, it leads to a set of coupled ordinary differential
equations, which can be written in the form

dw
dt

+R(w) = 0, (40)

where w is the vector of the flow variables at the mesh points, and R(w) is the vector of the residuals,
consisting of the flux balances defined by the space discretization scheme, together with the added dissipative
terms. If the objective is simply to reach the steady state and details of the transient solution are immaterial,
the time-stepping scheme may be designed solely to maximize the rate of convergence. The first decision that
must be made is whether to use an explicit scheme, in which the space derivatives are calculated from known
values of the flow variables at the beginning of the time step, or an implicit scheme, in which the formulas for
the space derivatives include as yet unknown values of the flow variables at the end of the time step, leading
to the need to solve coupled equations for the new values. The permissible time step for an explicit scheme
is limited by the Courant-Friedrichs-Lewy (CFL) condition, which states that a difference scheme cannot be
a convergent and stable approximation unless its domain of dependence contains the domain of dependence
of the corresponding differential equation. One can anticipate that implicit schemes will yield convergence
in a smaller number of time steps, because the time step is no longer constrained by the CFL condition.
Implicit schemes will be efficient, however, only if the decrease in the number of time steps outweighs the
increase in the computational effort per time step consequent upon the need to solve coupled equations. The
prototype implicit scheme can be formulated by estimating ∂w

∂t at t+µ∆t as a linear combination of R(wn)
and R(wn+1). The resulting equation

wn+1 = wn −∆t
{
(1− µ)R (wn) + µR

(
wn+1

)}
can be linearized as (

I+ µ∆t
∂R
∂w

)
δw+∆tR (wn) = 0.

If one sets µ = 1 and lets ∆t → ∞ this reduces to the Newton iteration , which has been successfully used
in two-dimensional calculations [195, 60]. In the three-dimensional case with, say, an N × N × N mesh,
the bandwidth of the matrix that must be inverted is of order N2. Direct inversion requires a number of
operations proportional to the number of unknowns multiplied by the square of the bandwidth of the order
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of N7. This is prohibitive, and forces recourse to either an approximate factorization method or an iterative
solution method.

Alternating direction methods, which introduce factors corresponding to each coordinate, are widely used
for structured meshes [21, 156]. They cannot be implemented on unstructured tetrahedral meshes that do
not contain identifiable mesh directions, although other decompositions are possible [67, 118]. If one chooses
to adopt the iterative solution technique, the principal alternatives are variants of the Gauss-Seidel and
Jacobi methods. A symmetric Gauss-Seidel method with one iteration per time step is essentially equivalent
to an approximate lower-upper (LU) factorization of the implicit scheme [96, 139, 36, 208]. On the other
hand, the Jacobi method with a fixed number of iterations per time step reduces to a multistage explicit
scheme, belonging to the general class of Runge-Kutta schemes [38]. Schemes of this type have proved very
effective for wide variety of problems, and they have the advantage that they can be applied equally easily
on both structured and unstructured meshes [95, 79, 81, 164].

If one reduces the linear model problem corresponding to (40) to an ordinary differential equation by
substituting a Fourier mode ŵ = eipxj , the resulting Fourier symbol has an imaginary part proportional to
the wave speed, and a negative real part proportional to the diffusion. Thus the time stepping scheme should
have a stability region which contains a substantial interval of the negative real axis, as well as an interval
along the imaginary axis. To achieve this it pays to treat the convective and dissipative terms in a distinct
fashion. Thus the residual is split as

R(w) = Q(w) +D(w),

where Q(w) is the convective part and D(w) the dissipative part. Denote the time level n∆t by a superscript
n. Then the multistage time stepping scheme is formulated as

w(n+1,0) = wn

. . .

w(n+1,k) = wn − αk∆t
(
Q(k−1) +D(k−1)

)
. . .

wn+1 = w(n+1,m),

where the superscript k denotes the k-th stage, αm = 1, and

Q(0) = Q (wn) , D(0) = D (wn)
. . .

Q(k) = Q
(
w(n+1,k)

)
D(k) = βkD

(
w(n+1,k)

)
+ (1− βk)D(k−1).

The coefficients αk are chosen to maximize the stability interval along the imaginary axis, and the coefficients
βk are chosen to increase the stability interval along the negative real axis.

These schemes do not fall within the standard framework of Runge-Kutta schemes, and they have much
larger stability regions [81]. Two schemes which have been found to be particularly effective are tabulated
below. The first is a four-stage scheme with two evaluations of dissipation. Its coefficients are

α1 = 1
3 β1 = 1

α2 = 4
15 β2 = 1

2
α3 = 5

9 β3 = 0
α4 = 1 β4 = 0

. (41)

The second is a five-stage scheme with three evaluations of dissipation. Its coefficients are

α1 = 1
4 β1 = 1

α2 = 1
6 β2 = 0

α3 = 3
8 β3 = 0.56

α4 = 1
2 β4 = 0

α5 = 1 β5 = 0.44

. (42)
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3.8 Multigrid Methods

3.8.1 Acceleration of Steady Flow Calculations

Radical improvements in the rate of convergence to a steady state can be realized by the multigrid time-
stepping technique. The concept of acceleration by the introduction of multiple grids was first proposed by
Fedorenko [57]. There is by now a fairly well-developed theory of multigrid methods for elliptic equations
based on the concept that the updating scheme acts as a smoothing operator on each grid [28, 63]. This
theory does not hold for hyperbolic systems. Nevertheless, it seems that it ought to be possible to accelerate
the evolution of a hyperbolic system to a steady state by using large time steps on coarse grids so that
disturbances will be more rapidly expelled through the outer boundary. Various multigrid time-stepping
schemes designed to take advantage of this effect have been proposed [138, 78, 65, 82, 34, 9, 68]

One can devise a multigrid scheme using a sequence of independently generated coarser meshes by
eliminating alternate points in each coordinate direction. In order to give a precise description of the
multigrid scheme, subscripts may be used to indicate the grid. Several transfer operations need to be
defined. First the solution vector on grid k must be initialized as

w
(0)
k = Tk,k−1wk−1,

where wk−1 is the current value on grid k − 1, and Tk,k−1 is a transfer operator. Next it is necessary to
transfer a residual forcing function such that the solution grid k is driven by the residuals calculated on grid
k − 1. This can be accomplished by setting

Pk = Qk,k−1Rk−1 (wk−1)−Rk

[
w

(0)
k

]
,

where Qk,k−1 is another transfer operator. Then Rk(wk) is replaced by Rk(wk) + Pk in the time- stepping
scheme. Thus, the multistage scheme is reformulated as

w
(1)
k = w

(0)
k − α1∆tk

[
R

(0)
k + Pk

]
· · · · · ·

w
(q+1)
k = w

(0)
k − αq+1∆tk

[
R

(q)
k + Pk

]
.

The result w
(m)
k then provides the initial data for grid k + 1. Finally, the accumulated correction on grid

k has to be transferred back to grid k − 1 with the aid of an interpolation operator Ik−1,k. With properly
optimized coefficients multistage time-stepping schemes can be very efficient drivers of the multigrid process.
A W -cycle of the type illustrated in Figure 8 proves to be a particularly effective strategy for managing the
work split between the meshes. In a three-dimensional case the number of cells is reduced by a factor of
eight on each coarser grid. On examination of the figure, it can therefore be seen that the work measured in
units corresponding to a step on the fine grid is of the order of

1 + 2/8 + 4/64 + . . . < 4/3,

and consequently the very large effective time step of the complete cycle costs only slightly more than a
single time step in the fine grid.

This procedure has proved extremely successful for the solution of the inviscid Euler equations, but less
effective in calculations of turbulent viscous flows at high Reynolds numbers using the Reynolds averaged
Navier Stokes equations. These require highly anisotropic grids with very fine mesh intervals normal to the
wall to resolve the boundary layers. While simple multigrid methods still yield fast initial convergence, they
tend to slow down as the calculation proceeds to a low asymptotic rate. This has motivated the introduction
of semi-coarsening and directional coarsening methods [134, 135, 3, 4, 5, 150, 151].

The multigrid method can be applied on unstructured meshes by interpolating between a sequence
of separately generated meshes with progressively increasing cell sizes [94, 128, 129, 148]. It is not easy
to generate very coarse meshes for complex configurations. An alternative approach, which removes this
difficulty, is to automatically generate successively coarser meshes by agglomerating control volumes or by
collapsing edges. This approach yields comparable rates of convergence and has proved to be quite robust
[103, 104, 130, 42].
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Figure 8: Multigrid W -cycle for managing the grid calculation. E, evaluate the change in the flow for one
step; T , transfer the data without updating the solution.

