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Abs t rac t  

Surface and interface stresses in solids are defined and their role in the 
thermodynamics of solids is presented. A discussion concerning the physical 
meaning of these quantities is given, along with a review of selected theoretical 
calculations and experimental measurements. It is shown that for a solid phase with 
one or more of its dimensions smaller than about 10 nm, the surface and interface 
stresses can be principal factors in determining the equilibrium structure and behavior 
of the solid. In particular, the effects of surface and interface stresses on thin films are 
reviewed along with the related topic of surface reconstructions in metals. 
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2 R.C. Cammarata 

1. Introduct ion 

The thermodynamics  of surfaces as formulated by Gibbs [1] has proven to be one of 

the most  useful and powerful  f rameworks  for s tudying surface phenomena.  Central to this 

approach is the quantity referred to as the surface free energy. It is equal to the reversible 

work per  unit  area needed  to create a surface and is the fundamenta l  pa ramete r  that 

determines the behavior  of fluid-fluid interfaces. However ,  when  dealing with solid-fluid 

interfaces, there is another  type of fundamental  parameter ,  called the surface stress, that 

can also critically affect the behavior  of surfaces. The surface stress is the reversible work 

per unit  area needed to elastically stretch a pre-existing surface. Despite the extensive 

discussion surface stress has received over  the years [2-7], there remains a great deal of 

confusion" ing its meaning and importance. 

As with the solid-fluid interface, there is a stress associated with the solid-solid 

interface. Actually,  a general  interface has associated with it two interface stresses 

corresponding to the two solid phases  that are separated by the interface. An example of 

such an interface is the one between a thin film and a substrate. One of the interface 

stresses can be associated with work  needed to stretch the film wi thout  straining the 

substrate. In this way the structure of the interface (for example,  the density of misfit 

dislocations) can be changed. The other interface stress can be associated with the work to 

stretch both the film and substrate equally. 

2. Surface Stress 

A. Thermodynamics of Surface Stress 
In the Gibbsian formulat ion of the the rmodynamics  of surfaces [1], there is a 

quantity 7 that represents the excess free energy per unit area owing to the existence of a 

surface. It can also be considered the reversible work per unit area needed to create a new 

surface. In the case of a solid, this new area can be created by a process such as cleavage. 

The amoun t  of reversible work  dw per formed to create new area dA of surface can be 

expressed as 

dw = 7 dA. (1) 

The total work  needed to create a planar surface of area A (equivalently, the total excess 

free energy of the surface) is equal to 7A. 

Gibbs [1] was the first to point out that for solids, there is another type of surface 

quantity, different f rom 7, that is associated with the reversible work  per unit area needed 
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to elastically stretch a pre-existing surface. The relationship between this quantity and 7 

can be derived in the following manner. The elastic deformation of a solid surface can be 

expressed in terms of a surface elastic strain tensor Eij, where i,j = 1,2. Consider a reversible 

process that causes a small variation in the area through an infinitesimal elastic strain d¢ij. 

One can define a surface stress tensor fij that relates the work associated with the variation 

in 7A, the total excess free energy of the surface, owing to the strain deij (summing over 

each repeated index): 

d(TA) = A fij d~ij. (2) 

Equation (2) was first given by Shuttleworth [2], who derived it by considering the 

two reversible paths illustrated in Fig. 1. In the first path (clockwise), the solid pictured in 

the upper  left is cleaved into two pieces and then both pieces are subjected to the same 

elastic strain. The work associated with the first step is W 1 = 27oAo, where 70 and A o are 

the excess surface free energy and area of each of the newly created (unstrained) surfaces. 
The work of the second step, denoted by w 2, equals the work needed to elastically deform 

the total bulk volume and the four (two original and two newly formed) surfaces. In the 

second path of Fig. 1 (counter-clockwise), the solid is first subjected to the elastic strain and 
is then cleaved into two pieces. The work of the first step, w 1, is equal to that needed to 

deform the bulk volume and the two surfaces. The difference w 2 - w I is equal to the 

excess work needed to elastically deform two surfaces of area A o to area A(Eij). This 

difference can be equated with the work performed against the surface stress fij: 

w 2 - w I = 2 Sfij dA(eij) = 2 ~A fij d~ij. (3) 

t h e  work associated with the second step of the second path can be expressed as W 2 = 

2 y(eij) A(Eij), so that W 2 - W 1 = 2[7(~ij)A(eij) - 7oAo]. Equating the total works of the two 

reversible paths leads to W 2 - W 1 -- w2 - Wl. Therefore, 

2[~Eij)A(eij) - 7oAo] = 2 S A fij deij, (4) 

which is equivalent to Equation (2). Since d(TA) = 7 dA + A dT, and dA = A 8ij d~ij (where 

8ij is the Kronecker delta), the surface stress can be expressed as 

fij -- 78ij + 37/~3Eij. (5) 

In contrast to the excess surface free energy 7, which is a scalar, the surface stress fij 
is a second rank tensor. For a general surface, it can be referred to a set of principal axes 
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such that the off-diagonal components  are identically zero. Furthermore,  the diagonal 

componen t s  are equal  for a surface  p o s s e s s i n g  a three-fold or higher rotat ion axis 

symmetry.  This means that the surface stress for high symmet ry  surfaces is isotropic and 

can be taken as a scalar f = y + 3y/0¢. Rewriting this as 

f - ? = o~/;3e (6) 

shows that the difference between the surface stress f and the surface free energy 7 is equal 

to the change in surface free energy per unit change in elastic strain of the surface. For 

most solids, ~'//3~ ~ 0; in fact, 37/0~ is usually the same order of magni tude as 7 and can be 

posit ive or negative,  while  7 (for a clean surface) is a lways  positive. Thus,  f is also 

generally the same order of magni tude as 7 and can be positive or negative. 

W 1 

W l = 2Y0 A 0 

( 

"' / 

W 2 

J 

W 2 = 2y(hj)A(Eij  ) 

Figure 1. Schematic representat ion of two reversible paths that illustrate the relationship 
between surface free energy and surface stress. 
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Both f and y can each be considered as represent ing a force per  unit  length, the 

former exerted by  a surface during elastic deformation, and the latter exerted by a surface 

during plastic deformation.  As a result, both f and y have  been referred to as "surface 

tension." This has undoubted ly  contributed to some of the confusion in the l i terature 

concerning the difference between them, and it is probably best not to use the term when 

discussing solid surfaces. 

It is often stated that, in contrast to solids, f and 7 are the same for fluids. This is due 

to the fact that when  a fluid such as a soap film is stretched, the atoms or molecules in the 

interior move  to the surface toaccommodate  the new area created. In this case 7 remains 

constant during the stretching process, and according to Equation (6), f = 7. This has led 

some to claim by the same reasoning that at high temperatures  where  there is sufficient 

atomic mobility,  f = y for solids dur ing processes such as creep. However ,  this is not 

correct. During the initial elastic deformation in a creep experiment  the work  per unit area 

needed to stretch the solid is f, while during plastic deformation 7 represents the specific 

surface work  to create new surface. Thus, the quantity being measured  in a creep test, 

where the plastic strain is much  greater than the elastic strain, is the surface free energy 

and not the surface stress. 

For many  processes, the easiest and most unambiguous  way  of determining whether 

f or y is the relevant parameter  is the following: if a small variation in area does not change 

the surface atomic density, then the specific surface work is equal to y; if the variation is 

due to an elastic strain that changes the surface density of atoms, then the specific surface 

work is f. According to this rule, plastic deformation and crack propagat ion are examples 

of processes where  7 equals the surface work, independent  of mechanism. On the other 

hand (as is discussed in more  detail later), the Laplace pressure associated with a small 

solid particle in a fluid is proportional to f. In the case of liquids, all processes of interest 

involve variat ions in area wi thout  vary ing  the surface density,  and the surface work  

represents a surface free energy. (However ,  in the case of a compressible  liquid, it is 

possible to conceive of a surface stress-like quantity that represents the surface work  when 

a liquid is subjected to a hydrostatic pressure.) 

B. Physical Origin of Surface Stress 
The physical  origin of the surface stress can be qualitatively unders tood  in the 

following manner .  The nature  of the chemical bonding (e.g., the number  of bonds) of 

atoms at the surface is different from the bonding of atoms in the interior. Because of this, 

the surface atoms would  have an equilibrium interatomic distance different f rom that of 

the interior atoms if the surface atoms were not constrained to remain structurally coherent 

with the under ly ing  lattice. As a result, the interior of the solid can be considered as 

exerting a stress on the surface. There has been some confusion with regard to identifying 
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a surface stress of either sign as compress ive  or tensile. When f is positive, the surface 

work  f dA is negat ive if dA is negative. This indicates that the surface could lower its 

energy by  contracting and is therefore under  tension. Therefore, a positive f is referred to 

as a tensile surface stress, while a negative f is referred to as a compressive surface stress. 

