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Surface and interface stresses in solids are defined and their role in the
thermodynamics of solids is presented. A discussion concerning the physical
meaning of these quantities is given, along with a review of selected theoretical
calculations and experimental measurements. It is shown that for a solid phase with
one or more of its dimensions smaller than about 10 nm, the surface and interface
stresses can be principal factors in determining the equilibrium structure and behavior
of the solid. In particular, the effects of surface and interface stresses on thin films are
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2 R.C. Cammarata

1. Introduction

The thermodynamics of surfaces as formulated by Gibbs [1] has proven to be one of
the most useful and powerful frameworks for studying surface phenomena. Central to this
approach is the quantity referred to as the surface free energy. It is equal to the reversible
work per unit area needed to create a surface and is the fundamental parameter that
determines the behavior of fluid-fluid interfaces. However, when dealing with solid-fluid
interfaces, there is another type of fundamental parameter, called the surface stress, that
can also critically affect the behavior of surfaces. The surface stress is the reversible work
per unit area needed to elastically stretch a pre-existing surface. Despite the extensive
discussion surface stress has received over the years [2-7], there remains a great deal of
confusion - ing its meaning and importance.

As with the solid-fluid interface, there is a stress associated with the solid-solid
interface. Actually, a general interface has associated with it two interface stresses
corresponding to the two solid phases that are separated by the interface. An example of
such an interface is the one between a thin film and a substrate. One of the interface
stresses can be associated with work needed to stretch the film without straining the
substrate. In this way the structure of the interface (for example, the density of misfit
dislocations) can be changed. The other interface stress can be associated with the work to
stretch both the film and substrate equally.

2. Surface Stress

A. Thermodynamics of Surface Stress

In the Gibbsian formulation of the thermodynamics of surfaces [1], there is a
quantity v that represents the excess free energy per unit area owing to the existence of a
surface. It can also be considered the reversible work per unit area needed to create a new
surface. In the case of a solid, this new area can be created by a process such as cleavage.
The amount of reversible work dw performed to create new area dA of surface can be
expressed as

dw = ydA. o))

The total work needed to create a planar surface of area A (equivalently, the total excess
free energy of the surface) is equal to YA.

Gibbs [1] was the first to point out that for solids, there is another type of surface
quantity, different from v, that is associated with the reversible work per unit area needed
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to elastically stretch a pre-existing surface. The relationship between this quantity and y
can be derived in the following manner. The elastic deformation of a solid surface can be
expressed in terms of a surface elastic strain tensor Eij, wherei,j=1,2. Consider a reversible
process that causes a small variation in the area through an infinitesimal elastic strain dejj.
One can define a surface stress tensor fij that relates the work associated with the variation
in yA, the total excess free energy of the surface, owing to the strain dejj (summing over

each repeated index):

d(yA) = A fj; dejj. V)

Equation (2) was first given by Shuttleworth [2], who derived it by considering the
two reversible paths illustrated in Fig. 1. In the first path (clockwise), the solid pictured in
the upper left is cleaved into two pieces and then both pieces are subjected to the same
elastic strain. The work associated with the first step is W1 = 2yyAg, where yg and A are

the excess surface free energy and area of each of the newly created (unstrained) surfaces.
The work of the second step, denoted by w9, equals the work needed to elastically deform

the total bulk volume and the four (two original and two newly formed) surfaces. In the

second path of Fig. 1 (counter-clockwise), the solid is first subjected to the elastic strain and
is then cleaved into two pieces. The work of the first step, wy, is equal to that needed to

deform the bulk volume and the two surfaces. The difference wp — w1 is equal to the
excess work needed to elastically deform two surfaces of area Ao to area A(ejj). This
difference can be equated with the work performed against the surface stress f ij

wp-wp=2 Ifij dA(gjp =2 A fij dejj. 3
The work associated with the second step of the second path can be expressed as Wy =

2 y(eij) A(eij), so that Wo -W1 = 2[y(eij)A(eij) - YoAol- Equating the total works of the two
reversible paths leads to Wy - W1 = wp - wy. Therefore,

Avei)Aij - YoAo) = 2] Afijdeyj @

which is equivalent to Equation (2). Sinced(yA)=ydA + Ady,anddA=A aij dejj (where
Sij is the Kronecker delta), the surface stress can be expressed as

fii =78ii +3y/3€ij. 5)