3.8.2 Multigrid Implicit Schemes for Unsteady Flow

Time dependent calculations are needed for a number of important applications, such as flutter analysis,
or the analysis of the flow past a helicopter rotor, in which the stability limit of an explicit scheme forces
the use of much smaller time steps than would be needed for an accurate simulation. In this situation a
multigrid explicit scheme can be used in an inner iteration to solve the equations of a fully implicit time
stepping scheme [85].

Suppose that (40) is approximated as

Dtw
n+1 +R(wn+1) = 0.

Here Dt is a kth order accurate backward difference operator of the form

Dt =
1
∆t

k∑
q=1

1
q
(∆−)q,

where
∆−wn+1 = wn+1 − wn.

Applied to the linear differential equation
dw

dt
= αw

the schemes with k = 1, 2 are stable for all α∆t in the left half plane (A-stable). Dahlquist has shown that
A-stable linear multi-step schemes are at best second order accurate [44]. Gear however, has shown that the
schemes with k ≤ 6 are stiffly stable [59], and one of the higher order schemes may offer a better compromise
between accuracy and stability, depending on the application.

Equation (40) is now treated as a modified steady state problem to be solved by a multigrid scheme using
variable local time steps in a fictitious time t∗. For example, in the case k = 2 one solves

∂w

∂t∗
+R∗(w) = 0,
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where
R∗(w) =

3
2∆t

w +R(w)− 2
∆t

wn +
1

2∆t
wn−1,

and the last two terms are treated as fixed source terms. The first term shifts the Fourier symbol of the
equivalent model problem to the left in the complex plane. While this promotes stability, it may also require
a limit to be imposed on the magnitude of the local time step ∆t∗ relative to that of the implicit time step
∆t. This may be relieved by a point-implicit modification of the multi-stage scheme [131]. In the case of
problems with moving boundaries the equations must be modified to allow for movement and deformation
of the mesh.

This method has proved effective for the calculation of unsteady flows that might be associated with wing
flutter [6, 7] and also in the calculation of unsteady incompressible flows [22]. It has the advantage that it
can be added as an option to a computer program which uses an explicit multigrid scheme, allowing it to be
used for the efficient calculation of both steady and unsteady flows. A similar approach has been successfully
adopted for unsteady flow simulations on unstructured grids by Venkatakrishnan and Mavriplis [198].

3.9 Preconditioning

Another way to improve the rate of convergence to a steady state is to multiply the space derivatives in
equation (1) by a preconditioning matrix P which is designed to equalize the eigenvalues, so that all the
waves can be advanced with optimal time steps. A symmetric preconditioner which equalizes the eigenvalues
has been proposed by Van Leer [112]. When the equations are written in stream-aligned coordinates this
has the form

P =




τ
β2M

2 − τ
βM 0 0 0

− τ
βM

τ
β2 + 1 0 0 0

0 0 τ 0 0
0 0 0 τ 0
0 0 0 0 1




where

β = τ =
√
1−M2, if M < 1

β =
√
1−M2, τ =

√
1− 1

M2
, if M ≥ 1

Turkel has proposed an asymmetric preconditioner which has also proved effective, particularly for flow at
low Mach numbers [194]. The use of these preconditioners can lead to instability at stagnation points where
there is a zero eigenvalue which cannot be equalized with the eigenvalues ±c.

The preconditioners of Van Leer and Turkel do not take account of the effect of differences in the
mesh intervals in the different coordinate directions. The need to resolve the boundary layer generally
compels the introduction of mesh cells with very high aspect ratios near the boundary, and these can lead
to a severe reduction in the rate of convergence to a steady state. Allmaras has analyzed explicit and
implicit Jacobi-based preconditioners which include the influence of the mesh intervals [3, 4, 5]. Using
a block-Jacobi preconditioner with coarsening only in the direction normal to the wall, Pierce has recently
obtained impressive results on viscous flows with high aspect ratio grids [150, 151]. Mavriplis has successfully
combined block preconditioners with line solvers to accelerate the convergence of viscous flow solutions on
highly stretched unstructured grids [127].

An alternative approach has recently been proposed by Ta’asan [190], in which the equations are written
in a canonical form which separates the equations describing acoustic waves from those describing convection.
In terms of the velocity components u, v and the vorticity ω, temperature T , entropy s and total enthalpy
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H , the equations describing steady two-dimensional flow can be written as


D1 D2 0 0 0
− ∂

∂y
∂
∂x −1 0 0

0 0 −q − c2

γ(γ−1)D3
1
qD3

0 0 0 TρQ 0
0 0 0 0 ρQ







u
v
ω
s
H


 = 0

where

D1 =
ρ

c2

(
(c2 − u2)

∂

∂x
− uv

∂

∂y

)

D2 =
ρ

c2

(
(c2 − u2)

∂

∂y
− uv

∂

∂x

)

D3 = v
∂

∂x
− u

∂

∂y

Q = u
∂

∂x
+ v

∂

∂y

and
q2 = u2 + v2.

Here the first three equations describe an elliptic system if the flow is subsonic, while the remaining equations
are convective. Now separately optimized multigrid procedures are used to solve the two sets of equations,
which are essentially decoupled. An alternative approach to the optimal splitting of the flow equations into
convective and acoustic parts has been developed by Sidilkover [175, 165].

3.10 High Order Schemes and Mesh Refinement

The need both to improve the accuracy of computational simulations, and to assure known levels of accuracy
is the focus of ongoing research. The main routes to improving the accuracy are to increase the order of the
discrete scheme, and reduce the mesh interval. High order difference methods are most easily implemented
on Cartesian, or at least extremely smooth grids. The expansion of the stencil as the order is increased
leads to the need for complex boundary conditions. Compact schemes keep the stencil as small as possible
[159, 114, 33]. On simple domains, spectral methods are particularly effective, especially in the case of
periodic boundary conditions, and can be used to produce exponentially fast convergence of the error as the
mesh interval is decreased [141, 32]. A compromise is to divide the field into subdomains and introduce high
order elements. This approach is used in the spectral element method [102].

High order difference schemes and spectral methods have proven particularly useful in direct Navier-
Stokes simulations of transient and turbulent flows. High order methods are also beneficial in computational
aero-acoustics, where it is desired to track waves over long distances with minimum error. If the flow contains
shock waves or contact discontinuities, the ENO method may be used to construct high order non-oscillatory
schemes.

In multi-dimensional flow simulations, global reduction of the mesh interval can be prohibitively expen-
sive, motivating the use of adaptive mesh refinement procedures which reduce the local mesh width h if there
is an indication that the error is too large [25, 45, 119, 72, 157, 113, 149]. In such h-refinement methods,
simple error indicators such as local solution gradients may be used. Alternatively, the discretization error
may be estimated by comparing quantities calculated with two mesh widths, say on the current mesh and a
coarser mesh with double the mesh interval. Procedures of this kind may also be used to provide a posteriori
estimates of the error once the calculation is completed.

This kind of local adaptive control can also be applied to the local order of a finite element method to
produce a p-refinement method, where p represents the order of the polynomial basis functions. Finally,
both h- and p- refinement can be combined to produce an h-p method in which h and p are locally optimized
to yield a solution with minimum error [140]. Such methods can achieve exponentially fast convergence, and
are well established in computational solid mechanics.
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4 Current Status of Numerical Simulation

This section presents some representative numerical results which confirm the properties of the algorithms
which have been reviewed in the last section. These have been drawn from the work of the author and his
associates. They also illustrate the kind of calculation which can be performed in an industrial environment,
where rapid turn around is important to allow the quick assessment of design changes, and computational
costs must be limited.

4.1 One dimensional shock

In order to verify the discrete structure of stationary shocks, calculations were performed for a one di-
mensional problem with initial data containing left and right states compatible with the Rankine Hugoniot
conditions. An intermediate state consisting of the arithmetic average of the left and right states was in-
troduced at a single cell in the center of the domain. With this intermediate state the system is not in
equilibrium, and the time dependent equations were solved to find an equilibrium solution with a stationary
shock wave separating the left and right states. Table 1 shows the result for a shock wave at Mach 20.
This calculation used the H-CUSP scheme, which allows a solution with constant stagnation enthalpy. The
SLIP-JST construction was used with the limiter defined by equation (23), and q = 3. The table shows
the values of ρ, u, H , p, M and the entropy S = log p

ργ − log
(

pL

ργ
L

)
. A perfect one point shock structure

is displayed. The entropy is zero to 4 decimal places upstream of the shock, exhibits a slight excursion
at the interior point, and is constant to 4 decimal places downstream of the shock. It may be noted that
the mass, momentum and energy of the initial data are not compatible with the final equilibrium state.
According to conservation arguements the total mass, momentum and energy must remain constant if the
outflow flux fR remains equal to the inflow flux fL. Therefore fR must be allowed to vary according to an
appropriate outflow boundary condition to allow the total mass, momentum and energy to be adjusted to
values compatible with equilibrium.