A s imple  two-body  interatomic force model  to illustrate the origin of the surface 

stress was given by  Shaler [8]. Consider an a tom P in the interior of a face centered cubic 

crystal as shown in Fig. 2. The x and y axes are along the [100] and [010] directions. 

Attention is restricted to first and second nearest  neighbor interactions. Let a equal the 

force each nearest  neighbor A atom exerts on P and b equal the force exerted by each 

second nearest  neighbor  B atom. If the solid is in equilibrium, a represents a force of 

repulsion and b a force of attraction. A simple balance of forces requires that b = -2"~2a. 

Now let the crystal be cleaved to create a (100) oriented surface containing the P atom. The 

force acting on the P atom in the y-direction is now b + 3a/~2 = - a/'~2. Since a is a force of 

repulsion, the surface atoms are subjected to a net force in tension in the [010] direction. A 

similar calculation for atoms on a (111) oriented surface leads to a net compressive force of 
I 

+ a along the <110> directions. It is interesting to note that this simple two-body central 

force model  will lead to the result  that f = 0 if only nearest  neighbor  interactions are 

considered [6], and that in order to get a nonzero surface stress, at least second nearest 

neighbor interactions must  be taken into account. 

As discussed by Needs  et al. [9], the loss of neighbors  which results f rom the 

creation of a metal  surface reduces the local electron density around the atoms near the 

surface. Since the surface atoms now sit in a lower average charge density than the optimal 

value associated with the bulk atoms, the response of the surface atoms would presumably 

be to a t tempt  to reduce their interatomic distances in order to increase the average electron 

density. Such surfaces would  therefore be expected to display a positive surface stress. 

Theoretical and experimental  results seem to support  this conclusion, at least for ideal I x 1 

low index surfaces. If the surface stress (actually, the difference between the surface stress 

and the surface free energy) is large enough, it will be thermodynamical ly  more favorable 

for the surface layer to contract so that the surface atoms are no longer in perfect registry 

with the underlying lattice. This type of surface reconstruction has been observed for (111) 

oriented surfaces of Au and Pt (see Section 4). 

C. Lagrangian Coordinate System 
Referring back to Equation (5), the first term on the right hand side takes into 

account the change in area due to the elastic deformation, while the second term accounts 

for the change in surface free energy with elastic strain. As pointed out by Cahn [7,10], the 

expression for the surface stress can be simplified by using a Lagrangian measure  of the 

area. The relation between the Lagrangian area A L and the physical area A is 
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A = AL(1 + eli), (7) 

where eli represents the trace of the elastic strain aij. AL is the surface area measured with 
respect to a standard state of strain, and remains unchanged during elastic deformation. In 

the Lagrangian coordinate system, it is necessary to define the surface free energy 7L such 

that 7LAL = 7A: 

7L = 7(1 + eii). (8) 

The two types of surface work that can be performed on a solid to change its physical area 

A can be taken as either (a) changing A L holding Eij constant, or (b) changing ~ij holding A L 

constant. The former surface work is equal to the surface free energy 7L, while the latter 

surface work is equal to the surface stress which can be expressed as 

T 
y-1 

E 

A 

/ ,  

y y+ l  y-1 

A B 
X---~  

B 

A 
T 
Y 

t 
L---- X---.-~ 

A 

i B 

C) = atoms in plane o f  figure 

• = atoms in planes adjacent and parallel to xy plane 

The oaordinates x, y are in the [100], [010] directions 

Figure 2. Illustration of how interatomic forces acting on surface atoms can result in a 
surface stress [8]. 
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fij = O~L/O~ij- (9) 

Substituting Equation (8) into Equation (9) leads to Equation (5). For many problems, the 

use of the Lagrangian coordinate system greatly simplifies the analysis. 

D. Equilibrium of a Small Solid Crystal 

Consider a fluid (liquid or vapor) droplet in equil ibrium with a different 

surrounding fluid that can be considered infinite in extent. There will be a pressure 
difference AP = P1 " P2 (where the subscripts 1 and 2 refer to the droplet and the 

surrounding fluid, respectively) acting on the droplet owing to the surface free energy. At 

equilibrium, the virtual work AP dV resulting from a small variation in the volume of the 

droplet due to transfer of atoms or molecules from the surrounding fluid to the droplet will 

equal 7 dA, the increase in the total free energy of the surface. For a spherical droplet of 

radius r, this equality leads to the well known Laplace-Young Equation: 

AP = 2y/r. (10) 

Because of this Laplace pressure AP, the chemical potential bt of the droplet phase will 

contain a term 27V/r, where V is the molar volume of the droplet phase. At equilibrium, 

the chemical potential of the surrounding fluid phase will also contain this term, and the 

chemical potentials of the two phases will be equal. 

Now consider the case of a small single component solid crystal in equilibrium with 

a surrounding fluid. For simplicity, it will be assumed that the solid is spherical and has an 

isotropic surface stress f. The surface stress exerts a hydrostatic pressure equal to 2f/r  that 

when added to the pressure of the fluid is equal to the pressure of the solid. Thus, the 
Laplace pressure Ap = Ps - Pf (where the subscripts s and f denote solid and fluid, 

respectively) for a solid is expressed as 

AP = 2f/r. (11) 

In the literature, the Laplace pressure for a solid is often incorrectly written as Equation (10) 

rather than as Equation (11). 
As discussed by Gibbs [1], and more recently by Cahn [10], the chemical potential of 

the solid phase will contain the term 2W/r,  where V is the molar volume of the solid. This 

is because a transfer of material from the fluid to the solid phase will change the Laplace 

pressure acting on the solid. However, the chemical potential of the fluid phase will 
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contain the term 2yV/r,  reflecting the fact that the transfer changes the physical area of the 

solid-fluid interface. This leads to the result 

~s" ~f = 2(f-  7)V/r.  (12) 

(Gibbs pointed out that Equation (12) is strictly true only for the case of an incompressible 

solid; because of the small compressibility of most solids, correction terms will in general 

be negligible [1].) It is to be noted that, except for the special case of f = % the chemical 

potentials of the two phases in equilibrium are not the same. Gibbs restricted his attention 

to a single component  solid in equilibrium with a mul t icomponent  fluid. Cahn [10] 

extended the analysis for the case of a mult icomponent solid with both substitutional and 

interstitial components. The analysis is simplified if the Lagrangian coordinate system is 

used. In the case of an interstitial component,  the transfer of atoms from the fluid to the 

solid does not change the Lagrangian surface area but  can induce an elastic strain if the 

component  has a nonzero  partial molar  volume. Cahn showed that for interstitial 

components, the chemical potential is the same for solid and fluid phases (~s - ~f = 0), while 

for the substitutional components the difference is given by Equation (12), where V is now 

the volume of the solid divided by the number of moles of substitutional lattices sites. 

Examples of various thermodynamic derivations employing the correct expression 

for the Laplace pressure of the solid have been given by Cahn [10]. Some of his results are 

given below in order  to illustrate under  what circumstances the equilibrium behavior is 

determined by 7L a n d / o r  f. The Lagrangian measure of the surface free energy is used in 

order to emphasize the fact that in his derivations, Cahn used the Lagrangian coordinate 

system which significantly reduced the complexity of his analysis. The difference between 

the bulk melting temperature T m and the melting temperature  T of a finite-sized single 

component solid is 

T m - T = 2?LV/r (S ! -Ss) , (13) 

where SI and S s are the molar entropies of the liquid and solid, respectively. Since melting 

or freezing a surface layer of atoms changes the Lagrangian area, the relevant surface 

parameter is the surface free energy. Similarly, the solubility of a dilute single component 

solid in a multicomponent fluid is given by 

c = Co exp(2 ?LV/rRT), (13a) 

where c is the concentration in the fluid for a particle of radius r, c o is the saturation 

concentration for large particles, R is the gas constant, and T is the absolute temperature. 
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Again, YL is the appropriate parameter since dissolving a layer from the solid changes the 

Lagrangian area. The equilibrium vapor pressure P for a single component solid sphere of 

radius r, assuming the vapor is monatomic, can be expressed as 

P -- Po exp(2 YLV/rRT), (14) 

where Po is the equilibrium vapor pressure for a solid with a large planar area. Since 

evaporation from the solid changes the Lagrangian area, the equilibrium vapor pressure 
depends on YL- Consideration is now given to the vapor pressure of a dilute interstitial 

component. Assuming the component vaporizes in monatomic form, the vapor pressure P 

is 

P = Po exp(2 f-V/rRT) (15) 

where V is the partial molar volume of the component in the solid. In this case, f is the 

appropriate parameter because transfer of interstitial component atoms does not change 

the Lagrangian area but does work against the surface stress if the component has a 

nonzero partial molar volume. As a final example, the vapor pressure of a dilute 

substitutional component that vaporizes in monatomic form can be expressed as 

P = Po exp(2[YLV + f (V-~¢)]/rRT). (16) 

The term involving TL accounts for the change in Lagrangian area, while the term involving 

f reflects the work performed against the surface stress when the partial molar volume of 

the substitutional component is different from V. 