In contrast to the excess surface free energy 7y, which is a scalar, the surface stress fij
is a second rank tensor. For a general surface, it can be referred to a set of principal axes
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such that the off-diagonal components are identically zero. Furthermore, the diagonal
components are equal for a surface possessing a three-fold or higher rotation axis
symmetry. This means that the surface stress for high symmetry surfaces is isotropic and
can be taken as a scalar f = y + dY/de. Rewriting this as

f-y=0y/0e ©)

shows that the difference between the surface stress f and the surface free energy vis equal
to the change in surface free energy per unit change in elastic strain of the surface. For
most solids, dy/de = 0; in fact, dy/0e is usually the same order of magnitude as y and can be
positive or negative, while y (for a clean surface) is always positive. Thus, f is also
generally the same order of magnitude as Yy and can be positive or negative.

Wi=2%A,

/"\

W, = 2(e;) Ale;)

Figure 1. Schematic representation of two reversible paths that illustrate the relationship
between surface free energy and surface stress.
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Both f and y can each be considered as representing a force per unit length, the
former exerted by a surface during elastic deformation, and the latter exerted by a surface
during plastic deformation. As a result, both f and y have been referred to as "surface
tension.” This has undoubtedly contributed to some of the confusion in the literature
concerning the difference between them, and it is probably best not to use the term when
discussing solid surfaces.

It is often stated that, in contrast to solids, f and 7y are the same for fluids. This is due
to the fact that when a fluid such as a soap film is stretched, the atoms or molecules in the
interior move to the surface toaccommodate the new area created. In this case y remains
constant during the stretching process, and according to Equation (6), f = y. This has led
some to claim by the same reasoning that at high temperatures where there is sufficient
atomic mobility, f = y for solids during processes such as creep. However, this is not
correct. During the initial elastic deformation in a creep experiment the work per unit area
needed to stretch the solid is f, while during plastic deformation y represents the specific
surface work to create new surface. Thus, the quantity being measured in a creep test,
where the plastic strain is much greater than the elastic strain, is the surface free energy
and not the surface stress.

For many processes, the easiest and most unambiguous way of determining whether
f or yis the relevant parameter is the following: if a small variation in area does not change
the surface atomic density, then the specific surface work is equal to y; if the variation is
due to an elastic strain that changes the surface density of atoms, then the specific surface
work is f. According to this rule, plastic deformation and crack propagation are examples
of processes where y equals the surface work, independent of mechanism. On the other
hand (as is discussed in more detail later), the Laplace pressure associated with a small
solid particle in a fluid is proportional to f. In the case of liquids, all processes of interest
involve variations in area without varying the surface density, and the surface work
represents a surface free energy. (However, in the case of a compressible liquid, it is
possible to conceive of a surface stress-like quantity that represents the surface work when
a liquid is subjected to a hydrostatic pressure.)

B. Physical Origin of Surface Stress

The physical origin of the surface stress can be qualitatively understood in the
following manner. The nature of the chemical bonding (e.g., the number of bonds) of
atoms at the surface is different from the bonding of atoms in the interior. Because of this,
the surface atoms would have an equilibrium interatomic distance different from that of
the interior atoms if the surface atoms were not constrained to remain structurally coherent
with the underlying lattice. As a result, the interior of the solid can be considered as
exerting a stress on the surface. There has been some confusion with regard to identifying
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a surface stress of either sign as compressive or tensile. When f is positive, the surface
work f dA is negative if dA is negative. This indicates that the surface could lower its
energy by contracting and is therefore under tension. Therefore, a positive f is referred to
as a tensile surface stress, while a negative f is referred to as a compressive surface stress.

A simple two-body interatomic force model to illustrate the origin of the surface
stress was given by Shaler [8]. Consider an atom P in the interior of a face centered cubic
crystal as shown in Fig. 2. The x and y axes are along the [100] and [010] directions.
Attention is restricted to first and second nearest neighbor interactions. Let a equal the
force each nearest neighbor A atom exerts on P and b equal the force exerted by each
second nearest neighbor B atom. If the solid is in equilibrium, 4 represents a force of
repulsion and b a force of attraction. A simple balance of forces requires that b = -2v2a.
Now let the crystal be cleaved to create a (100) oriented surface containing the P atom. The
force acting on the P atom in the y-direction is now b +3a/V2 =-4/¥2. Since a is a force of
repulsion, the surface atoms are subjected to a net force in tension in the [010] direction. A
similar calculation for atoms on a (111) oriented surface leads to a net compressive force of
+a along the <110> directions. It is interesting to note that this simple two-body central
force model will lead to the result that f = 0 if only nearest neighbor interactions are
considered [6], and that in order to get a nonzero surface stress, at least second nearest
neighbor interactions must be taken into account.

