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Abstract

In this paper we propose a recursive implementation of the Gaussian filter. This implementation yields an infinite
impulse response filter that has six MADDs per dimension independent of the value of ¢ in the Gaussian kernel. In
contrast to the Deriche implementation (1987), the coefficients of our recursive filter have a simple, closed-form solution
for a desired value of the Gaussian ¢. Our implementation is, in general, faster than (1) an implementation based upon
direct convolution with samples of a Gaussian, (2) repeated convolutions with a kernel such as the uniform filter, and
(3) an FFT implementation of a Gaussian filter.

Zusammenfassung

Dieser Beitrag schligt eine rekursive Implementierung von Gaussfiltern vor. Die Implementierung fithrt auf ein
rekursives (IIR) Filter mit sechs MADDs pro Dimension. unabhidngig vom Wert ¢ des Gaussimpulses. Im Gegensatz zur
Implementierung nach Deriche (1987) 1483t sich hier fiir die Filterkoeffizienten eine einfache geschlossene Losung in
Abhingigkeit von ¢ angeben. Das vorgeschlagene Verfahren ist im allgemeinen schneller als (1) eine Implementierung
durch direkte Faltung mit Abtastwerten eines Gaussimpulses, (2) wiederholte Faltungen mit einem Basisfilter wie z.B.
einem Rechteckfilter und schneller als (3) eine FFT-Implementierung des Gaussfilters.

Résume

Nous propsons dans cet article une implantation récursive du filtre gaussien. Cette implantation produit un filtre
a réponse impulsionnelle infinie ayant six MADD par dimension indépendamment de la valeur de ¢ dans le noyau
gaussien. En contraste avec I'implantation de Deriche (1987), les coefficients de notre filtre récursif ont une forme
analytique simple pour une valeur de gaussienne o désirée. Notre implantation est, en général, plus rapide que (1) une
implantation basée sur une convolution directe avec les échantillons d’une gaussienne, (2) des convolutions répétées avec
un noyau tel que celui d’un filtre uniforme, et (3) une implantation FFT du filtre gaussien.
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1. Introduction

Gaussian filters have assumed a central role in
image filtering because of research in models of
human vision [6], methods for edge detection
[2, 7], results in scale space [5, 14], and techniques
for accurate measurement of analog quantities
based on digital data [11, 12].

The implementation of the Gaussian filter in
one or more dimensions has typically been done
as a convolution with samples of the required
Gaussian (Eq. (1)), as repeated convolutions with
a simpler filter such as a uniform filter (Eq. (2)), or
as a recursive filtering with an approximation to
the Gaussian that requires a complicated proced-
ure to determine the filter coefficients [3]. The
repeated convolution approach appeals to the cen-
tral limit theorem which shows that, in the limit,
repeated convolutions with an impulse response
such as a simple uniform filter lead to an equivalent
convolution with a Gaussian filter [9].

The discrete convolution with a sampled Gaus-
sian is given per dimension by

k= +Ng
out[n] = Y in[k — nlg[k]
k=—No
= in[n]®g[n], (la)
where
1
glnl = g(x10)lx=p = —= exp( — x*/26%)| -
V 2no
n=..,—2-1012, ..., (1b)

with ¢ real and Ny an integer. N, is typically
chosen as Ny ~[ 507 At this value of N,, the
continuous Gaussian g(x) is down by a factor of
3.7x 1076 from its value at g(x = 0).

The implementation based upon repeated con-
volutions with a “square” kernel is given per dimen-
sion by

out[n] = in[n]® {unif{n]@unif[n]® ...
®unif[n]}, (2a)
where

1/2No + 1), |n| € Ny,

—_—
unif{n] {0, n| > No.

It is common to use three convolutions of a uni-
form filter to approximate a Gaussian. For a de-
sired o, this will then require No [ ¢7]. Only a
limed number of Gaussian filters can be construc-
ted in this way because we are constrained to use
integer values of N,.