Many derivations in the literature do not employ the correct expression for the 

Laplace pressure of a solid, using ~, instead of f in Equation (11). As a result, they apply 

only for the special case of f = ~, which is rarely expected. Even though some derivations 

using the incorrect expression for the Laplace pressure for the solid can produce the correct 

result [as is often the case for many derivations of Equations (13) and (14)], it is obviously 

impossible to obtain Equations (15) and (16) without Considering effects of the surface 

stress. 

E. Theoretical Calculations 

Theoretical calculations of surface stresses generally involve calculating the surface 

free energy and its derivative with respect to elastic strain. Both first principles and 

atomistic potential calculations have been attempted. Though some molecular dynamics 
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simulations have been performed that give the variation of the surface stress with 

temperature (for example, see reference 11), the vast majority of results are obtained for a 

temperature of 0 K. It is to be noted that, except for the inert gas crystals, most of the 

surface stresses for low index surfaces of single component materials are positive and of 

the same order of magnitude as the surface free energy. 

(i) Inert Gas Crystals.  Calculations of the surface stress of inert gas crystals date back to 

the work of Shuttleworth [2]. His results suggested that for the (100) oriented surfaces of 

Ne, Ar, Kr, and Xe, the surface stresses were negative and about a factor of ten smaller in 

magnitude than the surface free energy. 

(ii) Metals.  First principle calculations for several clean fcc metal surfaces have been 

performed by Needs and coworkers [9,12-14] using a pseudopotential total energy 

technique that employed a local density approximation for the exchange-correlation 

energy. Values of the surface free energy and surface stress for unreconstructed fcc (111) 

oriented metal surfaces are given in Table 1. It is seen that all surfaces exhibit a tensile 

(positive) surface stress. In order to gain a greater understanding of the physical origin of 

the surface stress, Needs et al. [9] calculated the electrostatic, exchange-correlation, and 

kinetic energy contributions to the surface stress of A1(111). They found that the largest 

contributor was the term associated with the kinetic energy, while the other two terms 

were significantly smaller in magnitude and negative. A similar result was also obtained 

using a jellium model that had the same average electron density as aluminum. Needs et 

al. [9] state that the same general behavior should be expected for metals with relatively 

high electron densities. For metals with lower electron densities (for example, the alkali 

metals), it is expected that the electrostatic, exchange-correlation, and kinetic energy terms 

all contribute significantly to the value of the surface stress. 

TABLE 1. First principles calculations of surface free energy 7 and surface stress f for clean 
unreconstructed (111) oriented fcc metal surfaces [12-14]. 

Metal 7 [J/m2] f [J/m 2] 

A1 0.96 1.25 

Ir 3.26 5.30 

Pt 2.19 5.60 

Au 1.25 2.77 

Pb 0.50 0.82 
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Calculations of the surface stress for various metals have been made  using 

embedded  atom method [15,16] and Finnis-Sinclair [17,18] potentials. Examples of the 

surface free energy and principal surface stresses for certain fcc [15] and bcc [17] metals are 

given in Table 2. A comparison of the values of y and f for (111) oriented surfaces of Au 

TABLE 2. Calculated surface free energy y and principal surface stresses fxx and fyy for 
clean unreconstructed metal surfaces using embedded atom method potentials for the fcc 
metals [15] and Finnis-Sinclair potentials for the bcc metals [17]. Note: For bcc (110) 
surfaces, x = [11-0], y = [001]; for bcc (310) surfaces, x = [130], y = [001]. 

Surface Y [J/m 2] fxx [J/m 2 ] fyy [J/m 2] 

Ni (100) 1.57 1.27 

(111) 1.44 0.43 

Cu (100) 1.29 1.38 

(111) 1.18 0.86 

Ag (100) 0.70 0.82 

(111) 0.62 0.64 

Au (100) 0.92 1.79 

(111) 0.79 1.51 

Pt (100) 1.64 2.69 

(111) 1.44 2.86 

V (100) 1.733 2.424 

(110) 1.473 1.939 

(310) 1.745 2.335 

Nb (100) 1.956 2.532 

(110) 1.669 2.168 

(310) 2.104 2.405 

Ta (100) 2.328 3.249 

(110) 1.980 2.535 

(310) 2.512 3.085 

Mo (100) 2.100 2.241 

(110) 1.829 2.019 

(310) 2.070 2.247 

W (100) 2.924 3.032 

(110) 2.575 2.385 

(310) 3.036 2.833 

0.263 

1.255 

0.301 

1.267 

0.392 

1.647 

0.775 

1.184 

0.271 

1.450 
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and Pt given in Tables 1 and 2 shows that the values obtained using the semi-empirical 

potentials are significantly smaller  than those obta ined  f rom the first principles 

calculations. Recently, modified embedded atom method potentials have been developed 

that yield values of the surface free energy and surface stress closer to the first principles 

values [19]. 

(iii) Semiconductors. First principles calculations, using the pseudopotential  technique 

and employing a local density approximation, were performed by Meade and Vanderbilt 

[20,21] for elemental and chemisorbed (111) oriented surfaces of Si and Ge. Values of the 

surface free energy and the surface stress are listed in Table 3 and are given in units of eV 

per 1 x 1 cell. Meade and Vanderbilt analyzed various factors that affect the value of the 

surface stress and concluded that surface bonding topology, atomic size, and the chemical 

nature of the adsorbate species all make important contributions. 

In the case of (111) surfaces of compounds such as GaAs and InSb, there is an A type 

surface, where the terminating plane is composed of Group Ill atoms, and a B type surface, 

where the terminating plane is composed of Group V atoms. By considering the geometry 

associated with the hybridizat ion of the covalent bonds,  Cahn and Hanneman  [22] 

concluded that an A type surface should be under  compression, while a B type surface 

should be under tension, with the magnitude of the B surface stress being somewhat less 

TABLE 3. Calculated surface free energy ? and surface stress f for Si(111) and Ge(111) 
surfaces [20,21]. Note: faulted = stacking fault at the surface. 

Surface ? [eV/1 x I cell] f [eV/1 x 1 cell] 

Si I x 1 1.45 - 0.54 

I x I faulted 1.51 0.11 

"~3 x ~/3 adatom 1.27 1.70 

2 x 2 adatom 1.24 1.66 

2 x 2 adatom-faulted 1.27 1.89 

Si(Ga) I x I -3.01 -4.45 

~/3 x ~/3 -0.35 1.35 

Ge I x I 1.40 -0.73 

I x I faulted 1.45 -0.26 

2 x 2 adatom 1.20 1.43 

2 x 2 adatom-faulted 1.22 1.67 
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than that for the A surface. They per formed a calculation based on the forces assodated  

with the elastic distortion of the covalent bonds, which they estimated f rom the bulk elastic 

constants, in order  to estimate the (111) surface stresses of various compounds  (see Table 

4). 

TABLE 4. Calculated values of (111) surface stresses for A and B surfaces of III-V 
compounds  [22]. 

Material fA [J/m2] fB[J/m2] 

InSb - 0.6 0.3 

GaAs - 1.0 0.5 

InAs - 0.7 0.3 

GaSb - 0.8 0.4 

AISb - 0.8 0.4 

(iv) Ionic Solids. Several at tempts have been made  over the years to calculate the surface 

stress of ionic solids [2,11,23-25]. The most  commonly  studied surface is the (100) oriented 

surface of alkali halides. It appears  that the results of these calculations are very sensitive 

to the details of the calculation such as the type of structural relaxations that are allowed 

[11]. Early calculations by  Shuttleworth [2] gave negative values for the surface stresses of 

several alkali halides, a result that appears  to be due to the manner  in which the surfaces 

were a l lowed to relax [11]. The current consensus is that most  if not all of the (100) 

oriented alkali halide surfaces display a posit ive surface stress. Table 5 lists values of 

surface stress obtained by Nicholson [23]. 

