Physical and chemical properties of bimetallic surfaces

https://doi.org/10.1016/0167-5729(96)00004-0Get rights and content

Abstract

Recent studies dealing with the structural, electronic, chemical and catalytic properties of well-defined bimetallic surfaces are reviewed. LEED and STM show that two metals interacting on a surface can form compounds with structures not seen in bulk alloys. Many novel phenomena related to the kinetics of growth of metals on metals have been discovered. The knowledge gathered in this area provides a solid basis for the synthesis of new materials with applications in areas of catalysis, electro-chemistry and microelectronics. In many cases, the formation of a surface bimetallic bond induces large changes in the band structure of the metals. For surfaces that contain transition or s,p metals, the strongest metal-metal interactions occur in systems that combine a metal with a valence band almost fully occupied and a metal in which the valence band is almost empty. A very good correlation is found between the electronic perturbations in a bimetallic system and its cohesive energy. Bimetallic bonds that display a large stability usually involve a significant redistribution of charge around the metal centers. The electronic perturbations affect the reactivity of the bonded metals toward small molecules (CO, NO, H2, O2, S2, C2H4, CH3OH, etc.). For supported monolayers of Ni, Pd, Pt and Cu a correlation is observed between the shifts in surface core-level binding energies and changes in the desorption temperature of CO from the metal adlayers. Examples are provided which demonstrate the utility of single-crystal studies for understanding the role of “ensemble” and “ligand” effects in bimetallic catalysts.

References (425)

  • W.M.H. Sachtler et al.

    Adv. Catal.

    (1977)
  • V. Ponec

    Adv. Catal.

    (1983)
  • V.S. Sundaram et al.

    Surf. Sci.

    (1974)
  • J.M. McDavid et al.

    Surf. Sci.

    (1975)
  • A. Atrei et al.

    Surf. Sci.

    (1992)
  • A. Atrei et al.

    Phys. Rev. B

    (1992)
  • H. Graupner et al.

    Surf. Sci.

    (1995)
  • S.K. Kim et al.

    Phys. Rev. B

    (1995)
  • J.I. Lee et al.

    Phys. Rev. B

    (1987)
  • A.R. Miedema

    Z. Metallkd.

    (1978)
    A.R. Miedema

    Z. Metallkd.

    (1978)
  • P. Miegge et al.

    J. Catal.

    (1994)
  • D. Fargues et al.

    Surf. Sci.

    (1988)
  • Y. Gauthier et al.

    Phys. Rev. B

    (1985)
  • R. Baudoing et al.

    J. Phys. C

    (1986)
  • Y. Gauthier et al.

    Phys. Rev. B

    (1987)
    Y. Gauthier et al.

    Phys. Rev. B

    (1989)
  • U. Schneider et al.

    Surf. Sci.

    (1992)
  • F.C.M.J.M. van Delft et al.

    Surf. Sci.

    (1987)
  • Y. Gauthier et al.

    Surf. Sci.

    (1992)
  • M. Lundberg

    Phys. Rev. B

    (1987)
  • G. Tréglia et al.

    Phys. Rev. B

    (1987)
  • B. Legrand et al.

    Phys. Rev. B

    (1990)
  • R. Döl et al.

    Surf. Sci.

    (1994)
  • S.H. Overbury et al.

    Phys. Rev. B

    (1993)
  • J.A. Rodriguez et al.

    J. Phys. Chem.

    (1991)
  • P.J. Berlowitz et al.

    Surf. Sci.

    (1988)
  • R.Q. Hwang et al.

    J. Vac. Sci. Technol. A

    (1992)
  • H. Röder et al.

    Phys. Rev. Lett.

    (1993)
  • H.J. Ernst et al.

    Phys. Rev. B

    (1992)
  • B. Voigtlander et al.

    Surf. Sci.

    (1991)
    B. Voigtlander et al.

    Phys. Rev. B

    (1991)
  • C.J. Baddeley et al.

    J. Phys. Chem.

    (1995)
  • D.D. Chamblis et al.

    J. Vac. Sci. Technol. B

    (1991)
  • D.D. Chamblis et al.

    J. Vac. Sci. Technol. B

    (1991)
  • E. Bauer

    Ber. Bunsenges. Phys. Chem.

    (1991)
  • J. Kolaczkiewicz et al.

    Phys. Rev. B

    (1991)
  • G.L. Kellogg

    Surf. Sci.

    (1987)
  • G.M. Schwab

    Disc. Faraday Soc.

    (1950)
  • A. Couper et al.

    Disc. Faraday Soc.

    (1950)
  • D.A. Dowden et al.

    Disc. Faraday Soc.

    (1950)
  • J.H. Sinfelt

    Acc. Chem. Res.

    (1977)
  • J.K.A. Clarke

    Chem. Rev.

    (1975)
  • W.H.M. Sachtler

    Faraday Disc. Chem. Soc.

    (1981)
  • G. Ertl et al.

    Low Energy Electrons and Surface Chemistry

    (1985)
  • D.P. Woodruff et al.

    Modern Techniques of Surface Science

    (1986)
  • G.A. Somorjai

    Introduction to Surface Chemistry and Catalysis

    (1994)
  • E. Bauer
  • C.T. Campbell

    Annu. Rev. Phys. Chem.

    (1990)
  • H.C. Potter et al.

    J. Vac. Sci. Technol.

    (1975)
  • T.M. Buck et al.

    Phys. Rev. Lett.

    (1983)
  • D. Sondericker et al.

    Phys. Rev. B

    (1986)
    D. Sondericker et al.

    Phys. Rev. B

    (1986)
  • D. Sondericker et al.

    Solid State Commun.

    (1985)
  • Cited by (0)

    1

    Supported by the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Scienes.

    View full text