The technique developed by Deriche involves
a complicated design step for every choice of
o [3,4]. For this reason Deriche developed an
alternative non-Gaussian recursive filter that has
an impulse response per dimension given by
h[n] = k(x|n| + D) ~*"D. While this filter does
have some impressive properties it also has some
disadvantages — it is non-isotropic (in 2-D not cir-
cularly symmetric) and it is not the target filter, the
Gaussian,

Because of the separability of multi-dimensional
Gaussian filters (that is, exp( — (n? + m?) =
exp( — n*)exp( — m?), it is appropriate for us to
examine the computational complexity of each al-
gorithm one dimension at a time. For each dimen-
sion the use of direct convolution (Eq. (1a)) implies
(2N, + 1) MADDs (multiplications and additions).
Taking advantage of symmetry in the Gaussian
filter can reduce this to 2N, additions and (Ny + 1)
multiplications. The use of repeated convolutions
(Eq. (2a)) implies 2N, additions. The Deriche ap-
proximation to the Gaussian [3] involves 12
MADDs per dimension and his alternative recur-
sive filter (given above) requires eight MADDs per
dimension.

In this paper we propose an alternative imple-
mentation of the Gaussian filter that is based upon
a recursive structure. This implementation yields
an infinite impulse response (IIR) filter that has
six MADDs per dimension independent of the
value of ¢ in the Gaussian kernel. The result is
in general faster than either of the above-men-
tioned implementations and does not sacrifice
accuracy.

2. Specification in the Laplace domain

Our approach is based upon a rational approxi-
mation to the Gaussian that is given by [1, Eq.
26.2.20]
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1 2
gty = —=e ™"
: + £(1) (3a)
= (1), a
ap + art* + ast* + agt° ¥
where
ag = 2.490895, a, = 1.466003, (3b)

a, = —0.024393, as =0.178257.

The error &(r) is limited to |e(r)] <2.7x 107 3.
Relative to the maximum value of g(f), which
occurs at t=0, this maximum error is
le(2)l/g(0) < 0.68%. A more complex approxima-
tion to g(t) involving a tenth-order polynomial is
also presented in [1] but the version presented here
will be shown to be sufficient.

We will treat the approximation not as the Gaus-
sian impulse response but rather as an approxima-
tion to its Fourier transform. That is, with
G(w) = F{g(x|o)}, we have the well-known result
Glw)=e " 2=F { % e } (4)

\2na
For reasons that will become apparent later, we
will use g instead of ¢ giving the rational approxi-
mation:

Ao

Golw) = ag + a>(qw)? + as(qw)* + aglgw)® (52)

and, with s = jw, the equivalent Laplace transform
18

Ay
ao — (a2q7)s* + (a4g*)s* — (a6q®)s®

G,ls) = (5b)

The expression G,(s) can be factored into the
product of two terms, G(s} = G (s)Gg(s): G(s) with
poles in the left-half plane and Gg(s) with poles in
the right-half plane.

Guls) = 4
(11668 + ¢s)(3.20373 + 2.21567gs + q°52)
(6a)
and
ls) = 1 1668 — qs)(3.2037§ - 221567qs + ¢7s2)
(6b)

Table 1
Poles of Egs. (6a) and (6b)

Poles  G,(s) Gg(s)
So — 1.1668/q + 1.1668/g
s, ( — 110783 + 1.40586j)/q  ( + 1.10783 + 1.40586j)/q

5 ( — 110783 — 1.40586j)/g  ( + 1.10783 — 1.40586j)/q

The poles of Egs. (6a) and (6b) are located as shown
in Table 1.

Independent of the choice of g (with g > 0), both
filters Gi(s) and Gg(s) have poles in the complex
plane.

3. Representation in the Z-domain

Eq. (6a) represents a causal, stable differential
equation that can be transformed to a causal, stable
difference equation, from G, (s) to an H,(z). Eq. (6b)
represents an anti-causal, stable differential equa-
tion that can be transformed to an anti-causal,
stable difference equation, from Gg(s) to an Hg(z).
The standard technique for transforming a differen-
tial equation into a difference equation is to use the
bilinear transform s=(1 —z YAt +z7 Y [8].
That technique leads, however, to zeroes in the
transfer functions H(z) and Hg(z), a side effect we
would like to avoid. In addition the bilinear trans-
form technique has other disadvantages. See
Appendix A.