As discussed by Needs et al. [9], the loss of neighbors which results from the
creation of a metal surface reduces the local electron density around the atoms near the
surface. Since the surface atoms now sit in a lower average charge density than the optimal
value associated with the bulk atoms, the response of the surface atoms would presumably
be to attempt to reduce their interatomic distances in order to increase the average electron
density. Such surfaces would therefore be expected to display a positive surface stress.
Theoretical and experimental results seem to support this conclusion, at least for ideal 1 x 1
low index surfaces. If the surface stress (actually, the difference between the surface stress
and the surface free energy) is large enough, it will be thermodynamically more favorable
for the surface layer to contract so that the surface atoms are no longer in perfect registry
with the underlying lattice. This type of surface reconstruction has been observed for (111)
oriented surfaces of Au and Pt (see Section 4).

C. Lagrangian Coordinate System

Referring back to Equation (5), the first term on the right hand side takes into
account the change in area due to the elastic deformation, while the second term accounts
for the change in surface free energy with elastic strain. As pointed out by Cahn {7,10], the
expression for the surface stress can be simplified by using a Lagrangian measure of the
area. The relation between the Lagrangian area Ay and the physical area A is
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A=A (1 +ep), @

where gj; represents the trace of the elastic strain €j;. A; is the surface area measured with
respect to a standard state of strain, and remains unchanged during elastic deformation. In
the Lagrangian coordinate system, it is necessary to define the surface free energy 7¥; such

that 'YLAL = 'YA.
YL =Y(1 +&5). ®)

The two types of surface work that can be performed on a solid to change its physical area
A can be taken as either (a) changing A holding &;; constant, or (b) changing &jj holding Ay
constant. The former surface work is equal to the surface free energy y;, while the latter

surface work is equal to the surface stress which can be expressed as

]

O
@ = atoms in planes adjacent and parallel to xy plane

atoms in plane of figure

The coordinates x, y are in the [100], [010] directions

Figure 2. Illustration of how interatomic forces acting on surface atoms can result in a
surface stress [8].
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fij = oL/ d&jj. 9

Substituting Equation (8) into Equation (9) leads to Equation (5). For many problems, the
use of the Lagrangian coordinate system greatly simplifies the analysis.

D. Equilibrium of a Small Solid Crystal

Consider a fluid (liquid or vapor) droplet in equilibrium with a different
surrounding fluid that can be considered infinite in extent. There will be a pressure
difference AP = P1 - P (where the subscripts 1 and 2 refer to the droplet and the
surrounding fluid, respectively) acting on the droplet owing to the surface free energy. At
equilibrium, the virtual work AP dV resulting from a small variation in the volume of the
droplet due to transfer of atoms or molecules from the surrounding fluid to the droplet will
equal YdA, the increase in the total free energy of the surface. For a spherical droplet of
radius r, this equality leads to the well known Laplace-Young Equation:

AP =2y/r. (10)

Because of this Laplace pressure AP, the chemical potential pu of the droplet phase will
contain a term 2yV/r, where V is the molar volume of the droplet phase. At equilibrium,
the chemical potential of the surrounding fluid phase will also contain this term, and the
chemical potentials of the two phases will be equal.

Now consider the case of a small single component solid crystal in equilibrium with
a surrounding fluid. For simplicity, it will be assumed that the solid is spherical and has an
isotropic surface stress f. The surface stress exerts a hydrostatic pressure equal to 2f/r that
when added to the pressure of the fluid is equal to the pressure of the solid. Thus, the
Laplace pressure AP = Pg — Pf (where the subscripts s and f denote solid and fluid,

respectively) for a solid is expressed as
AP =2f/r. (1D

In the literature, the Laplace pressure for a solid is often incorrectly written as Equation (10)
rather than as Equation (11).