F. Experimental Measurements 
Stresses of all types are generally determined by measur ing an elastic strain that 

results f rom that stress and then using the appropriate  form of Hooke 's  Law to extract the 

stress value. This is also true for the majority of surface stress measurements.  To illustrate 

how this can be performed,  consider a small solid sphere of radius r that is p resumed to 

have an isotropic surface stress f. According to Equation (11) the Laplace pressure acting on 

this sphere is equal to AP = 2f/r .  This will induce an elastic strain in the solid. Since this 

strain is in response to a hydrostatic pressure, the appropriate  form of Hooke 's  Law, which 

is assumed to be valid for these small solids, is -AP = K¢v = 3Ka, where  K is the bulk 

modulus,  ¢v is the volume strain, and E is the radial strain. The surface stress is computed 

by measuring the radial strain in a sphere of a known radius: 

f = -3Kcr /2 .  (17) 
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Vermaak and coworkers [26-28] measured the radial strain in small spheres of Au, Ag, and 

Pt by  electron diffraction and determined an average surface stress using Equation (17). 

Their results are listed in Table 6. These values are within a factor of two or so of those 

obtained f rom the theoretical calculations for the low index surface stresses (at 0 K) found 

in Tables I a n d / o r  2. 

A thin rectangular  wafer  whose top and bot tom surface have  different surface 

stresses will bend in response to that difference. By measuring the radius of curvature R 

TABLE 5. Calculated values of the surface stress f for (100) surfaces of alkali halides [23]. 

Material f [J /m 2] 

LiF 2.287 

LiCl 1.025 

LiBr 0.827 

LiI 0.558 

NaF 1.031 

NaCl 0.562 

NaBr 0.454 

NaI  0.303 

KF 0.549 

KCI 0.310 

KBr 0.250 

KI 0.172 

RbF 0.427 

RbC1 0.248 

RbBr 0.204 

RbI 0.142 

CsF 0.308 

TABLE 6. Experimental measurements  of surface stress [26-28]. 

Material f [ J /m 2] Temperature [oc] 

Au 1.175 + 0.2 50 

Ag 1.415 + 0.3 55 

Pt 2.574 + 0.4 65 
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of the bent  wafer,  the difference in the surface stresses of the two surfaces, Af, can be 

calculated using the Stoney formula [22,29] 

af  = y t2 /6R,  (18) 

where t is the thickness of the wafer  and Y is the appropr ia te  elastic modulus .  [For an 

isotropic solid, Y = E/(1 - v), where E is Young's modulus  and v is Poisson's ratio.] When 

radius of curvature measurements  of (111) oriented InSb wafers obtained by Hanneman  et 

al. [30] were used in Equation (18), a value of Af of 0.95 to 1.4 J / m  2 was obtained [22]. This 

result is in good agreement  with the difference in the calculated values for the A and B 

surfaces of InSb given in Table 4. 

Recently, Martinez et al. [31] used the wafer bending technique to obtain the surface 

stress of the reconstructed 7 x 7 Si(111) surface. One third of a monolayer  of Ga was 

deposited onto one side of a wafer with initially clean Si(111) 7 x 7 surfaces. The wafer was 

then heated until the Si(Ga) surface displayed a sharp transition to a "43 x "43 structure as 

determined by  low energy electron diffraction. The wafer was observed to bend due to the 

difference in the surface stresses of the 7 x 7 and the ~/3 x "43 surfaces, and the measured 

surface stress difference was 1.02 eV/(1 x I cell). If the theoretical calculation of 1.35 eV/(1 

x 1 cell) for the q 3 x ~/3 Si(Ga) surface given in Table 3 is added  to this difference, the 

absolute surface stress of the clean 7 x 7 surface is estimated to be about 2.37 eV/(1 x I cell). 

Similar exper iments  were  pe r fo rmed  by  Schell-Sorokin and T romp  [31a] in order  to 

measure  the difference in the average surface stress between a clean Si(100) surface and one 

with adsorbed As or Ge. The measured value for the difference in the surface stresses of 2 

x 1 Si and 2 x 1 Si(As) surfaces of 1.2 eV/(1 x 1 cell) was in reasonable agreement  with 

theoretical calculation [31b]. 

Anomal ies  in the dispersion behavior  of surface phonons  of Ni(110) have been 

attr ibuted to surface stress effects [32]. From an analysis of the surface phonon spectra, 

surface stress values of 4.2 J / m  2 and 2.1 J / m  2 were  determined for the [001] and [11-0] 

directions, respectively. 

3. Interface Stress 

As with the solid-vapor and solid-liquid interfaces, there is a stress associated with a 

solid-solid interface. In fact, as pointed out by Brooks [4], a general interface has associated 

with it two interface stresses corresponding to the two solid phases that are separated by 
the interface. Following Cahn and Larch4 [33], one can define an interface stress gij 

corresponding to the reversible work  per  unit area needed to strain one of the phases  
relative to the other, and another interface stress hij associated with the reversible work per 
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unit area needed to equally stretch both phases. As with the case of a free solid surface, 

there are different ways of defining the area of the interface. In the general case where both 

types of strains are possible, there is some advantage to using a Lagrangian coordinate 

system (see Section 2). Consider two phases 1 and 2 separated by an initially coherent 

interface. Let eij denote the strain resulting from deforming phase 2 relative to phase 1, 

where Eij = 0 represents a lattice-matched interface. A second strain eij is defined as that 

resulting from equally stretching both phases. Using the Lagrangian area of phase I as the 

reference area, and letting (~L represent  the interfacial free energy measured  in this 

Lagrangian coordinate system, the surface stresses can be defined as 

gij = 0(~L/~Eij, (19) 

and 

hij = ~L/0ei j .  (20) 

The interfacial free energy aL(Ei~eij) for a general state of strain and interface structure can 

be expressed up to first order in the strains as 

OL(Ei~ij) = gL(0,0) + gij~ij + hijeij. (21) 

Consider a small spherical solid inclusion denoted as phase 2 embedded  in an 

infinite solid matrix denoted as phase I (whose Lagrangian area is taken as the reference 

area). It will be assumed that the phases and the interface stresses g and h are isotropic. 

Let the reference states for the two phases be their respective stress-free states at zero 

pressure. Suppose that in these states the inclusion would have a radius r 2 and the matrix 

a hole of radius r 1 with r 2 = (1 + ~)r 1. Cahn and Larch6 [33] have shown that at equilibrium 

the true physical radius r of the hole is 

r --- r 1 + M(r l~-  2h/3K2), (22) 

and the pressure in the inclusion is 

P = M(2h/r  1 + 4G1~), (23) 

where G 1 is the shear modulus of the matrix, K2 is the bulk modulus of the inclusion, and 

M is an elastic accommodation factor equal to 3K2/(4G 1 + 3K2). The factor M can range 
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from 0, when  K 2 = 0 (corresponding to a void) and P = 0, to 1, when  G1 = 0 (corresponding 

to a liquid) and P = 2h/r1 ,  analogous to Equation (11). For intermediate values of M, the 

pressure P is composed of two terms: one reflecting the effect of the surface stress h and the 

other reflecting the fact that, in contrast to the case of a particle in a fluid, the matrix can 

sustain a shear stress. As was the situation for equilibrium of a small solid immersed  in an 

infinite fluid, the chemical potentials of phases I and 2 are not equal. For example, suppose 

that phase  1 is composed  of a single component  i that has precipitated f rom a binary 

phase (phase 2). The difference in the chemical potentials of i between the two phases is 

(ignoring higher order strain energy terms that are small) 

~1 - g2 = (P - 2oL/rl)V, (24) 

where V is the stress-free molar  volume of phase I [33]. 

Al though the formulat ion of interface stresses given by Cahn and Larch6 is useful 

for m a n y  types of problems (for example,  the thermodynamics  of solid state nucleation 

[33]), a somewhat  different approach will be given below that will facilitate the discussion 

of interface stress effects in thin films as given in Section 4. 