We choose, instead, to use the backward differ-
ence technique [8] which approximates the deriva-
tive dy/dt by (y[n] — y[n — 1])/T and thus replaces
s by s =(1 —z~Y/T. Like the bilinear transform,
this approach has the property that the causal,
stable G(s) is mapped into a causal, stable H(z).
Further, no zeroes are introduced into H,(z) or
Hg(z). To generate Hg(z) we use the forward differ-
ence equation approximation dy/dt =~ (y[n + 1]
— y[n])/T. The complex frequency s is replaced
by s=(z —1)/T. Again, this approach has the
property that the anti-causal, stable Gg(s) is map-
ped into an anti-causal, stable Hy(z). Setting T = 1
gives
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Hi(z) = GL(8)|s=1-- 1 =

Aoy

and

(1.1668 + q(1 — z~ 1))(3.20373 + 2.21567q(1 — 2z~ V) + g*(1 — z " 1)?)

(7a)

HR(Z) = GR(S)|5=2'1 =

Both equations can be rewritten as standard poly-
nomials in z~ ! and z, respectively, giving

Az

) = T e (8a)
and
He(2) =3 5 f?)zzz byt (8b)
where
bo = 1.57825 + (2.44413q) + (1.42814%)

+ (0.422205¢%),

b, = (2.44413g) + (2.85619¢) + (1.26661¢%), (8¢)
by, = — ((1.42814%) + (1.266614%)).
by = 0.4222054>.

This implementation suggests the following filter-
ing strategy. The input data are first filtered in the
forward direction as suggested by the difference
equation corresponding to Eq. (8a). The output of
this result - let us call it w[n] — is then filtered in the
backward direction according to the difference
equation corresponding to Eq. (8b). The difference
equations are

Sforward:
w[n] = Bin[n] + (b;w[n — 1]

+ byw[n — 2] + byw[n — 3])/b, (9a)
and

backward:
out[n] = Bw[n] + (b,out[n + 1]

+ byout[n + 2] + byout[n + 3])/b,. (9b)

(1.1668 — g(z — 1))(3.20373 — 2.21567q(z — 1) + g*(z — 1)*)

(7b)

Both filters have the same normalization constant,
B, that can be specified by using the constraint that
the transfer function of the filter should be 1.0 for
the frequency w = Q = 0. This leads to

B =1—((b; + by + b3)/by). (10)

Example. Let us now look at an example of the use
of this procedure. We begin by choosing g = 5.0.
Using Eq. (8c) this leads to b,/b, = 2.36565,
ba/by = — 1.89709, bs/by =0.51601, and B =
0.01543. The impulse response, h{n], of this recur-
sive implementation of the Gaussian filter is shown
in Fig. 1(a) along with a continuous curve repres-
enting a true Gaussian with ¢ = 6.09 as defined in
Eq. (Ib). An enlargement of the scale in order to
enhance the tails of the Gaussian is shown in
Fig. 1(b).

Several observations associated with this
example are useful. Eqgs. (6a) and (6b) and the asso-
ciated poles (listed in Table 1) suggest that the
impulse response of each separate term (forward
and backward) will oscillate. No such behavior,
however, is observed in the impulse response h[n]
of the total Gaussian recursive filter. (This is not the
case when the bilinear transform implementation is
used. See Appendix A))

The standard deviation associated with the im-
pulse response of the recursive Gaussian filter is not
the value g as suggested by Egs. (4), (5a) and (5b).
While a value of ¢ = 5.0 was used in the above
example, a minimum mean-square-error fit of
a true Gaussian to the observed impulse response
gives a value of ¢ = 6.09. The root-mean-square
error for g = 5.0is rms = 2.8 x 10~ *, the maximum
absolute error is |¢] = 1.7x 1073, and the root-
square error (described below) is rs = 5.6 x 1073
when measured over the interval — 330 to + 330.
We discuss this matter below.
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Fig. 1(a). Impulse response h[n] resulting from the application of Egs. (9a) and (9b) to the input signal in[n] = é[n]. The continuous

curve is g(x|o = 6.1). The value of g used in Eq. (8c)is g = 5.0.
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L
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Fig. 1(b). Enlargement of h[n] resulting from the application of Egs. (9a) and (9b) to the input signal in[»n] = 8[n] with ¢ = 5.0. Note the

values of the vertical scale.