As discussed by Gibbs [1], and more recently by Cahn [10], the chemical potential of
the solid phase will contain the term 2fV/r, where V is the molar volume of the solid. This
is because a transfer of material from the fluid to the solid phase will change the Laplace
pressure acting on the solid. However, the chemical potential of the fluid phase will
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contain the term 2yV/r, reflecting the fact that the transfer changes the physical area of the
solid-fluid interface. This leads to the result

Mg~ He = 2(E-PV/r. (12)

(Gibbs pointed out that Equation (12) is strictly true only for the case of an incompressible
solid; because of the small compressibility of most solids, correction terms will in general
be negligible [1].) It is to be noted that, except for the special case of f = y, the chemical
potentials of the two phases in equilibrium are not the same. Gibbs restricted his attention
to a single component solid in equilibrium with a multicomponent fluid. Cahn [10]
extended the analysis for the case of a multicomponent solid with both substitutional and
interstitial components. The analysis is simplified if the Lagrangian coordinate system is
used. In the case of an interstitial component, the transfer of atoms from the fluid to the
solid does not change the Lagrangian surface area but can induce an elastic strain if the
component has a nonzero partial molar volume. Cahn showed that for interstitial
components, the chemical potential is the same for solid and fluid phases (i - ¢ = 0), while
for the substitutional components the difference is given by Equation (12), where V is now
the volume of the solid divided by the number of moles of substitutional lattices sites.

Examples of various thermodynamic derivations employing the correct expression
for the Laplace pressure of the solid have been given by Cahn [10]. Some of his results are
given below in order to illustrate under what circumstances the equilibrium behavior is
determined by y; and/or f. The Lagrangian measure of the surface free energy is used in
order to emphasize the fact that in his derivations, Cahn used the Lagrangian coordinate
system which significantly reduced the complexity of his analysis. The difference between
the bulk melting temperature T, and the melting temperature T of a finite-sized single
component solid is

T - T=2y,V/r 615y, (13)

where 5 and S; are the molar entropies of the liquid and solid, respectively. Since melting
or freezing a surface layer of atoms changes the Lagrangian area, the relevant surface
parameter is the surface free energy. Similarly, the solubility of a dilute single component
solid in a multicomponent fluid is given by

c=co exp(2y V/IRT), (13a)

where c is the concentration in the fluid for a particle of radius r, ¢g is the saturation

concentration for large particles, R is the gas constant, and T is the absolute temperature.
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Again, v, is the appropriate parameter since dissolving a layer from the solid changes the

Lagrangian area. The equilibrium vapor pressure P for a single component solid sphere of
radius r, assuming the vapor is monatomic, can be expressed as

P =Pqexp(2y; V/IRT), (14)

where P, is the equilibrium vapor pressure for a solid with a large planar area. Since
evaporation from the solid changes the Lagrangian area, the equilibrium vapor pressure
depends on y;. Consideration is now given to the vapor pressure of a dilute interstitial
component. Assuming the component vaporizes in monatomic form, the vapor pressure P
is

P =Pgexp(2f-V/rRT) (15)

where V is the partial molar volume of the component in the solid. In this case, f is the
appropriate parameter because transfer of interstitial component atoms does not change
the Lagrangian area but does work against the surface stress if the component has a
nonzero partial molar volume. As a final example, the vapor pressure of a dilute
substitutional component that vaporizes in monatomic form can be expressed as

P=Pgexply, V +f (V-V)]/1RT). (16)

The term involving y; accounts for the change in Lagrangian area, while the term involving
f reflects the work performed against the surface stress when the partial molar volume of
the substitutional component is different from V.

Many derivations in the literature do not employ the correct expression for the
Laplace pressure of a solid, using y instead of f in Equation (11). As a result, they apply
only for the special case of f = y, which is rarely expected. Even though some derivations
using the incorrect expression for the Laplace pressure for the solid can produce the correct
result [as is often the case for many derivations of Equations (13) and (14)], it is obviously
impossible to obtain Equations (15) and (16) without Considering effects of the surface
stress.

E. Theoretical Calculations

Theoretical calculations of surface stresses generally involve calculating the surface
free energy and its derivative with respect to elastic strain. Both first principles and
atomistic potential calculations have been attempted. Though some molecular dynamics
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simulations have been performed that give the variation of the surface stress with
temperature (for example, see reference 11), the vast majority of results are obtained for a
temperature of 0 K. It is to be noted that, except for the inert gas crystals, most of the
surface stresses for low index surfaces of single component materials are positive and of
the same order of magnitude as the surface free energy.

(i) Inert Gas Crystals. Calculations of the surface stress of inert gas crystals date back to
the work of Shuttleworth [2]. His results suggested that for the (100) oriented surfaces of
Ne, Ar, Kr, and Xe, the surface stresses were negative and about a factor of ten smaller in
magnitude than the surface free energy.