I ρ H p M
19 1.0000 283.5000 1.0000 20.0000
20 1.0000 283.5000 1.0000 20.0000
21 1.0000 283.5000 1.0000 20.0000
22 4.1924 283.4960 307.4467 0.7229
23 5.9259 283.4960 466.4889 0.3804
24 5.9259 283.4960 466.4889 0.3804
25 5.9259 283.4960 466.4889 0.3804

Table 1: Shock Wave at Mach 20

4.2 Euler Calculations for Airfoils and Wings

The results of transonic flow calculations for two well known airfoils, the RAE 2822 and the NACA 0012,
are presented in figures (21-23). The H-CUSP scheme was again used with the SLIP-JST construction. The
limiter defined by equation (23) was used with q = 3. The 5 stage time stepping scheme (42) was augmented
by the multigrid scheme described in section 4.2 to accelerate convergence to a steady state. The equations
were discretized on meshes with O-topology extending out to a radius of about 100 chords. In each case
the calculations were performed on a sequence of successively finer meshes from 40x8 to 320x64 cells, while
the multigrid cycles on each of these meshes descended to a coarsest mesh of 10x2 cells. Figures 21-23 show
the final results on 320x64 meshes for the RAE 2822 airfoil at Mach .75 and 3◦ angle of attack, and for the
NACA 0012 airfoil at Mach .8 and 1.25◦ angle of attack, and also at Mach .85 and 1◦ angle of attack. In the
pressure distributions the pressure coefficient Cp = p−p∞

1
2ρ∞q2∞

is plotted with the negative (suction) pressures
upward, so that the upper curve represents the flow over the upper side of a lifting airfoil. The convergence
histories show the mean rate of change of the density, and also the total number of supersonic points in
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the flow field, which provides a useful measure of the global convergence of transonic flow calculations such
as these. In each case the convergence history is shown for 100 cycles, while the pressure distribution is
displayed after a sufficient number of cycles for its convergence. The pressure distribution of the RAE 2822
airfoil converged in only 25 cycles. Convergence was slower for the NACA 0012 airfoil. In the case of flow
at Mach .8 and 1.25◦ angle of attack, additional cycles were needed to damp out a wave downstream of the
weak shock wave on the lower surface.

As a further check on accuracy the drag coefficient should be zero in subsonic flow, or in shock free
transonic flow. Table 2 shows the computed drag coefficient on a sequence of three meshes for three examples.
The first two are subsonic flows over the RAE 2822 and NACA 0012 airfoils at Mach .5 and 3◦ angle of
attack. The third is the flow over the shock free Korn airfoil at its design point of Mach .75 and 0◦ angle of
attack. In all three cases the drag coefficient is calculated to be zero to four digits on a 160x32 mesh.

Mesh RAE 2822 NACA 0012 Korn Airfoil
Mach .50 Mach .50 Mach .75

α 3◦ α 3◦ α 0◦

40x8 .0062 .0047 .0098
80x16 .0013 .0008 .0017
160x32 .0000 .0000 .0000

Table 2: Drag Coefficient on a sequence of meshes

As a further test of the performance of the H-CUSP scheme, the flow past the ONERA M6 wing was
calculated on a mesh with C-H topology and 192x32x48 = 294912 cells. Figure 24 shows the result at Mach
.84 and 3.06◦ angle of attack. This again verifies the non-oscillatory character of the solution, and the sharp
resolution of shock waves. In this case 50 cycles were sufficient for convergence of the pressure distributions.

Figure 9 shows a calculation of the Northrop YF23 by R.J. Busch, Jr., who used the author’s FLO57
code to solve the Euler equations [30]. Although an inviscid model of the flow was used, it can be seen that
the simulations are in good agreement with wind tunnel measurements both at Mach .90, with angles of
attack of 0, 8 and 16 degrees, and at Mach 1.5 with angles of attack of 0, 4 and 8 degrees. At a high angle of
attack the flow separates from the leading edge, and this example shows that in situations where the point
of separation is fixed, an inviscid model may still produce a useful prediction. Thus valuable information for
the aerodynamic design could be obtained with a relatively inexpensive computational model.

The next figures show the results of calculations using the AIRPLANE code developed by T.J. Baker
and the author, to solve the Euler equations on an unstructured mesh. This provides the flexibility to
treat arbitrarily complex configurations without the need to spend months developing an acceptable mesh.
Figures 10 and 11 show calculations for supersonic transport configurations which were performed by Susan
Cliff. The agreement with experimental data is quite good, and it has also been possible to predict the
sonic boom signature [39]. Figure 12 shows an Euler calculation for the McDonnell Douglas MD11 with flow
through the engine nacelles, using 348407 mesh points of 2100466 tetrahedra. This calculation takes 4 hours
on an IBM 590 workstation. A parallel version of the code has been developed in collaboration with W.S.
Chen, and the same calculation can be performed in 16 minutes using 16 processors of an IBM SP2. The
parallel speed-up for the MD11 is shown in table 3.

4.3 Viscous Flow Calculations

The next figures show viscous simulations based on the solution of the Reynolds averaged Navier Stokes
equations with turbulence models. Figure 13 shows a two-dimensional calculation for the RAE 2822 airfoil
by L. Martinelli. The vertical axis represents the negative pressure coefficient, and there is a shock wave
half way along the upper surface. This example confirms that in the absence of significant shock induced
separation, simulations performed on a sufficiently fine mesh (512 x 64) can produce excellent agreement
with experimental data. Figure 20 shows a simulation of the McDonnell-Douglas F18 performed by R.M.
Cummings, Y.M. Rizk, L.B. Schiff and N.M. Chaderjian at NASA Ames [43]. They used a multiblock mesh
with about 900000 mesh points. While this is probably not enough for an accurate quantitative prediction,
the agreement with both the experimental data and the visualization are quite good.



4 CURRENT STATUS OF NUMERICAL SIMULATION 29

Figure 9: Comparison of Experimental and Computed Drag Rise Curve for the YF-23 (Supplied by R. J.
Bush Jr.)

No. of Nodes Seconds/Cycle Speedup
1 36.03 1.00
2 18.11 1.99
4 9.11 3.96
8 4.66 7.73
16 2.39 15.08

Table 3: AIRPLANE Parallel Performance on the SP2, MD-11 Model

Figure 14 shows an unsteady flow calculation for a pitching airfoil performed by J. J. Alonso using the
code UFLO82, which he jointly developed with L. Martinelli and the author [7]. This uses the multigrid
implicit scheme described in Section 3.7.2 which allows the number of time steps to be reduced from several
thousand to 36 per pitching cycle. The agreement with experimental data is quite good.

4.4 Ship Wave Resistance calculations

Figures 51-53 show the results of an application of the same multigrid finite volume techniques to the
calculation of the flow past a naval frigate, using a code which was developed by J. Farmer, L. Martinelli and
the author [56]. The mesh was adjusted during the course of the calculation to conform to the free surface
in order to satisfy the exact non-linear boundary condition, while artificial compressibility was used to reat
the incompressible flow equations.
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Figure 10: Comparison of Experimental and Calculated Results for a HSCT Configuration

5 Aerodynamic Shape Optimization

5.1 Optimization and Design

Traditionally the process of selecting design variations has been carried out by trial and error, relying on the
intuition and experience of the designer. With currently available equipment the turn around for numerical
simulations is becoming so rapid that it is feasible to examine an extremely large number of variations.
It is not at all likely that repeated trials in an interactive design and analysis procedure can lead to a
truly optimum design. In order to take full advantage of the possibility of examining a large design space
the numerical simulations need to be combined with automatic search and optimization procedures. This
can lead to automatic design methods which will fully realize the potential improvements in aerodynamic
efficiency.

The simplest approach to optimization is to define the geometry through a set of design parameters,
which may, for example, be the weights αi applied to a set of shape functions bi(x) so that the shape is
represented as

f(x) =
∑

αibi(x).

Then a cost function I is selected which might, for example, be the drag coefficient at a final lift coefficient,
and I is regarded as a function of the parameters αi. The sensitivities ∂I

∂αi
may now be estimated by making

a small variation δαi in each design parameter in turn and recalculating the flow to obtain the change in I.
Then

∂I

∂αi
≈ I(αi + δαi)− I(αi)

δαi
.

The gradient vector ∂I
∂α may now be used to determine a direction of improvement. The simplest procedure

is to make a step in the negative gradient direction by setting

αn+1 = αn − λ
∂I

∂α
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Figure 11: Pressure Contours and Sonic Boom on a Representative HSCT Configuration

Figure 12: Computed Pressure Field for a McDonnell Douglas MD11

so that to first order

I + δI = I − ∂IT

∂α
δα = I − λ

∂IT

∂α

∂I

∂α
.