A. Interface Stress Associated with  Stretching One Phase Relative to the Other  

For an interface between two crystals, the strain associated with the interface stress g 

results in a change of the interface structure. As an example, consider an epitaxial thin film 

on a semi-infinite rigid substrate. Changing the misfit dislocation density at the interface 

allows the lattice parameter  of the film to be varied while keeping the lattice parameter  of 

the substrate fixed. The interface stress g can be interpreted as the specific surface work 

associated with changing the dislocation density. In order to illustrate this, consider as the 

reference state a noncoherent  interface where both the film and substrate have their bulk 

lattice parameters.  Let ~m be defined as the misfit strain equal to (a s - af ) /af,  where a s and 

af are the bulk lattice parameters  of the substrate and film, respectively, and let ~ represent 

the in-plane strain of the film measured with respect to its bulk state. (Note that this strain 

is different f rom the strain ~ defined using the Cahn-Larch6 formalism). When the film is 

strained by  an amount  E, the strain that needs to be accommodated  by misfit dislocations is 

(E m - E). For simplicity, it will be assumed that the misfit dislocations are edge dislocations 

with their Burgers vectors in the plane of the interface and are arranged in a square grid. 

The interface energy per unit area ~ of this dislocation grid can be expressed as [34] 

a = Oo[1 - (El1+ ~22)/2~m], (25) 

where the strain components  •11 = E22 = c, and 
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GO = Cb l  era I [ ln( t /b)  +l ] /2x .  (26) 

In Equation (26), b is the magnitude of the Burgers vector, t is the film thickness, and C is 

an effective elastic modulus  equal to 2[(1 - v f ) / G f  + (1 - Vs)/Gs] -1, where vf and v s are 

Poisson's ratio of the film and substrate, and Gf and G s are the shear moduli of the film and 

substrate. 

Taking the interface stress g as the work per unit physical area associated with 

introducing a strain Ell holding c22 constant in a film initially with £11 = £22 = 0 leads to 

g = Oo - 0o/o~11) ] E11 = ~ 2 2  = 0 = O 0  [1  - -  1/(2em)]. (27) 

Defined in this way, the change in interfacial free energy Ao due  to the introduction of a 

coherency strain 811 in an initially noncoherent interface is 

Ae = (g - c~) En. (28) 

B. Interface Stress Associated with Stretching Both Phases Equally 

In the very few theoretical or experimental studies that have been performed to 
investigate interface stresses, virtually all have been devoted to measuring hij, the work per 

unit area needed to stretch an interface by elastically straining both phases on each side of 
that interface by the same amount  eij. Proceeding in a manner  analogous to that used to 

derive Equation (5), this stress can be related to the interfacial free energy o by 

hij = o 8ij + 0o/0eij. (29) 

In Equation (29), hij is the work per unit of actual physical area of interface as it changes 

with strain. Gumbsch and Daw [15] have calculated values for this type of interface stress 

for (100) and (111) metal-metal  interfaces using s tandard  embedded  atom method  

potentials. Their results are given in Table 7. As was discussed in Section 2, calculations 

for free solid surfaces using embedded  atom me thod  potentials  can significantly 

underestimate values of surface properties compared to those obtained from first principles 

calculations. Recently, embedded atom method potentials have been modified so that they 

give values for the free surface properties approximately equal to those obtained by first 

principles calculations [19]. These potentials were then used to evaluate interface stresses. 

For the case of a noncoherent  Ag-Ni (111) interface, a value of 1 .32J /m 2 was obtained 

which is significantly larger than the value given in Table 7. However ,  both values are of 

opposite sign to that measured by experiment (see below). 
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A few attempts have been made to experimentally measure the interface stress h in 

layered materials. Crystalline polymers and organic crystals have a lamellar structure and 

display variations in their lattice parameters that are inversely proportional with lamella 

thickness. This behavior can be attributed to the effects of an interface stress [35]. The 

physical origin of this interface stress in crystalline polymers can be understood in the 

following manner. Figure 3 schematically shows a chain folded molecule in a lamella of a 

crystalline polymer.  For a thick lamella with very long stem lengths, the stems have an 

equilibrium separation determined by the balance of van der Waals attractive forces and 

intermolecular repulsive forces. The chain folds are high energy configurations that would 

attempt to straighten out  if they were not constrained by the stems. Thus, the chain folds at 

the interface can be considered under  compression, and the interfaces therefore display a 

negative interface stress. 

The manner  in which the interface stress hij can be obtained by lattice parameter 

measurements is now given [35]. The virtual work dw resulting from a variation in elastic 
strain deij of a lamella is 

dw = A(tsij + hij) deij, (3O) 

where t is the lamella thickness and sij is the volume elastic stress. At equilibrium, dw = 0, 

so that 

h ~ = - t s ~ = - t C ~ e ~ ,  (31) 

Table 7 Calculations of interface stress h for noncoherent metal-metal interfaces [15]. 

Bilayer A/B  h for (100) interface [J/m 2] h for (111) interface [J/m 2] 

Ag/Ni  0.83 0.32 

A u / N i  0.71 -0.08 

A g / C u  0.53 0.32 

A u / C u  0.33 0.01 

P t /Ni  0.04 - 0.57 
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Chain 

Fold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Stem 

Figure 3. Schematic diagram of a molecule in a crystalline polymer lamelIa. The chain 
folds at the lamella interfaces lead to a compressive interface stress. 

where Cijkl is the elastic stiffness tensor. Rearranging this so that strain is the dependent  

variable gives 

eij = -Sijkl hkl/ t ,  (32) 

where Sijkl is the elastic compliance tensor. The strain relative to an infinitely thick lamella 

should be proportional to the lamella thickness. This behavior has been observed in x-ray 

diffraction experiments of orthorhombic n-paraffins [36], melt crystallized and solution 

crystall ized polye thylene  [37], and crystalline random copolymers  composed  of 
tetrafluoroethylene and hexafluoropropylene [38]. 

In order to simplify the analysis, let the surface stress tensor hij be measured with 

respect to the principal axes, so that the off-diagonal components are zero. Expanding and 
rearranging Equation (32) gives 

h I = - t  (S22el - S12e2)/(SllS22 - S122), (33) 

h 2 = - t  (-S12el + Slle2)/(SllS22 - $122), (34) 
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where matrix notation has been used (11 --~ 1 and 22 --~ 2). 

surface, 

In the case of an isotropic 

h = -tYe, (35) 

where Y is the biaxial modulus equal to 1/(Sll + S12). Equations (33) and (34) were used to 

obtain interface stresses for crystalline polymers and n-paraffins (see Table 8). In the case 

of polyethylene, the interface stresses had a strong temperature dependence, presumably a 

result of significant entropic effects. 
Ruud et al. [39,40] have determined interface stresses in an artificially multilayered 

thin film by measuring the amount  of bending induced by the film in a much thicker 

substrate (see Table 9). It should be noted that the experimentally measured value for 

Ag(111)-Ni(111) is of opposite sign to that predicted theoretically (see Table 7). The reason 

for this major discrepancy is not clear. A similar study by Bain et al. [41] investigating 

strains in Mo(110)-Ni(111) multi layered films did not reveal any significant interface 

stresses. However, it has been suggested [39,40] that this was possibly due to intermixing 

between the layers. 

TABLE 8. Experimental values of the interface stress hij in materials that crystallize with a 
lamellar structure [35]. 

Material hij [J/m 2] Temperature [oc] 

Melt-Crystallized - 0.414, - 0.168 25 
Polyethylene 

n-Paraffins - 0.472, - 0.364 23 

Random Copolymer of 
Tetrafluoroethylene and 
Hexafluoropropylene 

- 0.2 300 

TABLE 9. Experimentally measured interface stress h of multilayered thin films [39,40,42]. 

Interface h [J/m 2] 

Au(111) / amorphous A1203 

Ag111)/Ni (111) 

1.13 

-2.27 
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Though the discussion so far has been limited to certain types of boundaries, 

interface stresses are associated with all types of solid-solid interfaces, such as grain 

boundaries and antiphase domain boundaries. One possible way to experimentally 

determine the interface stress of grain boundaries is by measuring the elastic strain it 

induces in a nanocrystalline material [see Equation (39)]. Cahn [43] has analyzed the 

critical behavior of the interfacial free energy and the interface stress of antiphase domain 

boundaries in ordered binary alloys with the B2 (~-CuZn) structure. An interface stress h 

will be present if the equilibrium lattice parameter is a function of the long range order 

parameter. Unlike the interfacial free energy a, which is always positive, the interface 

stress h can be positive or negative. With respect to the critical behavior near the order- 

disorder transition temperature To Cahn [43] showed that the classical (mean field) theory 

critical exponent for a is 3/2 [that is, ~ is proportional to (Tc - T)3/2]. The critical exponent 

for cr according to modern critical theory is 1.3, while the exponents for h according to 

classical and modern critical theory are 1/2 and 0.0, respectively [43]. Thus, the magnitude 

of h / a  tends to infinite as the critical point is approached. 