(i) Metals. First principle calculations for several clean fcc metal surfaces have been
performed by Needs and coworkers [9,12-14] using a pseudopotential total energy
technique that employed a local density approximation for the exchange-correlation
energy. Values of the surface free energy and surface stress for unreconstructed fcc (111)
oriented metal surfaces are given in Table 1. It is seen that all surfaces exhibit a tensile
(positive) surface stress. In order to gain a greater understanding of the physical origin of
the surface stress, Needs et al. [9] calculated the electrostatic, exchange-correlation, and
kinetic energy contributions to the surface stress of Al(111). They found that the largest
contributor was the term associated with the kinetic energy, while the other two terms
were significantly smaller in magnitude and negative. A similar result was also obtained
using a jellium model that had the same average electron density as aluminum. Needs et
al. [9] state that the same general behavior should be expected for metals with relatively
high electron densities. For metals with lower electron densities (for example, the alkali
metals), it is expected that the electrostatic, exchange-correlation, and kinetic energy terms
all contribute significantly to the value of the surface stress.

TABLE 1. First principles calculations of surface free energy y and surface stress f for clean
unreconstructed (111) oriented fcc metal surfaces [12-14].

Metal Y[j/m2] f[J/m2]
Al 0.96 1.25
Ir 3.26 5.30
Pt 219 5.60
Au 1.25 2.77

Pb 0.50 0.82
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Calculations of the surface stress for various metals have been made using
embedded atom method [15,16] and Finnis-Sinclair [17,18] potentials. Examples of the
surface free energy and principal surface stresses for certain fcc [15] and bec [17] metals are
given in Table 2. A comparison of the values of y and f for (111) oriented surfaces of Au

TABLE 2. Calculated surface free energy y and principal surface stresses fxx and fyy, for
clean unreconstructed metal surfaces using embedded atom method potentials for the fcc
metals [15] and Finnis-Sinclair potentials for the bcc metals [17]. Note: For bee (110)
surfaces, x = [110], y = [001]; for bec (310) surfaces, x = [130], y = [001]. ;

Surface Y[J/m2]  fyx [J/m2] fyy [J/m2
Ni (100) 1.57 1.27
(111) 1.44 0.43
Cu (100) 1.29 1.38
(111) 1.18 0.86
Ag (100) 0.70 0.82
(111) 0.62 0.64
Au (100) 0.92 1.79
(111) 0.79 1.51
Pt (100) 1.64 2.69
(111) 1.44 2.86
Vv (100) 1.733 2424
(110) 1.473 1.939 0.263
(310) 1.745 2.335 1.255
Nb (100) 1.956 2.532
(110) 1.669 2.168 0.301
(310) 2.104 2.405 1.267
Ta (100) 2.328 3.249
(110) 1.980 2.535 0.392
(310) 2512 3.085 1.647
Mo (100) 2.100 2241
(110) 1.829 2.019 0.775
(310) 2.070 2.247 1.184
W (100) 2924 3.032
(110) 2.575 2.385 0.271

(310) 3.036 2.833 1.450
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and Pt given in Tables 1 and 2 shows that the values obtained using the semi-empirical
potentials are significantly smaller than those obtained from the first principles
calculations. Recently, modified embedded atom method potentials have been developed
that yield values of the surface free energy and surface stress closer to the first principles
values [19].

(iti) Semiconductors. First principles calculations, using the pseudopotential technique
and employing a local density approximation, were performed by Meade and Vanderbilt
[20,21] for elemental and chemisorbed (111) oriented surfaces of Si and Ge. Values of the
surface free energy and the surface stress are listed in Table 3 and are given in units of eV
per 1 x 1 cell. Meade and Vanderbilt analyzed various factors that affect the value of the
surface stress and concluded that surface bonding topology, atomic size, and the chemical
nature of the adsorbate species all make important contributions.

In the case of (111) surfaces of compounds such as GaAs and InSb, there is an A type
surface, where the terminating plane is composed of Group III atoms, and a B type surface,
where the terminating plane is composed of Group V atoms. By considering the geometry
associated with the hybridization of the covalent bonds, Cahn and Hanneman [22]
concluded that an A type surface should be under compression, while a B type surface
should be under tension, with the magnitude of the B surface stress being somewhat less

TABLE 3. Calculated surface free energy vy and surface stress f for Si(111) and Ge(111)
surfaces [20,21]. Note: faulted = stacking fault at the surface.