More sophisticated search procedures may be used such as quasi-Newton methods, which attempt to estimate
the second derivative ∂2I

∂αi∂αj
of the cost function from changes in the gradient ∂I

∂α in successive optimization
steps. These methods also generally introduce line searches to find the minimum in the search direction
which is defined at each step. The main disadvantage of this approach is the need for a number of flow
calculations proportional to the number of design variables to estimate the gradient. The computational
costs can thus become prohibitive as the number of design variables is increased.

An alternative approach is to cast the design problem as a search for the shape that will generate the
desired pressure distribution. This approach recognizes that the designer usually has an idea of the the
kind of pressure distribution that will lead to the desired performance. Thus, it is useful to consider the
inverse problem of calculating the shape that will lead to a given pressure distribution. The method has the
advantage that only one flow solution is required to obtain the desired design. Unfortunately, a physically
realizable shape may not necessarily exist, unless the pressure distribution satisfies certain constraints. Thus
the problem must be very carefully formulated; otherwise it may be ill posed.

The difficulty that the target pressure may be unattainable may be circumvented by treating the inverse
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Figure 13: Two-Dimensional Turbulent Viscous Calculation (by Luigi Martinelli)

problem as a special case of the optimization problem, with a cost function which measures the error in the
solution of the inverse problem. For example, if pd is the desired surface pressure, one may take the cost
function to be an integral over the the body surface of the square of the pressure error,

I =
1
2

∫
B
(p− pd)2dB,

or possibly a more general Sobolev norm of the pressure error. This has the advantage of converting a
possibly ill posed problem into a well posed one. It has the disadvantage that it incurs the computational
costs associated with optimization procedures.

5.2 Application of Control Theory

In order to reduce the computational costs, it turns out that there are advantages in formulating both the
inverse problem and more general aerodynamic problems within the framework of the mathematical theory
for the control of systems governed by partial differential equations [115]. A wing, for example, is a device
to produce lift by controlling the flow, and its design can be regarded as a problem in the optimal control of
the flow equations by variation of the shape of the boundary. If the boundary shape is regarded as arbitrary
within some requirements of smoothness, then the full generality of shapes cannot be defined with a finite
number of parameters, and one must use the concept of the Frechet derivative of the cost with respect
to a function. Clearly, such a derivative cannot be determined directly by finite differences of the design
parameters because there are now an infinite number of these. Using techniques of control theory, however,
the gradient can be determined indirectly by solving an adjoint equation which has coefficients defined by
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Figure 14: Mach Number Contours. Pitching Airfoil Case. Re = 1.0× 106, M∞ = 0.796, Kc = 0.202.

the solution of the flow equations. The cost of solving the adjoint equation is comparable to that of solving
the flow equations. Thus the gradient can be determined with roughly the computational costs of two flow
solutions, independently of the number of design variables, which may be infinite if the boundary is regarded
as a free surface. The underlying concepts are clarified by the following abstract description of the adjoint
method. For flow about an airfoil or wing, the aerodynamic properties which define the cost function are
functions of the flow-field variables (w) and the physical location of the boundary, which may be represented
by the function F , say. Then

I = I (w,F) ,
and a change in F results in a change

δI =
[
∂IT

∂w

]
I

δw +
[
∂IT

∂F
]
II

δF (43)

in the cost function. Here, the subscripts I and II are used to distinguish the contributions due to the
variation δw in the flow solution from the change associated directly with the modification δF in the shape.
This notation assists in grouping the numerous terms that arise during the derivation of the full Navier–
Stokes adjoint operator, outlined in the next section, so that the basic structure of the approach as it is
sketched in the present section can easily be recognized.

Suppose that the governing equation R which expresses the dependence of w and F within the flowfield
domain D can be written as

R (w,F) = 0. (44)

Then δw is determined from the equation

δR =
[
∂R

∂w

]
I

δw +
[
∂R

∂F
]
II

δF = 0. (45)

Since the variation δR is zero, it can be multiplied by a Lagrange Multiplier ψ and subtracted from the
variation δI without changing the result. Thus equation (43) can be replaced by

δI =
∂IT

∂w
δw +

∂IT

∂F δF − ψT
([
∂R

∂w

]
δw +

[
∂R

∂F
]
δF
)
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Figure 15: Contours of Surface Wave Elevation for a Combatant Ship

Figure 16: Contours of Surface Wave Elevation Near the Transom Stern

=

{
∂IT

∂w
− ψT

[
∂R

∂w

]}
I

δw +

{
∂IT

∂F − ψT
[
∂R

∂F
]}

II

δF . (46)

Choosing ψ to satisfy the adjoint equation

[
∂R

∂w

]T
ψ =

∂I

∂w
(47)

the first term is eliminated, and we find that

δI = GδF , (48)

where

G =
∂IT

∂F − ψT

[
∂R

∂F
]
.
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Figure 17: Pressure Contours in the Bow Region

The advantage is that (48) is independent of δw, with the result that the gradient of I with respect to an
arbitrary number of design variables can be determined withou;the need for additional flow-field evaluations.
In the case that (44) is a partial differential equation, the adjoint equation (47) is also a partial differential
equation and determination of the appropriate boundary conditions requires careful mathematical treatment.

In reference [83] the author derived the adjoint equations for transonic flows modelled by both the
potential flow equation and the Euler equations. The theory was developed in terms of partial differential
equations, leading to an adjoint partial differential equation. In order to obtain numerical solutions both
the flow and the adjoint equations must be discretized. The control theory might be applied directly to the
discrete flow equations which result from the numerical approximation of the flow equations by finite element,
finite volume or finite difference procedures. This leads directly to a set of discrete adjoint equations with a
matrix which is the transpose of the Jacobian matrix of the full set of discrete nonlinear flow equations. On
a three-dimensional mesh with indices i, j, k the individual adjoint equations may be derived by collecting
together all the terms multiplied by the variation δwi,j,k of the discrete flow variable wi,j,k. The resulting
discrete adjoint equations represent a possible discretization of the adjoint partial differential equation. If
these equations are solved exactly they can provide an exact gradient of the inexact cost function which
results from the discretization of the flow equations. The discrete adjoint equations derived directly from the
discrete flow equations become very complicated when the flow equations are discretized with higher order
upwind biased schemes using flux limiters. On the other hand any consistent discretization of the adjoint
partial differential equation will yield the exact gradient in the limit as the mesh is refined. The trade-off
between the complexity of the adjoint discretization, the accuracy of the resulting estimate of the gradient,
and its impact on the computational cost to approach an optimum solution is a subject of ongoing research.

The true optimum shape belongs to an infinitely dimensional space of design parameters. One motivation
for developing the theory for the partial differential equations of the flow is to provide an indication in
principle of how such a solution could be approached if sufficient computational resources were available.
Another motivation is that it highlights the possibility of generating ill posed formulations of the problem.
For example, if one attempts to calculate the sensitivity of the pressure at a particular location to changes
in the boundary shape, there is the possibility that a shape modification could cause a shock wave to pass
over that location. Then the sensitivity could become unbounded. The movement of the shock, however,
is continuous as the shape changes. Therefore a quantity such as the drag coefficient, which is determined
by integrating the pressure over the surface, also depends continuously on the shape. The adjoint equation
allows the sensitivity of the drag coefficient to be determined without the explicit evaluation of pressure
sensitivities which would be ill posed.

The discrete adjoint equations, whether they are derived directly or by discretization of the adjoint
partial differential equation, are linear. Therefore they could be solved by direct numerical inversion. In
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three-dimensional problems on a mesh with, say, n intervals in each coordinate direction, the number of
unknowns is proportional to n3 and the bandwidth to n2. The complexity of direct inversion is proportional
to the number of unknowns multiplied by the square of the bandwidth, resulting in a complexity proportional
to n7. The cost of direct inversion can thus become prohibitive as the mesh is refined, and it becomes more
efficient to use iterative solution methods. Moreover, because of the similarity of the adjoint equations to
the flow equations, the same iterative methods which have been proved to be efficient for the solution of the
flow equations are efficient for the solution of the adjoint equations.

The control theory formulation for optimal aerodynamic design has proved effective in a variety of ap-
plications [84, 75, 162]. Pironneau has studied the use of control theory for optimal shape design of systems
governed by elliptic equations [153], and more recently the Navier-Stokes equations, and also wave reflection
problems [152]. The adjoint equations have also been used by Baysal and Eleshaky [20], and by Ta’asan,
Kuruvila and Salas [189], who have implemented a one shot approach in which the constraint represented by
the flow equations is only required to be satisfied by the final converged solution. In their work, computa-
tional costs are also reduced by applying multigrid techniques to the geometry modifications as well as the
solution of the flow and adjoint equations. Adjoint methods have been applied to incompressible viscous flow
problems by Cabuk and Modi [31, 73] and by Desai and Ito [49]. Recent applications of adjoint methods on
unstructured meshes include the work of Anderson and Venkatakrishnan [10], and Elliot and Peraire [53].