4. Examples  of  Surface  and Interface Stress 
Effects  in  T h i n  Fi lms  

In this section, recent investigations concerning the effects of surface and interface 

stresses on the structure and properties of thin films will be presented. Such stresses are 

often an important factor in determining thin film behavior because of the high surface area 

to volume ratio characteristic of these materials. It is shown that surface and interface 

stresses can result in a significant intrinsic stress, induce higher order elastic behavior, and 

affect the thermodynamics of epitaxy. Because of its similarity to the epitaxy problem, a 

discussion of surface reconstructions in (111) oriented fcc metal surfaces is also given. 

A. Strains and Elastic Modulus Variations in Ultrathin and Artificially Multilayered 

Films 

Consider the in-plane elastic strains induced by the free surface stress f in a free- 

standing thin film of thickness t. The same type of analysis used to obtain Equation (35) 

would in this case lead to [44,45] 

~ = - ~ / Y t .  (36) 

The factor of 2 accounts for the effects of both the top and bottom surfaces. Using typical 

values for metals of f = 1 J /m 2 and Y = 1011 J /m 3 leads to an order of magnitude estimate 
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of the induced compressive in-plane strain of a = -0.02/t, where t is measured in nm. 

Therefore, a 10 nm film would have an in-plane strain of about -0.2%, while a 2 nm thick 

film would have a strain of -1%. In principle, the surface stress can induce an elastic strain 

greatly in excess of the yield strain obtained by  an externally applied stress. These large 

strains produce  atomic displacements that are well out  of the Hookean region of the 

interatomic potentials, so that higher order elastic effects should be manifested. Based on 

the theoretical calculations by Banerjea and Smith [46], the in-plane biaxial modulus of a 

Cu(100) disk depends on the in-plane strain in the following manner [44]: 

Y(~) = Y(O) [1 - Be], (37) 

where B, which depends on the third order elastic constants, has a value of 15 to 25. Thus, 

a -1% strain in a Cu(100) free standing film would increase the apparent modulus by about 

15 to 25%. A more complete analysis gives [19] 

Y = Yo + 2f(B + 211 - 3 + f ' / f ) / t  (38) 

where Yo is the modulus  value for a bulk material, 11 is a factor that depends on Poisson's 

ratio and is close to unity, and f ' is equal to 3f/Oe. Calculations of f ', which can be 

considered an "excess surface modulus," have shown that it can be negative [19,47,48]. For 

many (100) and (111) oriented fcc metal surfaces, the magnitude of f ' / f  is significantly 

smaller than B [19], so that, according to Equation (38), the modulus  should always be 

enhanced when t is reduced below about 5 nm. 

Enhancements of nearly 50% in the biaxial modulus,  as measured experimentally 

using a bulge test, were reported for free standing single crystal thin films of Au(100) when 

the thickness was reduced to about 100 nm [49]. If Equation (38) were used to explain this 

behavior, a surface stress of order  100 J / m  2 would be needed. Actually, the apparent 

enhancement  is probably  an experimental  artifact. It has been shown [50,51] that 

erroneously large values by factors of 2 or more in the elastic modulus of thin films will be 

obtained f rom a thin film bulge test if the films are wrinkled.  It is not easy to 

experimental ly investigate free standing films with thicknesses less than 5 nm. It is 

however relatively easy to s tudy them in a computer simulation. Elastic strains of order 

1% and significant biaxial modulus enhancements were obtained in computer simulations 

of ultrathin films [19,52-54] that were in excellent agreement with Equations (36) and (38). 

Al though  exper imenta l  measurements  on ul t ra thin  free s tanding films are 

problematical, similar lattice parameter changes [19,44,45] and modulus variations [19,44] 

are expected in artificially multilayered (superlattice) thin films owing to interface stress 

effects. In this case, Equations (36) and (38) would still apply, except that f and f '  should be 
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replaced with h and h', and t represents the bilayer repeat length. For systems with 

sufficiently large interface stresses, strains of order 1% proportional to l / t ,  and modulus 

enhancements or reductions (depending on the sign of h) of order 20% are expected when 

the bilayer thicknesses are reduced below 5 nm. This behavior has in fact been observed 

experimentally [55]. The first experimental reports of modulus variations claimed 

enhancements of 100% or more (such enhancements were termed the "supermodulus 

effect"). However, the moduli were measured by the bulge test, and it is likely that the 

apparent modulus enhancements were artifacts of the measurement [50,51]. Recent 

measurements, using much more reliable ultrasonic methods, indicate that modulus 

variations involving both enhancements and reductions of order 20% are found for several 

multilayered metal films such as Cu-Nb [56]. Concomitant with these modulus variations 

are elastic strains proportional to 1/t  that can be as large as a few percent. Though several 

theories have been proposed to explain this behavior, it has been most successfully 

modeled as a result of interface stress effects [19,44]. 

Large elastic strains and modulus variations would also be expected for other types 

of nanophase materials [35]. For example, in single component nanocrystaUine metals and 

ceramics, if the grains are modeled as spheres, then, by analogy with Equation (17), there 

will be a strain dependence on the grain size d = 2r given by 

= - 4h/3Kd, (39) 

where h is the interface stress associated with the grain boundaries and K is the bulk 

modulus. Because of higher order elastic effects induced by this strain, the bulk modulus 

will depend on d [57]: 

K(d) = K o + 4h (Bb -1 + h' /h)/3d,  (40) 

where K o is the bulk modulus for a bulk material and Bb is the factor for the bulk modulus 

that is analogous to the factor B for the biaxial modulus in Equation (37). Other properties 

that depend on elastic strain should also be affected by interface stress effects. For 

example, since the oscillatory nature of the Ruderman-Kittel-Kasuya-Yosida (RKKY) 

interaction is strongly affected by changes in the interatomic distance, interface stress 

effects in nanocrystalline materials could result in novel magnetic behavior. 

B. Intrinsic Stress 

Almost all thin films are deposited in a state of stress. These stresses develop 
because certain processes occur which would result in the film changing its in-plane 

dimensions if it were not attached to the substrate [58]. A well known example is thermal 
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stress which develops in response to a change in temperature when the thermal expansion 

coeffidents of the film and substrate are different. Intrinsic stresses are defined as those 

stresses that  develop dur ing  film growth. Various mechanisms for intrinsic stress 

generation have been proposed  [58]. One possibility that has often been mentioned,  

though it has been little investigated, is intrinsic stress generation due to effects of the free 

surface stress f. (Many workers refer to this idea as based on "crystal size effects.") There 

appears to be some confusion in the literature as to the precise formulation of this effect, its 

relative importance, and even the sign of the intrinsic stresses that are developed. Because 

of this a relatively detailed discussion is presented below. 

Consider an isotropic film of thickness t that is constrained to have its bulk lattice 

parameter.  Assume that there is not a strong film-substrate interaction so that f >> g. 

Suppose that when the constraint is removed, the film elastically deforms on the substrate 

in response to the surface stress f. Letting ~ represent the resultant elastic in-plane radial 

strain, the elastic energy per unit area in the film is given by YtE 2, where Y is the biaxial 

modulus equal to E/(1 - v), where E is Young's modulus and v is Poisson's ratio. The work 

per unit area performed against the surface stress can be expressed as 2f¢. The total work 

per unit area is therefore 

w --- 2f¢ + Yt¢ 2. (41) 

The equilibrium strain ¢* is determined by setting 3wl3~ = 0: 

~*(0 = - f / Y t .  (42) 

Based on this result, it has been sometimes argued that the intrinsic stress resulting from 

opposing this deformation would equal -Y  e*(t), and therefore should be of the same sign 

as f and be inversely proportional to t. However,  this is not the correct physical picture 

with regard to generating an intrinsic stress in a film. A film on a substrate that displays an 

equilibrium strain relative to bulk does not have to be under  a state of intrinsic stress. 

Instead, if at some point during deposition the film is firmly attached to the substrate, an 

intrinsic stress will subsequently be generated by the surface stress as the film thickness 

increases. 

This idea can be made quantitative in the following manner. Consider a film that 

has become firmly attached to the substrate at a thickness to. Assuming no intrinsic stress 

generating mechanisms have operated, the film would be deposited in a stress-free state 

with its equilibrium in-plane lattice parameter equal to ao[1 + a*(to)], where ao is the bulk 

lattice parameter.  During further  deposition, if the film were not constrained by the 

substrate, the equilibrium strain relative to bulk ¢*(t) would be given by Equation (42), and 
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the equilibrium strain relative to that of the film of thickness to would be Ae = e*(0 - e*(to). 