Surface v[eV/1x1 celll fleV/1x1 cell]

Si Ix1 1.45 -0.54
1 x 1 faulted 1.51 0.11

V3 x V3 adatom 1.27 1.70

2 x 2 adatom 1.24 1.66

2 x 2 adatom-faulted 1.27 1.89

Si(Ga) 1x1 -3.01 -4.45
V3 x+3 -0.35 135

Ge 1x1 140 -0.73
1 x 1 faulted 1.45 -0.26

2 x 2 adatom 1.20 1.43

2 x 2 adatom-faulted 1.22 1.67
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than that for the A surface. They performed a calculation based on the forces associated
with the elastic distortion of the covalent bonds, which they estimated from the bulk elastic
constants, in order to estimate the (111) surface stresses of various compounds (see Table
9.

TABLE 4. Calculated values of (111) surface stresses for A and B surfaces of III-V
compounds [22].

Material fall/m2]  fg(J/m2
InSb -0.6 0.3
GaAs -1.0 0.5
InAs -0.7 0.3
GaSb -08 0.4
AlSb -08 0.4

(iv) Ionic Solids. Several attempts have been made over the years to calculate the surface
stress of ionic solids [2,11,23-25]. The most commonly studied surface is the (100) oriented
surface of alkali halides. It appears that the results of these calculations are very sensitive
to the details of the calculation such as the type of structural relaxations that are allowed
[11]. Early calculations by Shuttleworth [2] gave negative values for the surface stresses of
several alkali halides, a result that appears to be due to the manner in which the surfaces
were allowed to relax [11]. The current consensus is that most if not all of the (100)
oriented alkali halide surfaces display a positive surface stress. Table 5 lists values of
surface stress obtained by Nicholson [23).

F. Experimental Measurements

Stresses of all types are generally determined by measuring an elastic strain that
results from that stress and then using the appropriate form of Hooke's Law to extract the
stress value. This is also true for the majority of surface stress measurements. To illustrate
how this can be performed, consider a small solid sphere of radius r that is presumed to
have an isotropic surface stress f. According to Equation (11) the Laplace pressure acting on
this sphere is equal to AP = 2f/r. This will induce an elastic strain in the solid. Since this
strain is in response to a hydrostatic pressure, the appropriate form of Hooke's Law, which
is assumed to be valid for these small solids, is —AP = Key, = 3Ke, where K is the bulk
modulus, gy is the volume strain, and ¢ is the radial strain. The surface stress is computed

by measuring the radial strain in a sphere of a known radius:

f=—-3Ker/2. 17
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Vermaak and coworkers [26-28] measured the radial strain in small spheres of Au, Ag, and
Pt by electron diffraction and determined an average surface stress using Equation (17).
Their results are listed in Table 6. These values are within a factor of two or so of those
obtained from the theoretical calculations for the low index surface stresses (at 0 K) found
in Tables 1 and/or 2.

A thin rectangular wafer whose top and bottom surface have different surface
stresses will bend in response to that difference. By measuring the radius of curvatureR

TABLE 5. Calculated values of the surface stress f for (100) surfaces of alkali halides [23].

Material £[J/m2)

LiF 2.287
LiCl 1.025
LiBr 0.827
Lil 0.558
NaF 1.031
NaCl 0.562
NaBr 0.454
Nal 0.303
KF 0.549
KCl 0.310
KBr 0.250
KI 0.172
RbF 0.427
RbCl 0.248
RbBr 0.204
Rbl 0.142
CsF 0.308

TABLE 6. Experimental measurements of surface stress [26-28].

Material £[J/m2] Temperature [°C]

Au 1.175 + 0.2 50
Ag 1.415 + 0.3 55
Pt 2.574 + 0.4 65
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of the bent wafer, the difference in the surface stresses of the two surfaces, Af, can be
calculated using the Stoney formula [22,29]

Af = Yt2/6R, (18)

where t is the thickness of the wafer and Y is the appropriate elastic modulus. [For an
isotropic solid, Y = E/(1 - v), where E is Young's modulus and v is Poisson's ratio.] When
radius of curvature measurements of (111) oriented InSb wafers obtained by Hanneman et
al. [30] were used in Equation (18), a value of Af of 0.95to0 1.4/ m2 was obtained [22]. This
result is in good agreement with the difference in the calculated values for the A and B
surfaces of InSb given in Table 4.