5.3 Three-Dimensional Design using the Compressible Euler and Navier-Stokes
Equations

In order to illustrate the application of control theory to aerodynamic design problems, this section treats
three-dimensional wing design using the compressible Euler and Navier Stokes equations to model the flow.
In comparison with incompressible viscous flow, the adjoint equations contain numerous extra terms which
arise from the variation of the energy equation. In order to simplify the calculation of the effect of shape
changes it is convenient to introduce a body-fitted coordinate system, so that the flow and adjoint equations
are solved in a fixed computational domain. Suppose that the transformation to computational coordinates
(ξ1, ξ2, ξ3) is defined by the metrics

Kij = (K) , K−1
ij =

[
∂ξi
∂xj

]
.

The Navier-Stokes equations (1-3) can then be written in the computational domain as

∂ (Jw)
∂t

+R(w) = 0 in D, (49)

where
R(w) =

∂

∂ξi
(Fi − Fvi) (50)

where the inviscid and viscous flux contributions are now defined with respect to the computational cell
faces by Fi = Sijfj and Fvi = Sijfvj , and the quantity Sij = JK−1

ij is used to represent the projection of the
ξi cell face along the xj axis. For convenience, the coordinates ξi describing the fixed computational domain
are chosen so that each boundary conforms to a constant value of one of these coordinates. Variations in
the shape then result in corresponding variations in the mapping derivatives defined by Kij .

Suppose that the performance is measured by a cost function

I =
∫
B
M (w, S) dBξ +

∫
D
P (w, S) dDξ,

containing both boundary and field contributions where dBξ and dDξ are the surface and volume elements in
the computational domain. In general, M and P will depend on both the flow variables w and the metrics
S defining the computational space. The design problem is now treated as a control problem where the
boundary shape represents the control function, which is chosen to minimize I subject to the constraints
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defined by the flow equations (49). A shape change produces a variation in the flow solution δw and the
metrics δS which in turn produce a variation in the cost function

δI =
∫
B
δM(w, S) dBξ +

∫
D
δP(w, S) dDξ. (51)

This can be split as
δI = δII + δIII , (52)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII , (53)

where we continue to use the subscripts I and II to distinguish between the contributions associated with
the variation of the flow solution δw and those associated with the metric variations δS. Thus [Mw]I and
[Pw]I represent ∂M

∂w and ∂P
∂w with the metrics fixed, while δMII and δPII represent the contribution of the

metric variations δS to δM and δP .
In the steady state, the constraint equation (53) specifies the variation of the state vector δw by

δR =
∂

∂ξi
δ (Fi − Fvi) = 0. (54)

Here, also, δR, δFi and δFvi can be split into contributions associated with δw and δS using the notation

δR = δRI + δRII

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII . (55)

The inviscid contributions are easily evaluated as

[Fiw]I = Sij
∂fi
∂w

, δFviII = δSijfj.

The details of the viscous contributions are complicated by the additional level of derivatives in the stress
and heat flux terms.

Multiplying by a co-state vector ψ, which will play an analogous role to the Lagrangemultiplier introduced
in equation (46), and integrating over the domain produces∫

D
ψT ∂

∂ξi
δ (Fi − Fvi) dDξ = 0. (56)

Assuming that ψ is differentiable the terms with subscript I may be integrated by parts to give∫
B
niψ

T δ (Fi − Fvi)I dBξ −
∫
D

∂ψT

∂ξi
δ (Fi − Fvi)I dDξ +

∫
D
ψT δRIIdDξ = 0. (57)

This equation results directly from taking the variation of the weak form of the flow equations, where ψ is
taken to be an arbitrary differentiable test function. Since the left hand expression equals zero, it may be
subtracted from the variation in the cost function (51) to give

δI = δIII −
∫
D
ψT δRIIdDξ −

∫
B

[
δMI − niψ

T δ (Fi − Fvi)I
]
dBξ

+
∫
D

[
δPI +

∂ψT

∂ξi
δ (Fi − Fvi)I

]
dDξ. (58)

Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI no longer
depends explicitly on the variation of the state vector δw. The gradient of the cost function can then be
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evaluated directly from the metric variations without having to recompute the variation δw resulting from
the perturbation of each design variable.

Comparing equations (53) and (55), the variation δw may be eliminated from (58) by equating all field
terms with subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I + [Pw]I = 0 in D. (59)

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary terms
in equation (58) to produce

niψ
T [Fiw − Fviw]I = [Mw]I on B. (60)

The remaining terms from equation (58) then yield a simplified expression for the variation of the cost
function which defines the gradient

δI = δIII +
∫
D
ψT δRIIdDξ, (61)

which consists purely of the terms containing variations in the metrics with the flow solution fixed. Hence
an explicit formula for the gradient can be derived once the relationship between mesh perturbations and
shape variations is defined.

The details of the derivation of the adjoint equation are quite complicated, and have been presented
in [83, 93, 90]. Taking the transpose of equation (59), the inviscid adjoint equation may be written as

CT
i

∂ψ

∂ξi
= 0 in D, (62)

where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij
∂fj
∂w

.

The derivation of the viscous adjoint terms is simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p)T ,

because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat fluxes can be expressed

as

κ
∂

∂xi

(
p

ρ

)
.

Here
κ =

k

R
=

γ

γ − 1
µ

Pr

where k is the conductivity, R is the gas constant, and Pr is the Prandtl number. The relationship between
the conservative and primitive variations are defined by the expressions

δw = Mδw̃, δw̃ = M−1δw,

which make use of the transformation matrices M = ∂w
∂w̃ and M−1 = ∂w̃

∂w . The conservative and primitive
adjoint operators L and L̃ corresponding to the variations δw and δw̃ are then related by∫

D
δwTLψ dDξ =

∫
D
δw̃T L̃ψ dDξ,

with
L̃ = MTL,
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where

MT =




1 u1 u2 u3
uiui

2
0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1
γ−1




The derivation of the viscous adjoint operator is provided in [93] with the simplification that variations
in the transport coefficients are ignored. It is convenient to introduce the notation

ψi+1 = φi, i = 1, 2, 3, ψ5 = θ.

in order to allow the use of the summation convention for repeated indices over the range 1 to 3. Then,
collecting together the contributions from the momentum and energy equations, the viscous adjoint operator
in primitive variables can finally be expressed as

(L̃ψ)1 = − p

(γ − 1)ρ2

∂

∂ξl

(
Sljk

∂θ

∂xj

)

(L̃ψ)i+1 =
∂

∂ξl

{
Slj

[
µ

(
∂φi

∂xj
+

∂φj

∂xi

)
+ λδij

∂φk

∂xk

]}

+
∂

∂ξl

{
Slj

[
µ

(
ui

∂θ

∂xj
+ uj

∂θ

∂xi

)
+ λδijuk

∂θ

∂xk

]}

− σijSlj
∂θ

∂xl
for i = 1, 2, 3

(L̃ψ)5 =
ρ

(γ − 1)
∂

∂ξl

(
Sljk

∂θ

∂xj

)
.

The conservative viscous adjoint operator may then be obtained by the transformation

L = M−1T L̃.

The final formula for the gradient depends on the way in which the boundary shape is parameterized as
a function of the design variables, and the way in which the mesh is deformed as the boundary is modified.
Using the relationship between the mesh deformation and the surface modification, the field integral is
reduced to a surface integral by integrating along the coordinate lines emanating from the surface. Thus the
expression (26) for δI is finally reduced to the form of equation (48)

δI =
∫
B
GδF dBξ

where F represents the design variables, and G is the gradient, which is a function defined over the boundary
surface.

The boundary conditions satisfied by the flow equations restrict the form of the left hand side of the
adjoint boundary condition (60). Consequently, the boundary contribution to the cost function M cannot
be specified arbitrarily. Instead, it must be chosen from the class of functions which allow cancellation of
all terms containing δw in the boundary integral of equation (58). On the other hand, there is no such
restriction on the specification of the field contribution to the cost function P , since these terms may always
be absorbed into the adjoint field equation (59) as source terms.

The costate solution ψ is a legitimate test function for the weak form of the flow equations only if it is
differentiable. In order to avoid discontinuities in the adjoint boundary condition which would be caused by
the appearance of shock waves, the cost function for the target pressure pd may be modified to the form

I =
1
2

∫ ∫ (
λ1Z + λ2

(
∂Z
∂ξ

)2
)

dξdη

λ1Z − ∂

∂ξ
λ2

∂Z
∂ξ

= p− pd.
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Then

δI =
∫ ∫ (

λ1ZδZ + λ2
∂Z
∂ξ

∂

∂ξ
δZ
)

dξdη

=
∫ ∫

Z
(
λ1 − ∂

∂ξ
λ2

∂

∂ξ

)
δZ dξdη

=
∫ ∫

Zδp dξdη

and the smooth quantity Z replaces p − pd in the adjoint boundary condition. Smoothness should also be
preserved in the redesigned shape. It is therefore crucially important to limit the shape modifications to
smooth changes either by restricting the shape changes to combinations of smooth functions or by directly
smoothing the changes.