4. Choosing ¢

The difference between the value of g and the
value of o can be attributed to two causes. First, we
have chosen to use the approximation in the fre-
quency domain and test the approximation in the
spatial (or time) domain. Second, the use of the
forward and backward difference approximations
means a known source of error due to the fact that
neither approximation gives a correct mapping
from the w-axis in the s-plane to the unit circle in
the z-plane. The forward and backward difference
approximations are particularly crude in this re-
gard and only work when the signals concerned are
‘oversampled’ so that their spectral energy is con-
fined to a tight band around @ = 0. This oversamp-
ling is equivalent to taking many samples of the
desired Gaussian which should translate into

greater accuracy in the approximation when we
move to wider Gaussians, that is, when ¢ increases.

To test this hypothesis we have for a range of
values of g looked at (1) the value of ¢ provided by
our Gaussian recursive filter, (2) the maximum ab-
solute error, and (3) the root-square error. The
relationship between ¢ and ¢ was investigated by
generating the impulse response h[n] for a range of
values of g given by 0.5 < g < 20.0. This range of
g covers values from where the Gaussian is clearly
undersampled to values where it is certainly over-
sampled. The non-linear Levenberg-Marquardt
algorithm was used to find a minimum mean-
square-error fit between the data as given by h{n]
and the function g(x|o,) = Aexp( — x?/263) with
(4, 0,) as the parameters to be found [10, 15]. In
Fig. 2 we see the resulting relationship between
q and a,.
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q

Fig. 2. Levenberg-Marquardt estimate of o for each value of
q plus the regression line.

Although the behavior of this curve is dominated
by a linear relationship between g and o, for a sig-
nificant range of g, for small values (0.5 < g < 1.5)
the curve has a much better representation as a
second-order polynomial. A regression analysis
with ¢ as the independent variable and g, as the
dependent variable gives:

0.97588 + (1.01306g), ¢ > 1.5,
oo = {0.30560 + (1.718814) — (0.2163943),

05<g< 15 (t1a)
Inverting these two forms gives
0.98711a, — 0.96330, =25,
o %o (11b)

4=1397156 — 4.14554,/1 — 0.268910,,

The correlations (p) associated with the regression
equations (11a) are both greater than 0.9999 and all
coefficients are significant at p < 0.0001. Using the
regression equations (11a), the value of ¢ =5.0
(used in the previous example) leads to the value
oo = 6.04.

1E-01
Abramowitz and Stegun
approximation (eq. 3)
g
&
=
© 1E-02
2
=
=]
z
=
E
El 1E-03
£
]
=
g
1E-04 T T T T
0 5 10 15 20 25
o)

Fig. 3. The maximum absolute error |¢(n)| of h[n] for each value
of o.

5. Accuracy

The maximum absolute error associated with the
use of the recursive Gaussian filter can be evaluated
by looking at the maximum value of |e(n)| =
|g(nlao) — A[n]]. The result is shown in Fig. 3. For
values of ¢ greater than 4.0 the maximum absolute
error |g| is smaller than the maximum error of the
approximation given in Eq. (3). Fig. (3) clearly sup-
ports our assertion that the accuracy increases as
o (and thus, g) increases.

The maximum absolute error ‘¢, associated with
Eq. (3) takes place in the frequency domain. The
error evaluation g, in Fig. 3 takes place in the
domain of h[n] where ¢, is ‘smeared out’.

Further, we can compare the accuracy associated
with various implementations of a Gaussian filter.
A measure for comparison is based upon the fol-
lowing analysis. For an arbitrary input x[n] the
output associated with a ‘true’ Gaussian is given by
yoln] = g(nloo)®x[n] and for an approximation
by yi[n] = h[n]®x[n]. The error in the output per
sample is given by

&y[n] = y,[n] — yi[n] = {g(nloo) — h[n]}®x[n]
= ¢[n]®@x[n]. (12)
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—0— Uniform (3x)

—o0——  Recursive Gauss

—&— Gauss trunc@3 ¢

———  (Gauss trunc@5 &

—o0—— Optimized FFT

be viewed as extremely conservative because the
bound from Eq. (14) depends on two inequalities.