Recently, Martinez et al. [31] used the wafer bending technique to obtain the surface
stress of the reconstructed 7 x 7 5i(111) surface. One third of a monolayer of Ga was
deposited onto one side of a wafer with initially clean Si(111) 7 x 7 surfaces. The wafer was
then heated until the Si(Ga) surface displayed a sharp transition to a ¥3 x V3 structure as
determined by low energy electron diffraction. The wafer was observed to bend due to the
difference in the surface stresses of the 7 x 7 and the V3 x V3 surfaces, and the measured
surface stress difference was 1.02 eV /(1 x 1 cell). If the theoretical calculation of 1.35 eV /(1
x 1 cell) for the V3 x V3 Si(Ga) surface given in Table 3 is added to this difference, the
absolute surface stress of the clean 7 x 7 surface is estimated to be about 2.37 eV /(1 x 1 cell).
Similar experiments were performed by Schell-Sorokin and Tromp [31a] in order to
measure the difference in the average surface stress between a clean Si(100) surface and one
with adsorbed As or Ge. The measured value for the difference in the surface stresses of 2
x 1 Si and 2 x 1 Si(As) surfaces of 1.2 eV/(1 x 1 cell) was in reasonable agreement with
theoretical calculation {31b].

Anomalies in the dispersion behavior of surface phonons of Ni(110) have been
attributed to surface stress effects [32]. From an analysis of the surface phonon spectra,
surface stress values of 4.2 J/m2 and 2.1 J/m2 were determined for the [001] and [110]
directions, respectively.

3. Interface Stress

As with the solid-vapor and solid-liquid interfaces, there is a stress associated with a
solid-solid interface. In fact, as pointed out by Brooks [4], a general interface has associated
with it two interface stresses corresponding to the two solid phases that are separated by
the interface. Following Cahn and Larché [33], one can define an interface stress gjj

corresponding to the reversible work per unit area needed to strain one of the phases
relative to the other, and another interface stress hij associated with the reversible work per
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unit area needed to equally stretch both phases. As with the case of a free solid surface,
there are different ways of defining the area of the interface. In the general case where both
types of strains are possible, there is some advantage to using a Lagrangian coordinate
system (see Section 2). Consider two phases 1 and 2 separated by an initially coherent
interface. Let €jj denote the strain resulting from deforming phase 2 relative to phase 1,
where &j = 0 represents a lattice-matched interface. A second strain ejj is defined as that

resulting from equally stretching both phases. Using the Lagrangian area of phase 1 as the
reference area, and letting o} represent the interfacial free energy measured in this

Lagrangian coordinate system, the surface stresses can be defined as

gij = 9oL/ 9¢jj, (19)
and

hj; = doy /dejj. (20

The interfacial free energy oy (ejjeijj) for a general state of strain and interface structure can
be expressed up to first order in the strains as

oy (ejjej) = o (0,0) + gijejj + hijeij @n

Consider a small spherical solid inclusion denoted as phase 2 embedded in an
infinite solid matrix denoted as phase 1 (whose Lagrangian area is taken as the reference
area). It will be assumed that the phases and the interface stresses g and h are isotropic.
Let the reference states for the two phases be their respective stress-free states at zero
pressure. Suppose that in these states the inclusion would have a radius r; and the matrix
a hole of radius ry with ry = (1 + &)ry. Cahn and Larché [33] have shown that at equilibrium
the true physical radius r of the hole is

r=rq + M(rje - 2h/3Ky), (22)
and the pressure in the inclusion is
P = M(2h/r; +4Gge), (23)

where G is the shear modulus of the matrix, K3 is the bulk modulus of the inclusion, and
M is an elastic accommodation factor equal to 3K3/(4G; + 3K5). The factor M can range
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from 0, when Kj; = 0 (corresponding to a void) and P = 0, to 1, when G; = 0 (corresponding
to a liquid) and P = 2h/r;, analogous to Equation (11). For intermediate values of M, the
pressure P is composed of two terms: one reflecting the effect of the surface stress h and the
other reflecting the fact that, in contrast to the case of a particle in a fluid, the matrix can
sustain a shear stress. As was the situation for equilibrium of a small solid immersed in an
infinite fluid, the chemical potentials of phases 1 and 2 are not equal. For example, suppose
that phase 1 is composed of a single component i that has precipitated from a binary
phase (phase 2). The difference in the chemical potentials of i between the two phases is
(ignoring higher order strain energy terms that are small)

u1—-uo=(P-20./rV, (24)

where V is the stress-free molar volume of phase 1 [33].