5.4 Optimization Procedures

Two main search procedures have been used in our applications to date. The first is a simple descent method
in which small steps are taken in the negative gradient direction. Let F represent the design variable, and
G the gradient. Then the iteration

δF = −λG
can be regarded as simulating the time dependent process

dF
dt

= −G

where λ is the time step ∆t. Let A be the Hessian matrix with elements

Aij =
∂Gi

∂Fj
=

∂2I

∂Fi∂Fj
.

Suppose that a locally minimum value of the cost function I∗ = I(F∗) is attained when F = F∗. Then the
gradient G∗ = G(F∗) must be zero, while the Hessian matrix A∗ = A(F∗) must be positive definite. Since
G∗ is zero, the cost function can be expanded as a Taylor series in the neighborhood of F∗ with the form

I(F) = I∗ +
1
2
(F − F∗)A (F − F∗) + . . .

Correspondingly,
G(F) = A (F − F∗) + . . .

As F approaches F∗, the leading terms become dominant. Then, setting F̂ = (F −F∗), the search process
approximates

dF̂
dt

= −A∗F̂ .

Also, since A∗ is positive definite it can be expanded as

A∗ = RMRT ,

where M is a diagonal matrix containing the eigenvalues of A∗, and

RRT = RTR = I.

Setting
v = RT F̂ ,

the search process can be represented as
dv

dt
= −Mv.
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The stability region for the simple forward Euler stepping scheme is a unit circle centered at −1 on the
negative real axis. Thus for stability we must choose

µmax∆t = µmaxλ < 2,

while the asymptotic decay rate, given by the smallest eigenvalue, is proportional to

e−µmint.

In order to make sure that each new shape in the optimization sequence remains smooth, it proves
essential to smooth the gradient and to replace G by its smoothed value Ḡ in the descent process. This also
acts as a preconditioner which allows the use of much larger steps. To apply smoothing in the ξ1 direction,
for example, the smoothed gradient Ḡ ma be calculated from a discrete approximation to

Ḡ − ∂

∂ξ1
ε

∂

∂ξ1
Ḡ = G

where ε is the smoothing parameter. If one sets δF = −λḠ, then, assuming the modification is applied on
the surface ξ2 = constant, the first order change in the cost function is

δI = −
∫ ∫

GδF dξ1dξ3

= −λ

∫ ∫ (
Ḡ − ∂

∂ξ1
ε
∂Ḡ
∂ξ1

)
Ḡ dξ1dξ3

= −λ

∫ ∫ (
Ḡ2 + ε

(
∂Ḡ
∂ξ1

)2
)

dξ1dξ3

< 0,

assuring an improvement if λ is sufficiently small and positive, unless the process has already reached a
stationary point at which G = 0.

It turns out that this approach is tolerant to the use of approximate values of the gradient, so that
neither the flow solution nor the adjoint solution need be fully converged before making a shape change.
This results in very large savings in the computational cost. For inviscid optimization it is necessary to use
only 15 multigrid cycles for the flow solution and the adjoint solution in each design iteration. For viscous
optimization, about 100 multigrid cycles are needed. This is partly because convergence of the lift coefficient
is much slower, so about 20 iterations must be made before each adjustment of the angle of attack to force
the target lift coefficient.

Our second main search procedure incorporates a quasi-Newton method for general constrained opti-
mization. In this class of methods the step is defined as

δF = −λPG,
where P is a preconditioner for the search. An ideal choice is P = A∗−1, so that the corresponding time
dependent process reduces to

dF̂
dt

= −F̂ ,

for which all the eigenvalues are equal to unity, and F̂ is reduced to zero in one time step by the choice
∆t = 1 if the Hessian, A, is constant. The full Newton method takes P = A−1, requiring the evaluation
of the Hessian matrix, A, at each step. It corresponds to the use of the Newton-Raphson method to solve
the non-linear equation G = 0. Quasi-Newton methods estimate A∗ from the change in the gradient during
the search process. This requires accurate estimates of the gradient at each time step. In order to obtain
these, both the flow solution and the adjoint equation must be fully converged. Most quasi-Newton methods
also require a line search in each search direction, for which the flow equations and cost function must
be accurately evaluated several times. Since the Hessian can only be completely estimated after as many
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steps as there are design variables, it pays to reduce the number of design variables with this approach by
representing the geometry as a superposition of appropriately chosen shape functions. The Hicks-Henne
bump functions [162] have proved effective in many applications. Because those functions are smooth they
also serve the purpose of preserving the smoothness of the shape modifications, which is essential for any
acceptable design.

In the applications to complex configurations presented below the optimization was carried out using
the existing, well validated software NPSOL. This software, which implements a quasi-Newton method for
optimization with both linear and non-linear constraints, has proved very reliable but is generally more
expensive than the simple search method with smoothing.

5.5 Industrial Experience and Results of Optimization

The methods described in this paper have been quite thoroughly tested in industrial applications in which
they were used as a tool for aerodynamic design. They have proved useful both in inverse mode to find
shapes that would produce desired pressure distributions, and for direct minimization of the drag. They
have been applied both to well understood configurations that have gradually evolved through incremental
improvements guided by wind tunnel tests and computational simulation, and to new concepts for which
there is a limited knowledge base. In either case they have enabled engineers to produce improved designs.

Substantial improvements are usually obtained with 20 − 200 design cycles, depending on the difficulty
of the case. One concern is the possibility of getting trapped in a local minimum. In practice this has
not proved to be a source of difficulty. In inverse mode, it often proves possible to come very close to
realizing the target pressure distribution, thus effectively demonstrating convergence. In drag minimization,
the result of the optimization is usually a shock-free wing. If one considers drag minimization of airfoils in
two-dimensional inviscid transonic flow, it can be seen that every shock-free airfoil produces zero drag, and
thus optimization based solely on drag has a highly non-unique solution. Different shock-free airfoils can be
obtained by starting from different initial profiles. One may also influence the character of the final design
by blending a target pressure distribution with the drag in the definition of the cost function.

Similar considerations apply to three-dimensional wing design in viscous transonic flow. Since the vortex
drag can be reduced simply by reducing the lift, the lift coefficient must be fixed for a meaningful drag
minimization. A typical wing of a transport aircraft is designed for a lift coefficient in the range of 0.4 to 0.6.
The total wing drag may be broken down into vortex drag, drag due to viscous effects, and shock drag. The
vortex drag coefficient is typically in the range of 0.0100 (100 counts), while the friction drag coefficient is in
the range of 45 counts, and the shock drag at a Mach number just before the onset of severe drag rise is of
the order of 15 counts. With a fixed span, typically dictated by structural limits or a constraint imposed by
airport gates, the vortex drag is entirely a function of span loading, and is minimized by an elliptic loading
unless winglets are added. Transport aircraft usually have highly tapered wings with very large root chords
to accommodate retraction of the undercarriage. An elliptic loading may lead to excessively large section
lift coefficients on the outboard wing, leading to premature shock stall or buffet when the load is increased.
The structure weight is also reduced by a more inboard loading which reduces the root bending moment.
Thus the choice of span loading is influenced by other considerations. The skin friction of transport aircraft
is typically very close to flat plate skin friction in turbulent flow, and is very insensitive to section variations.
An exception to this is the case of smaller executive jet aircraft, for which the Reynolds number may be small
enough to allow a significant run of laminar flow if the suction peak of the pressure distribution is moved
back on the section. This leaves the shock drag as the primary target for wing section optimization. This
is reduced to zero if the wing is shock-free, leaving no room for further improvement. Thus the attainment
of a shock-free flow is a demonstration of a successful drag minimization. In practice range is maximized
by maximizing M L

D , and this is likely to be increased by increasing the lift coefficient to the point where
a weak shock appears. One may also use optimization to find the maximum Mach number at which the
shock drag can be eliminated or significantly reduced for a wing with a given sweepback angle and thickness.
Alternatively one may try to find the largest wing thickness or the minimum sweepback angle for which
the shock drag can be eliminated at a given Mach number. This can yield both savings in structure weight
and increased fuel volume . If there is no fixed limit for the wing span, such as a gate constraint, increased
thickness can be used to allow an increase in aspect ratio for a wing of equal weight, in turn leading to a
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reduction in vortex drag. Since the vortex drag is usually the largest component of the total wing drag, this
is probably the most effective design strategy, and it may pay to increase the wing thickness to the point
where the optimized section produces a weak shock wave rather than a shock-free flow [89].