However,  since the film of thickness to was constrained by the substrate such that it could 

not elastically deform in the plane of the film, then as the film becomes thicker, the 

substrate must  impose an in-plane biaxial stress to oppose the latent strain A~. As a result, 

an intrinsic stress s is generated in the film due to surface stress effects equal to 

s(t) = -YAe= f (1/t  - 1/to). (43) 

As t ---) oo, the intrinsic stress approaches a value of s = - f / t o .  Even though the above 

analysis considered just the effects of the surface stress, and it was assumed that the film of 

thickness to was stress-free, the result given in Equation (43) is nevertheless of general 

validity. That is, Equation (43) represents the contribution to the overall intrinsic stress of 

the film result ing f rom the surface stress, independen t  of other  stress generat ing 

mechanisms (and even if the lattice parameter is different from ao[1 + E*(to)] when the film 

thickness is to). 

Consideration is now given to the proper  value of the film thickness to. It would 

appear  plausible that growing crystallites first become constrained when substantial 

impingement  occurs. The thickness at which this occurs would  depend in part  on the 

thermodynamics of the film-substrate interface; in particular, it would  depend on how 

well the film wets the substrate. The thickness to would also be dependent  in large part on 

kinetic factors, such as the deposition rate and the surface mobility of the adatoms (which 

in turn depends on the deposition temperature). Experimental studies have indicated that 

a metal film deposited by physical vapor deposition can become continuous at a thickness 

as small as 1 nm [59]. Referring to Equation (43), and using reasonable values of f = 2 N/m 
and to = 5 nm, the magnitude of the intrinsic stress generated when t >> to is of order -4  x 

108 Pa. It should be noted that the intrinsic stress has the opposite sign of the surface 

stress. 

Since most experimental and theoretical investigations of surface stresses for metals 

give posi t ive values,  the p roposed  mechanism would  be expected to p roduce  a 

compressive intrinsic stress in metallic films. It is generally found that at the end of 

nonepitaxial growth, metallic films exhibit a tensile intrinsic stress. However ,  it is often 

observed during the early stages of deposition that the film is initially deposited with a 

compressive stress which increases in magnitude with increasing thickness, up to a certain 

thickness, after which a competing tensile stress generating mechanism appears and 

eventually dominates. Two popular  models to explain generation of a tensile stress in 

metal films are the grain growth model and the grain boundary relaxation model [58]. In 

both processes the total grain boundary volume reduces with time. This reduction would 

lead to a densification of the film were it not constrained by the substrate. Kinetic analyses 
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of these processes have  been given by Doerner and Nix [58]. They showed that in both 

cases a significant a m o u n t  of t ime can elapse before  a percept ible  tensile stress is 

developed. During this t ime the film can grow to a thickness many  times larger than t o. As 

a result, a compressive intrinsic stress due to the surface stress can develop before the other 

processes generate a compet ing tensile stress that eventually dominates.  (Of course, for 

some thin films the surface stress could be negative; in those cases, the intrinsic stress 

generated by  the surface stress would be tensile.) 

In the above discussion, the effect of the f i lm-substrate interface stress was not 

considered. If there is a strong epitaxial relationship between a film and substrate, this 

interface stress g could of course be very impor tant  and in fact dominate  the behavior. 

However,  if there is not a strong epitaxial relationship (for example,  metal deposition on an 

amorphous  substrate), then the interface stress is expected to be much  less important.  In 

either case, the effect of the f i lm-substrate interface stress can be formally taken into 

account by considering f to be a net surface stress equal to the sum of the free surface stress 

and the film-substrate interface stress. If the film is polycrystalline, the interface stress h of 

the grain boundaries  could contribute a term to the intrinsic stress. In the case of films with 

a columnar  microstructure,  this term will depend on grain size and not on film thickness 

[57]. As a result, the grain boundary  interface stress will not play a role in intrinsic stress 

deve lopment  until significant grain growth occurs, and it is therefore not expected to be 

important  during the early stages of deposition. 

C. Thermodynamics of Epitaxy 
When an epitaxial film is deposited by a layer-by-layer growth process onto a thick 

substrate that has a lattice parameter  different from that of the film, the misfit strain can be 

accommodated  by  straining the film in order to bring it into partial or complete registry 

with the substrate a n d / o r  by generating misfit dislocations at the film-substrate interface. 

If this misfit  strain is not too large, there is a critical film thickness below which the 

equilibrium f i lm-subst ra te  interface is coherent, and above which it is thermodynamical ly 

favorable for some of the misfit to be accommodated by interfacial dislocations. 

A simple model  [60] for the critical thickness for epitaxy will now be presented that 

is based on one given by  Matthews [34], except that it is extended to include surface stress 

effects. Let E be the uniform radial strain in the film relative to its bulk equilibrium state. 

Three separa te  work  terms can be considered: the vo lume  elastic energy,  the work 

associated with changing the defect structure at the film-substrate interface, and the work 

to stretch the film surface. The elastic energy per  unit area can be expressed as Yt~ 2. 

According to Equation (28), the change in the film-substrate interface energy per unit area 

can be expressed as 2(g - ~o)¢. The work  per unit area to stretch the film surface can be 

expressed as 2 ~ / ~  ~ = 2(f - ~)e. (This term was incorrectly given as 2f~ in reference 60). 



w = Yt~ 2 + 2(g - (~o)E + 2(f - ~/)~. (44) 

(45) 

Most analyses of the thermodynamics  of epitaxy only consider effects of the first two terms 

on the right hand side of Equation (44). Such analyses are incomplete as they ignore the 

effects of the free surface stress which can be significant. The equilibrium strain E* can be 

determined by  minimizing w with respect to E: 

E* = - ( f  + g - 7 - ao) /Yt .  

(46) 

The critical thickness can be obtained by setting ~* equal to the misfit strain ~m: 

tc = - ( f  + g - 7 -  Oo)/Yem. 

Rgure4 .  

Figure 4 gives plots of the critical thickness for epi taxy as a function of the 

magni tude of the misfit strain. The parameters  g and a o  were calculated using Equations 

(26) and (27) and employing  typical values for metals and semiconductors  for the shear 

constants and the Burgers vector. The difference between the surface stress and surface 

free energy was taken to be f - 7 = 2 J / m  2. Curve (a) is for Em > 0, and curve (c) is for em < 

0. Curve (b) was obtained by setting f = 7; it is representative of previous models  that have 

ignored the effects of the surface stress. Comparison of curves (a) and (c) shows that at the 
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The factors of  2 in the second and third terms reflect the two-dimensional  nature  of the 

planar strain. The total work  per  unit area can be expressed as 

Misfit Strain leml (%) 
~o 

Critical thickness for epitaxy as a function of misfit strain [60]. 

(a) f - T = 2 J/m2, em > O; Co) f- 7 = O; (c) f- y = 2 J/m 2, em < O. 
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larger magni tude misfits, inclusion of the surface stress term in the analysis can change the 

critical thickness by almost an order  of magni tude when the sign of the misfit strain is 

changed. 

D. Surface Reconstructions of Clean Metal Surfaces 

Recently, it has been found that clean (111) oriented Pt surfaces reconstruct above 

0.65 Tm, where Tm is the melting temperature [61]. The reconstruction can be described as 

a continuous commensurate-incommensurate transformation in which the surface layer is 

isotropically compressed relative to the underlying bulk lattice. A similar reconstruction 

occurring above 0.65 Tmhas  also been reported for (111) oriented Au surfaces [62]. At 

lower temperatures,  a 23 x ",/3 reconstruction has been observed in Au(111) that can be 

described as an insertion of an extra row of atoms every 23 rows on the surface [63]. This 

one-dimensional relaxation represents a surface compression of about 4%. All other clean 

(111) fcc metal surfaces studied (Ir, A1, Ni, etc.) have not displayed a surface reconstruction. 