1E+01
1E+00
1E-01 4
. o
4 1E-02 -
™
=
< 1E-03 -
b
3
X 1E-04
*#
2 1E-05
e
-~
- 1E-06 o
1E-07 -
1E-08 T T T T
0 5 10 15 20 25
g
Fig. 4. The root-square error \/Z::_ ,le[n]]? for each value of .
But
ley[n]] < le[n]I®Ix[n]]. (13)

Applying the Cauchy—Schwarz inequality to the
right-hand side of Eq. (13) gives

Gil< | T el [ T Ix0np
= VE.VEx, (14)

where E, is the energy in the error signal and E is
the energy in the input signal. Because the choice of
x[n] is arbitrary, the only way to guarantee that the
error |¢,[n]| is small is to choose h[n] such that

\/E (the root-square error) is acceptably small.

We have evaluated the root-square error for one-
dimensional filtering with the recursive Gaussian
filter, FIR convolution with Gaussian kernels (Eq.
(1a)), a triple convolution with a uniform filter (Eq.
(2a)), and with an FFT implementation of the
Gaussian filter. In each case ¢ is estimated via the
Levenberg-Marquardt method and the residual
root-square error is then computed. The results are
shown in Fig. 4.

For typical values of o, such as g =2.1, the
root-square error for the recursive implementation
of the Gaussian is 1.82 x 10”2, This value should

Neither is likely to achieve its maximum value as
the error signal ¢[n] has negative values (Eq. (13))
and it is quite unlikely that |x[n]| = kle[n]| — the
condition for equality in the Cauchy-Schwartz
inequality (Eq. (14)).

6. Speed

We have evaluated the improvement in com-
putational speed for various values of ¢ of a two-
dimensional, recursive Gaussian filter in compari-
son to an FIR convolution with a Gaussian kernel
(Eq. (1a)), a triple convolution with uniform filters
(Eq. (2a)) with a square support and with a circular
support, and with an FFT implementation of the
Gaussian filter. All evaluations were done on
a 256 x 256 image.

The computation time of the recursive Gaussian
filter is 100 ms on a Silicon Graphics Indigo R4400
computer independent of o. The other (non-recur-
sive) filters were implemented with the most effi-
cient algorithms that we have. The Gaussian FIR
uses an implementation that takes advantage of the
symmetry in the impulse response to reduce the
number of MADDs. The uniform filters (both
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Fig. 5. Ratio of computation times of various filter algorithms to the fastest implementation — the recursive Gaussian - as a function

of a.

square and circular) use an incremental updating
process for improved speed [13]. The FFT imple-
mentation uses a real FFT and look-up tables for
the sine and cosine values. The overall results are
shown in Fig. 5.

For all values of ¢ > 1.0, the recursive algorithm
is the fastest. At o = 5.0, for example, the Gaussian
FIR convolutions are 3.3 and 5.3 times slower when
the filter coeflicients are truncated at 3¢ and Sa,
respectively. A square uniform filter is 1.9 times
slower and a circular uniform filter is 3.9 times
slower. The FFT implementation, whose computa-
tion time is independent of o, is 3.1 times slower
than the recursive implementation. Further, the use
of FFT techniques requires that image sizes be
highly composite numbers such as powers of two.

7. Isotropy

An important aspect of the Gaussian filter,
alluded to earlier, is its isotropy in N-dimensions.
To illustrate this issue we have computed the iso-
brightness contours associated with five different
implementations of Gaussian filtering — our IIR
recursive Gaussian (Eq. (9)), the FIR Gaussian
convolution (Eq. (1)), the triple convolution with
a 2-D circular uniform filter (Eq. (2a)), the triple

Fig. 6. Impulse response of various filters: (a) IIR recursive
Gaussian from Eqs. (9a) and (9b) with ¢ = 20; (b) FIR Gaussian
filter from Egs. (1a) and (1b) with ¢ = 20; (c) triple convolution
with a 2-D uniform filter with a circular (pillbox) support and
diameter 41; (d) triple convolution with a 2-D uniform filter with
a square support and width 41; (e) IIR recursive Deriche filter
[4] with x = 0.1.

convolution with a 2-D square uniform filter
(Eq. (2a)), and the Deriche filter given by
h[n] = k(xn| + 1)e"*") The results are shown in
Fig. 6.
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in[n] Forward win] Backward out[n]
—®—  Recursion [—®— Recursion ——®
eq. 9a eq. 9b

Fig. 7. Gaussian filter as concatenation of two filters.