The first major industrial application of an adjoint based aerodynamic optimization method was the
wing design of the Beech Premier [58] in 1995. The method was successfully used in inverse mode as a tool
to obtain pressure distributions favorable to the maintenance of natural laminar flow over a range of cruise
Mach numbers. Wing contours were obtained which yielded the desired pressure distribution in the presence
of closely coupled engine nacelles on the fuselage above the wing trailing edge.

During 1996 some preliminary studies indicated that the wings of both the McDonnell Douglas MD-11
and the Boeing 747-200 could be made shock-free in a representative cruise condition by using very small
shape modifications, with consequent drag savings which could amount to several percent of the total drag.
This led to a decision to evaluate adjoint-based design methods in the design of the McDonnell Douglas
MDXX during the summer and fall of 1996. In initial studies wing redesigns were carried out for inviscid
transonic flow modelled by the Euler equations. A redesign to minimize the drag at a specified lift and Mach
number required about 40 design cycles, which could be completed overnight on a workstation.

Three main lessons were drawn from these initial studies: (i) the fuselage effect is to large to be ignored
and must be included in the optimization, (ii) single-point designs could be too sensitive to small variations
in the flight condition, typically producing a shock-free flow at the design point with a tendency to break up
into a severe double shock pattern below the design point, and (iii) the shape changes necessary to optimize
a wing in transonic flow are smaller than the boundary layer displacement thickness, with the consequence
that viscous effects must be included in the final design.

In order to meet the first two of these considerations, the second phase of the study was concentrated on
the optimization of wing-body combinations with multiple design points. These were still performed with
inviscid flow to reduce computational cost and allow for fast turnaround. It was found that comparatively
insensitive designs could be obtained by minimizing the drag at a fixed Mach number for three fairly closely
spaced lift coefficients such as 0.5, 0.525, and 0.55, or alternatively three nearby Mach numbers with a fixed
lift coefficient.

The third phase of the project was focused on the design with viscous effects using as a starting point
wings which resulted from multipoint inviscid optimization. While the full viscous adjoint method was still
under development, it was found that useful improvements could be realized, particularly in inverse mode,
using the inviscid result to provide the target pressure, by coupling an inviscid adjoint solver to a viscous
flow solver. Computer costs are many times larger, both because finer meshes are needed to resolve the
boundary layer, and because more iterations are needed in the flow and adjoint solutions. In order to force
the specified lift coefficient the number of iterations in each flow solution had to be increased from 15 to
100. To achieve overnight turnaround a fully parallel implementation of the software had to be developed.
Finally it was found that in order to produce sufficiently accurate results, the number of mesh points had to
be increased to about 1.8 million. In the final phase of this project it was planned to carry out a propulsion
integration study using the multiblock versions of the software. This study was not completed due to the
cancellation of the entire MDXX project.

During the summer of 1997, adjoint methods were again used to assist the McDonnell Douglas Blended
Wing-Body project. By this time the viscous adjoint method was well developed, and it was found that it
was needed to achieve truly smooth shock-free solutions. With an inviscid adjoint solver coupled to a viscous
flow solver some improvements could be made, but the shocks could not be entirely eliminated.

The next subsection shows a wing design using the full viscous adjoint method in its current form,
implemented in the computer program SYN107. The remaining subsections present results of optimizations
for complete configurations in inviscid transonic and supersonic flow using the multiblock parallel design
program, SYN107-MB.

5.5.1 Transonic Viscous Wing-Body Design

A typical result of drag minimization in transonic viscous flow is presented below. This calculation is a
redesign of a wing using the viscous adjoint optimization method with a Baldwin-Lomax turbulence model.
The initial wing is similar to one produced during the MDXX design studies. Figures 25-27 show the result
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of the wing-body redesign on a C-H mesh with 288× 96 × 64 cells. The wing has sweep back of about 38
degrees at the 1/4 chord. A total of 44 iterations of the viscous optimization procedure resulted in a shock-
free wing at a cruise design point of Mach 0.86, with a lift coefficient of 0.61 for the wing-body combination
at a Reynolds number of 101 million based on the root chord. Using 48 processors of an SGI Origin2000
parallel computer, each design iteration takes about 22 minutes so that overnight turnaround for such a
calculation is possible. Figure 25 compares the pressure distribution of the final design with that of the
initial wing. The final wing is quite thick, with a thickness to chord ratio of about 14 percent at the root
and 9 percent at the tip. The optimization was performed with a constraint that the section modifications
were not allowed to decrease the thickness anywhere. The design offers excellent performance at the nominal
cruise point. A drag reduction of 2.2 counts was achieved from the initial wing which had itself been derived
by inviscid optimization. Figures 26 and 27 show the results of a Mach number sweep to determine the drag
rise. The drag coefficients shown in the figures represent the total wing drag including shock, vortex, and
skin friction contributions. It can be seen that a double shock pattern forms below the design point, while
there is actually a slight increase in the drag coefficient at Mach 0.85. The tendency to produce double
shocks below the design point is typical of supercritical wings. This wing has a low drag coefficient, however,
over a wide range of conditions. Above the design point a single shock forms and strengthens as the Mach
number increases, a behavior typical in transonic flow.

5.5.2 Transonic Multipoint Constrained Aircraft Design

As a first example of the automatic design capability for complex configurations, a typical business jet
configuration is chosen for a multipoint drag minimization run. The objective of the design is to alter the
geometry of the wing in order to minimize the configuration inviscid drag at three different flight conditions
simultaneously. Realistic geometric spar thickness constraints are enforced. The geometry chosen for this
analysis is a full configuration business jet composed of wing, fuselage, pylon, nacelle, and empennage. The
inviscid multiblock mesh around this configuration follows a general C-O topology with special blocking
to capture the geometric details of the nacelles, pylons and empennage. A total of 240 point-to-point
matched blocks with 4, 157, 440 cells (including halos) are used to grid the complete configuration. This
mesh allows the use of 4 multigrid levels obtained through recursive coarsening of the initial fine mesh. The
upstream, downstream, upper and lower far field boundaries are located at an approximate distance of 15
wing semispans, while the far field boundary beyond the wing tip is located at a distance approximately
equal to 5 semispans. An engineering-accuracy solution (with a decrease of 4 orders of magnitude in the
average density residual) can be obtained in 100 multigrid cycles. This kind of solution can be routinely
accomplished in under 20 minutes of wall clock time using 32 processors of an SGI Origin2000 computer.

The initial configuration was designed for Mach = 0.8 and CL = 0.3. The three operating points chosen
for this design are Mach = 0.81 with CL = 0.35, Mach = 0.82 with CL = 0.30, and Mach = 0.83 with CL

= 0.25. For each of the design points, both Mach number and lift coefficient are held fixed. In order to
demonstrate the advantage of a multipoint design approach, the final solution at the middle design point will
be compared with a single point design at the same conditions. As the geometry of the wing is modified, the
design algorithm computes new wing-fuselage intersections. The wing component is made up of six airfoil
defining sections. Eighteen Hicks-Henne design variables are applied to five of these sections for a total of 90
design variables. The sixth section at the symmetry plane is not modified. Spar thickness constraints were
also enforced on each defining station at the x/c = 0.2 and x/c = 0.8 locations. Maximum thickness was
forced to be preserved at x/c = 0.4 for all six defining sections. To ensure an adequate included angle at
the trailing edge, each section was also constrained to preserve thickness at x/c = 0.95. Finally, to preserve
leading edge bluntness, the upper surface of each section was forced to maintain its height above the camber
line at x/c = 0.02. Combined, a total of 30 linear geometric constraints were imposed on the configuration.

Significant improvements were obtained with 5 design iterations using NPSOL. Table 4 summarizes the
drag reductions that were obtained with a single point design optimized at Mach 0.82, and a three-point
design simultaneously optimized at Mach 0.81, Mach 0.82, and Mach 0.83. The CD values have been
normalized by the drag of the original configuration at Mach 0.82. Interestingly, the upper surface shapes
for both final designs are very similar. However, in the case of the single point design, a strong lower surface
shock appears at the Mach = 0.83, CL = 0.25 design point. The three-point design is able to suppress the



5 AERODYNAMIC SHAPE OPTIMIZATION 45

formation of this lower surface shock and achieves a 9 count drag benefit over the single point design at this
condition. However, it has a 1 count penalty at the single point design condition. The three-point design
features a weak single shock for one of the three design points and a very weak double shock at another
design point. Figure 29 shows the surface of the configuration colored by the local coefficient of pressure,

Design Conditions Initial Single Point Design Three Point Design
Mach CL Relative CD Relative CD Relative CD

0.81 0.35 1.00257 0.85003 0.85413
0.82 0.30 1.00000 0.77350 0.77915
0.83 0.25 1.08731 0.81407 0.76836

Table 4: Drag Reduction for Single and Multipoint Designs.