A theory  for surface reconstruct ion of fcc metal surfaces using the Frenkel- 

Kontorova model  for a one-dimensional surface was proposed by Needs et al. [9]. The 

surface was modeled as a linear array of atoms connected by springs, and the atoms sat in a 

sinusoidal potential that represented the underlying lattice. The stability of the surface was 

characterized by a parameter P which, for the case of a (100) oriented surface of a simple 

cubic metal, was given by [9] 

P = rca(f - 7)/2(2kW) 1/2, (47) 

where a is the lattice parameter, f and T are the surface stress and surface free energy of the 

unreconstructed surface, k is a spring constant associated with surface bonds, and W is the 

peak- to -peak  amplitude of the sinusoidal surface-substrate interaction potential. If 

I PI < 1, an unreconst ructed  surface is stable; otherwise,  a surface reconstruction is 

expected. This model  was applied with appropriate  modifications to (111) oriented 

surfaces of Au, Pt, Ir, and A1. Although it was expected that accurate values for f and ~, 

could be obtained from their first principles calculations, Needs et al. found that values for 

k and especially for W could only be crudely estimated. Their results suggested that all of 

the metals, including Au and Pt, should be stable to reconstruction. The lack of agreement 

with exper imental  observat ion was at tr ibuted to the uncertainty concerning k and 

especially W. Nevertheless, the model clearly demonstrated that although there may be a 

driving force for reconstruction, the energy cost associated with the loss of structural 

coherence of the surface with the underlying bulk is generally too large to make the 

structural transition thermodynamically favorable. 
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Her r ing  [3] p r o p o s e d  a c o n t i n u u m  mode l  to ana lyze  this type  of surface  

reconstruction that was  recently rederived and extended [64]. Consideration will be given 

first to the one-dimensional  compress ion associated with the low tempera tu re  surface 

reconstruction of Au(111). As with the epitaxy model,  there are three terms whose sum 

represents  the work  per  unit  area needed  to in t roduce an elastic strain in the top 

monolayer.  First, there is a term that takes into account the elastic energy of the surface 

layer that is strained by  an amount  E < 0 in one direction, but is constrained not to deform 

in the perpendicular  in-plane direction. This elastic energy can be expressed as E¢2t/2(1 - 

v2), where t is the surface layer thickness. The second term is associated with the energy of 

the noncoherent  interface between the strained surface atoms and the under lying lattice. 

This term can be taken as the energy needed to form a periodic row of "surface" edge 

dislocations that accommodates  the in-plane misfit strain ¢ and can be expressed [64] as 

a G b  I ~ I = - cd3b¢. ,  where G is the shear modulus  and a = [4~(1 - v)]-l, where v is Poisson's 

ratio. Lastly, there is a term associated with the change in the surface free energy owing to 

the elastic strain e and concomitant change in the surface density of atoms which can be 

expressed as (f - y) e. The total work associated with the transformation f rom a structurally 

coherent surface to a relaxed surface of unit area can be written as 

w = Et82/2(1 - v 2) - (xGbE + (f - y)¢. (48) 

An instability criterion can be established by  setting w < 0. Restricting attention to the 

onset of the reconstruction transition (a --~ 0) leads to the following condition for the surface 

to be unstable [3,64]: 

(f - T)/Gb > (~. (49) 

The parameter  J3 -= (f - y ) / G b  can be interpreted as the change in energy per  unit elastic 

strain of the surface divided by an elastic energy related to the formation of a dislocation. 

When 13 is less than the critical value a = 0.1, the unreconstructed surface is stable. If [3 

exceeds the critical value, the surface is predicted to reconstruct. 

The above  analysis applies  to a surface reconstruct ion associated with  a one-  

dimensional compression. The total work associated with a two-dimensional  compression 

can be expressed as 

w = Yte 2 - 20cGbe + 2 ( f -  y)~, (50) 

where Y is the biaxial modulus ,  and the factors of 2 reflect the two-dimensional  nature of 

the total strain. This equat ion is essentially equivalent  to Equation (44) with the misfit 
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strain e m  set equal to zero. It should be noted that setting w < 0 for e --~ 0 leads to the same 

stability criterion as for the one-dimensional case. 

The instability criterion developed above  will now be compared  to experimental  

observation. Considerat ion is first given to the set of metals considered by  Needs and 

coworkers: A1, Ir, Pt, and Au. The parameter  ~ was computed  [64] for each surface using 

the values of the surface free energy and the surface stress given in Table 1, and is given in 

Tabld 10. As can be seen, the criterion [~ > 0.1 correctly predicts which metals have been 

observed to display a surface reconstruction (Au and Pt). Although Au and Ir have about 

the same driving force for surface reconstruction, equal to (f - 7), Ir has a shear modulus  

almost an order  of magni tude  larger than that of Au. As a result, the opposing force for 

reconstruction, the energy to create a noncoherent  interface, is large enough to keep the 

unreconstructed surface of Ir stable but small enough to allow Au to reconstruct. The same 

calculation for ~ was also performed for Pb and is given in Table 10. Since ~ exceeds the 

critical value of 0.1 and is close to that for Au and Pt, the model  predicts that the clean 

Pb(111) surface should reconstruct [64]. This surface has not been studied in detail, so it is 

not known if it displays the predicted reconstruction. 

TABLE 10. Calculated values for the stability parameter  ~ for clean (111) fcc metal surfaces 

[641. 

Metal B 
AI 0.041 

Ir 0.034 

Pt 0.19 

Au 0.19 

Pb 0.17 

It is possible to derive f rom the continuum model an expression for the equilibrium 

amount  of elastic strain associated with the reconstruction. This can be obtained by setting 

3w/DE = 0. From Equation (48) the equilibrium strain for the one-dimensional compression 

is 

e = (aGb + 7 - f)(1 - v2)/Et. (51) 

Using Equation (51), a calculation for the strain in the low tempera ture  reconstruction of 

Au gives e = - 3 %. This can be considered in reasonable agreement  with the experimental 
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value of - 4 %. For the case of the two-dimensional compression associated with the high 

temperature reconstructions, the equilibrium strain would be 

= (0cGb + y - f)/Yt. (52) 

The fact that exper imenta l ly  the strain appears  to vary  cont inuously  for the high 

temperature reconstructions of Au(111) and Pt(111) may indicate a significant dependence 

of f and ~/on temperature. 

Other metal surface reconstructions may be attributable to surface stress effects. For 

example, it appears that it is thermodynamically favorable for several clean (100) oriented 

fcc metal surfaces to reconstruct by having the top layer of atoms transform from a square 

lattice arrangement to a hexagonal (111)-type arrangement due to the reduction in surface 

free energy [64]. However ,  this type of reconstruction has only been observed for a few 

metals (Au, Pt, Ir). Interestingly, the inequality (f - y ) / G b  > a appears to successfully 

predict which (100) oriented surfaces will reconstruct in this manner  [64]. One possible 

reason for this is that surface stress effects may enhance the kinetics of the transformation 

by allowing the (100) surface to overcome an activation barrier by first transforming to an 

intermediate state in which the ideal I x I surface experiences an in-plane compression. 

Based on a suggestion by  Orowan [65], Andreussi  and Gurt in  [66] developed a 

continuum model to describe the "buckling" (or "wrinkling") of a free surface due to surface 

stress effects. They showed that when the sum of the surface stress f and the "surface 

modulus" f ' is less than zero, there is a driving force for the surface to buckle. The 

predicted wavelength and amplitude of the buckling was found to be of order 0.1 nm when 

f + f '  was of order -1 J /m 2. As pointed out by Dregia et al. [48], this model can be used to 

explain the 2 x 1 reconstruction of Au(110) and Pt(110). The reconstructed surface can be 

described as having a "missing row" structure which results from removing every other 

row of atoms from the top monolayer.  Computer  simulations using embedded  atom 

potentials performed by Dregia et al. [48] indicated that f + f '  is less than zero for the (110) 

oriented surfaces of Au and Pt, and the predicted periodicity of the buckling was close to 

the value of two interatomic distances characteristic of the missing row reconstruction. 

Interestingly, a similar buckling of Au(111) surfaces was observed by Marks et al. [67] using 

high resolution electron microscopy, except that the wavelength and ampli tude of the 

buckling were several atomic spacings. 

It has recently been suggested [68] that every surface for which f ;~ "y should display a 

reconstruction of the type discussed for (111) oriented surfaces of Au and Pt. However,  it is 

only correct to say that when f ;~ y, there is a driving force for reconstruction. In most cases 

the opposing force, which is the energy cost associated with the top monolayer  losing 

structural coherence with the underlying lattice, is too large to make the reconstruction 
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thermodynamically favorable [9,64,69,70]. Except for the examples cited above, it is not 

clear what role if any the surface stress plays in other types of reconstructions. Unlike 

metals, where most low index 1 x 1 surfaces are stable, many semiconductor surfaces 

display a reconstruction. This suggests that the driving forces for reconstructions observed 

in semiconductors are different from those for metals. In the case of Si(111), Vanderbilt [71] 

has shown that the 7 x 7 structure is more stable than the ideal 1 x 1 because of dangling 

bond reductions despite surface stress effects that oppose the reconstruction. 
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