As shown in Figs. 6(a}c), our recursive Gaus-
sian filter, the FIR convolution with a Gaussian,
and the triple convolution with a circular (pillbox)
uniform filter lead to an isotropic (circularly sym-
metric) impulse response. The other filters, as
shown in Figs. 6(d) and (e), lead to anisotropic
impulse responses.

8. Derivative filters

In a variety of image processing and computer
vision applications, Gaussian filters are frequently
used in combination with derivative filters. Inde-
pendent of what order derivative is required, we
consider it essential that the derivative operations
have zero phase in order to avoid displacing edges
in images. This zero phase condition can be realized
either by using a derivative filter with an even
impulse response, hy[n] = hy[ — n], or by using
a forward filter in concatenation with a backward
filter such that the phase terms cancel each other.
The recursive implementation for the Gaussian
that we have developed is illustrated in Fig. 7.

The implementation of derivative filters involves
replacing either Eq. (9a) or Egs. (92) and (9b).
First derivative — Eq. (9a) is replaced by Eq. (15),

wln] =(B/2)(in[a + 1] —in[n — 1])
+ (byw[n — 17 + byw[n — 2]
+ byw[n — 3])/bo. (15)

and Eq. (9b) is left unchanged.
Second derivative — Eqs. (9a) and (9b) are replaced
by Egs. (16a) and (16b):

Sforward:
w[n] = B(in[n] — in[n — 1]) + (b;w[n — 1]
+ byw[n — 2] + byw[n — 3])/bo (16a)

and

backward:
out[n] = Bw[n + 1] — win]) + (b;out[n + 1]
+ b,out[n + 2] + byout[n + 3])/b,. (16b)

Third derivative — Egs. (9a) and (9b) are replaced by
Egs. (17a) and (17b):

forward:

w[n] = B(in[r + 1] — 2in[n] + in[n — 1])
+ (byw[n — 1] + byw[n — 2]
+ baw[n — 3])/bg (17a)
and
backward:
out[n] = (B/2)(w[n + 1] — w[n — 1])
+ (byout[n + 1] + byout[n + 2]
+ bsout{n + 3])/b,. (17b)

The low-pass nature of the Gaussian filter helps
suppress the noise that is amplified by the deriva-
tive process. When higher-order derivatives are
used the value of ¢, (and hence ¢) should be in-
creased accordingly to provide additional noise
suppression.

9. Summary

In this paper we have developed a straightfor-
ward recursive implementation of the Gaussian fil-
ter. We have examined various alternatives and
shown that simple forward and backward differ-
ence approximations in concatenation lead to the
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required IIR filter. We have shown that our im-
plementation is the fastest of those evaluated
and that the result in 2-D (and higher dimensions
as well) 1s isotropic. We have developed a simple,
algebraic closed-form procedure for choosing
the five coefficients of the recursive filter given
the desired o,. The ‘recipe’ (per dimension) is as
follows:

1. Choose 6, based upon the desired goal of the
filtering.

Use Eq. (11b) to determine gq.

Use Eq. (8¢c) to determine by, by, b,, and b;.
Use Eq. (10) to determine B.

Implement the forward filter with Eq. (9a).
Implement the backward filter with Eq. (9b).