Cp, before and after redesign for the middle design point. One can clearly observe that the strength of the
shock wave on the upper surface of the configuration has been considerably reduced.

5.5.3 Supersonic Constrained Aircraft Design

For supersonic design, provided that turbulent flow is assumed over the entire configuration, the inviscid Euler
equations suffice for aerodynamic design since the pressure drag is not greatly affected by the inclusion of
viscous effects. Moreover, flat plate skin friction estimates of viscous drag are often very good approximations.
In this study, the generic supersonic transport configuration used in reference [161] is revisited.

The baseline supersonic transport configuration was sized to accommodate 300 passengers with a gross
take-off weight of 750, 000 lbs. The supersonic cruise point is Mach 2.2 with a CL of 0.105. Figure 30 shows
that the planform is a cranked-delta configuration with a break in the leading edge sweep. The inboard
leading edge sweep is 68.5 degrees while the outboard is 49.5 degrees. Since the Mach angle at M = 2.2
is 63 degrees it is clear that some leading edge bluntness may be used inboard without a significant wave
drag penalty. Blunt leading edge airfoils were created with thickness ranging from 4% at the root to 2.5% at
the leading edge break point. These symmetric airfoils were chosen to accommodate thick spars at roughly
the 5% and 80% chord locations over the span up to the leading edge break. Outboard of the leading edge
break where the wing sweep is ahead of the Mach cone, a sharp leading edge was used to avoid unnecessary
wave drag. The airfoils were chosen to be symmetric, biconvex shapes modified to have a region of constant
thickness over the mid-chord. The four-engine configuration features axisymmetric nacelles tucked close to
the wing lower surface. This layout favors reduced wave drag by minimizing the exposed boundary layer
diverter area. However, in practice it may be problematic because of the channel flows occurring in the
juncture region of the diverter, wing, and nacelle at the wing trailing edge.

The computational mesh on which the design is run has 180 blocks and 1, 500, 000 mesh cells (including
halos), while the underlying geometry entities define the wing with 16 sectional cuts and the body with 200
sectional cuts. In this case, where we hope to optimize the shape of the wing, care must be taken to ensure
that the nacelles remain properly attached with diverter heights being maintained.

The objective of the design is to reduce the total drag of the configuration at a single design point (Mach
= 2.2, CL = 0.105) by modifying the wing shape. Just as in the transonic case, 18 design variables of the
Hicks-Henne type are chosen for each wing defining section. Similarly, instead of applying them to all 16
sections, they are applied to 8 of the sections and then lofted linearly to the neighboring sections. Spar
thickness constraints are imposed for all wing defining sections at x/c = 0.05 and x/c = 0.8. An additional
maximum thickness constraint is specified along the span at x/c = 0.5. A final thickness constraint is
enforced at x/c = 0.95 to ensure a reasonable trailing edge included angle. An iso-Cp representation of the
initial and final designs is depicted in Figure 30 for both the upper and lower surfaces.

It is noted that the strong oblique shock evident near the leading edge of the upper surface on the initial
configuration is largely eliminated in the final design after 5 NPSOL design iterations. Also, it is seen that
the upper surface pressure distribution in the vicinity of the nacelles has formed an unexpected pattern.
However, recalling that thickness constraints abound in this design, these upper surface pressure patterns
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are assumed to be the result of sculpting of the lower surface near the nacelles which affects the upper surface
shape via the thickness constraints. For the lower surface, the leading edge has developed a suction region
while the shocks and expansions around the nacelles have been somewhat reduced. Figure 31 shows the
pressure coefficients and (scaled) airfoil sections for four sectional cuts along the wing. These cuts further
demonstrate the removal of the oblique shock on the upper surface and the addition of a suction region
on the leading edge of the lower surface. The airfoil sections have been scaled by a factor of 2 so that
shape changes may be seen more easily. Most notably, the section at 38.7% span has had the lower surface
drastically modified such that a large region of the aft airfoil has a forward-facing portion near where the
pressure spike from the nacelle shock impinges on the surface. The final overall pressure drag was reduced
by 8%, from CD = 0.0088 to CD = 0.0081.

6 Outlook and Conclusions

Better algorithms and better computer hardware have contributed about equally to the progress of compu-
tational science in the last two decades. In 1970 the Control Data 6600 represented the state of the art in
computer hardware with a speed of about 106 operations per second (one megaflop), while in 1990 the 8 pro-
cessor Cray YMP offered a performance of about 109 operations per second (one gigaflop). Correspondingly,
steady-state Euler calculations which required 5,000–10,000 steps prior to 1980 could be performed in 10–50
steps in 1990 using multigrid acceleration. With the advent of massively parallel computers it appears that
the progress of computer hardware may even accelerate. Teraflop machines offering further improvement by
a factor of 1,000 are likely to be available within a few years. Parallel architectures will force a reappraisal
of existing algorithms, and their effective utilization will require the extensive development of new parallel
software.

In parallel with the transition to more sophisticated algorithms, the present challenge is to extend the
effective use of CFD to more complex applications. A key problem is the treatment of multiple space and
time scales. These arise not only in turbulent flows, but also in many other situations such as chemically
reacting flows, combustion, flame fronts and plasma dynamics. Another challenge is presented by problems
with moving boundaries. Examples include helicopter rotors, and rotor-stator interaction in turbomachinery.
It can be anticipated that interdisciplinary applications in which CFD is coupled with the computational
analysis of other properties of the design will play an increasingly important role. These applications may
include structural, thermal and electromagnetic analysis. Aeroelastic problems and integrated control system
and aerodynamic design are likely target areas. The development of improved algorithms continues to
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Figure 18: Concept for a numerical wind tunnel.

be important in providing the basic building blocks for numerical simulation. In particular, better error
estimation procedures must be developed and incorporated in the simulation software to provide error
control. The basic simulation software is only one of the needed ingredients, however. The flow solver
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must be embedded in a user-friendly system for geometry modeling, output analysis, and data management
that will provide a complete numerical design environment. These are the ingredients which are needed for
the full realization of the concept of a numerical wind tunnel. Figures 18 and 19 illustrate the way in which
a numerical wind tunnel might evolve from current techniques, which involve massive data handling tasks,
to a fully integrated design environment.

As more powerful computational resources become available, computational simulation is in the process
of becoming the principal tool of the aerodynamic design process because of the flexibility it provides for
the rapid and comparatively inexpensive evaluation of alternative designs, and because it can be integrat-
ed in a numerical design environment providing for both multi-disciplinary analysis and multi-disciplinary
optimization.
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Figure 20: Navier-Stokes Predictions for the F-18 Wing-Fuselage at Large Incidence
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21a: Cp after 25 Cycles.
Cl = 1.1312, Cd = 0.0469.
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21b: Convergence.

Figure 21: RAE-2822 Airfoil at Mach 0.750 and α = 3.0◦H-CUSP Scheme.
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22a: Cp after 35 Cycles.
Cl = 0.3654, Cd = 0.0232.
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22b: Convergence.

Figure 22: NACA-0012 Airfoil at Mach 0.800 and α = 1.25◦H-CUSP Scheme.
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23a: Cp after 35 Cycles.
Cl = 0.3861, Cd = 0.0582.
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23b: Convergence.

Figure 23: NACA-0012 Airfoil at Mach 0.850 and α = 1.0◦H-CUSP Scheme.
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24a: 12.50% Span.
Cl = 0.2933, Cd = 0.0274.
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24b: 31.25% Span.
Cl = 0.3139, Cd = 0.0159.
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24c: 50.00% Span.
Cl = 0.3262, Cd = 0.0089.
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24d: 68.75% Span.
Cl = 0.3195, Cd = 0.0026.

Figure 24: Onera M6 Wing. Mach 0.840, Angle of Attack 3.06◦, 192×32×48 Mesh. CL = 0.3041, CD =
0.0131. H-CUSP scheme.
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Figure 25: Pressure distribution of the MPX5X at its design point.
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Figure 26: Optimization Sequence in the design of the MPX5X.
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Figure 27: Off design performance of the MPX5X below the design point.
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Figure 28: Off design performance of the MPX5X above the design point.



Figure 29: Geometry Surface Colored by local Cp Before and After Redesign.



Figure 30: Supersonic Transport Configuration. Iso-Cp Contours on Upper and Lower Surfaces. Baseline
and Optimized Designs. M = 2.2, CL = 0.105.
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31b: span station z = 0.387
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31c: span station z = 0.581
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31d: span station z = 0.775

Figure 31: Supersonic Transport Configuration. Drag Minimization at Fixed Lift.
M = 2.20, CL = 0.105
144 Hicks-Henne variables. Spar Constraints Active.
- - -, Initial Pressures
—, Pressures After 5 Design Cycles.