Apply.
If derivative filters are desired then the appropriate

equation(s) from the sets (15)—(17) can be sub-
stituted in steps 5 and 6.
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Appendix A
Examples using the bilinear transform
Starting with Eqs. (6a) and (6b) we use the bi-

linear transform s=(1-z"Y)/(1 +z~') [8]. This
leads to the equations
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Fig. 8(a). Impulse response h[n] resulting from using the bilinear transform version of the recursive Gaussian filter. The continuous

curve is g(x|o = 2.6). The value of g used in Eq. (A.1c) is ¢ = 5.0.
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Fig. 8(b). Enlargement of h[n]. Note the ringing around x =n =9.
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and

Hal?) = Ao 1_+CI3ZZ_+C3ZZ; +_C 3323, (A.1b)
where

co = +3.73811 + (5.78897¢) + (3.38247¢%) + ¢°,
¢y = — 11.2143 — (578897 q) + (3.38247 %) + 34°,
c; = — 11.2143 + (5.788979) + (3.38247 ¢%) — 3¢°,

c3 = — 3.73811 + (5.78897q) — (3.38247¢%) + ¢°.

(A.lc)
The associated difference equations are:
forward:
wln] = C(in[n] + 3in[n — 1] + 3in[n — 2]
+in[n — 3] + (c;w[n — 1]
+cowln — 2] + caw[n —3])/co  (A2a)
0.25 +
0.20 | hlnl
0.15

and
backward:
out[n] = C(w[n] + 3w[n + 1] + 3w[n + 2]

+ wln + 3]) + (c,out[n + 1]

+ cyout[n + 2] + cyout[n + 2])/c,.

(A.2b)

The normalization constant, C, can be specified by
again using the constraint that the transfer function
of the filter should be 1.0 for the frequency
w = Q = 0. This leads to

{co —(c1 + ¢z + ¢c3)}
8¢, '

C= (A.3)

Two examples
Example 1. For g = 5.0, Eqgs. (A.1c) and (A.3) give

Cl//CO = 173]32, C2/C0 = - 112575, C3/C0 =
0.27099, and C = 0.01543. (Note that the bilinear
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Fig. 9(a). Impulse response h[n] resulting from using the bilinear transform version of the recursive Gaussian filter. The continuous

curve is g(x|o = 1.67). The value of g used in Eq. (A.lc) is ¢ = 3.0.
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Fig. 9(b). Enlargement of h[n]. Note the ringing around x =n = 5.
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transform and the forward/backward difference ap-
proximation both have the same normalization
constant. This is because at z = 1 (2 = w = 0) both
transformations are the same.)

The impulse response of this recursive implemen-
tation of the Gaussian filter is shown in Fig. 8(a)
and an enlarged version in Fig. 8(b).

Example 2. For g = 3.0, Egs. (A.1¢) and (A.3) give
ci/co = — 105492, c¢,/co =0.565331, c3/co =
—0.129687, and C = 0.04759. The impulse re-
sponse of this implementation is shown in Fig. 9a)
and an enlarged version in Fig. 9(b).

The bilinear transformation version shows a con-

siderable amount of ringing, an undesirable side-
effect when one is filtering images. This ringing is
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not seen when the forward/backward technique is
used even at relatively low values of g such as
q = 3.0. This is shown in Fig. 10.

The final result for the forward/backward tech-
nique is better than one might expect given the
error analyses presented in Figs. 3 and 4. Further,
the computational complexity goes from six
MADD:s in the forward/backward technique to 12
MADDs with the bilinear technique. For ¢ = 4.1,
the root-square error is rs = 9.0 x 107 ® with the
forward/backward technique and rs =29x107?
with the bilinear technique. For ¢ = 6.2, the values
are 5.6 x 1073 (forward/backward) and 2.25 x 1073
(bilinear). The small improvement in the error
bound rs for the bilinear technique over the for-
ward/backward technique is due to the avoidance
of aliasing when the bilinear technique is used. In
summary, the bilinear technique is somewhat more
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Fig. 10(a). Impulse response h[n] resulting from the application of Egs. (9a) and (9b) to the input signal in[n] = 8[n]. The continuous

curve is g(x|o = 4.0). The value of g used in Eq. (8¢) is ¢ = 3.0.

0.02 7
h[n]

0.01 4

0.00

(b} -30 -20 -10

10 20 30

Fig. 10(b). Enlargement of h{n] resulting from the application of Egs. (9a) and (9b) to the input signal in[n] = 8{n] with g = 3.0. Note

the values of the vertical scale.
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accurate but the forward/backward technique is
faster and does not have ringing in h[n].
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