Although the formulation of interface stresses given by Cahn and Larché is useful
for many types of problems (for example, the thermodynamics of solid state nucleation
[33]), a somewhat different approach will be given below that will facilitate the discussion
of interface stress effects in thin films as given in Section 4.

A. Interface Stress Associated with Stretching One Phase Relative to the Other

For an interface between two crystals, the strain associated with the interface stress g
results in a change of the interface structure. As an example, consider an epitaxial thin film
on a semi-infinite rigid substrate. Changing the misfit dislocation density at the interface
allows the lattice parameter of the film to be varied while keeping the lattice parameter of
the substrate fixed. The interface stress g can be interpreted as the specific surface work
associated with changing the dislocation density. In order to illustrate this, consider as the
reference state a noncoherent interface where both the film and substrate have their bulk
lattice parameters. Let e be defined as the misfit strain equal to (ag — af)/af, where ag and
af are the bulk lattice parameters of the substrate and film, respectively, and let € represent

the in-plane strain of the film measured with respect to its bulk state. (Note that this strain
is different from the strain ¢ defined using the Cahn-Larché formalism). When the film is
strained by an amount ¢, the strain that needs to be accommodated by misfit dislocations is
(em - €). For simplicity, it will be assumed that the misfit dislocations are edge dislocations
with their Burgers vectors in the plane of the interface and are arranged in a square grid.
The interface energy per unit area ¢ of this dislocation grid can be expressed as [34]

6 = 0p[l — (g11+ €22)/2em), (25)

where the strain components €17 = €7 = ¢, and
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o =Cblem | [In(t/b) +1] /2x. 6)

In Equation (26), b is the magnitude of the Burgers vector, t is the film thickness, and C is
an effective elastic modulus equal to 2[(1 - v /G¢ + (1 - v9)/G,]~!, where v¢ and v are
Poisson's ratio of the film and substrate, and G¢and G are the shear moduli of the film and
substrate.

Taking the interface stress g as the work per unit physical area associated with
introducing a strain €17 holding €5, constant in a film initially with €11 = €55 = 0 leads to

g=00—©006/0€11) | ¢;;= e5p= 0= %0 [1 - 1/(2em)]. 27)

Defined in this way, the change in interfacial free energy Ac due to the introduction of a
coherency strain £11 in an initially noncoherent interface is

Ao =(g — o) €11 (28)

B. Interface Stress Associated with Stretching Both Phases Equally
In the very few theoretical or experimental studies that have been performed to
investigate interface stresses, virtually all have been devoted to measuring hjj, the work per

unit area needed to stretch an interface by elastically straining both phases on each side of
that interface by the same amount ejj. Proceeding in a manner analogous to that used to

derive Equation (5), this stress can be related to the interfacial free energy o by
hjj = o 3;j + 0o dejj. (29)

In Equation (29), hjj is the work per unit of actual physical area of interface as it changes

with strain. Gumbsch and Daw [15] have calculated values for this type of interface stress
for (100) and (111) metal-metal interfaces using standard embedded atom method
potentials. Their results are given in Table 7. As was discussed in Section 2, calculations
for free solid surfaces using embedded atom method potentials can significantly
underestimate values of surface properties compared to those obtained from first principles
calculations. Recently, embedded atom method potentials have been modified so that they
give values for the free surface properties approximately equal to those obtained by first
principles calculations [19]. These potentials were then used to evaluate interface stresses.
For the case of a noncoherent Ag-Ni (111) interface, a value of 1.32]/ m2 was obtained
which is significantly larger than the value given in Table 7. However, both values are of
opposite sign to that measured by experiment (see below).
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A few aftempts have been made to experimentally measure the interface stress h in
layered materials. Crystalline polymers and organic crystals have a lamellar structure and
display variations in their lattice parameters that are inversely proportional with lamella
thickness. This behavior can be attributed to the effects of an interface stress [35]. The
physical origin of this interface stress in crystalline polymers can be understood in the
following manner. Figure 3 schematically shows a chain folded molecule in a lamella of a
crystalline polymer. For a thick lamella with very long stem lengths, the stems have an
equilibrium separation determined by the balance of van der Waals attractive forces and
intermolecular repulsive forces. The chain folds are high energy configurations that would
attempt to straighten out if they were not constrained by the stems. Thus, the chain folds at
the interface can be considered under compression, and the interfaces therefore display a
negative interface stress.

The manner in which the interface stress hijj can be obtained by lattice parameter

measurements is now given [35]. The virtual work dw resulting from a variation in elastic
strain deij of alamella is

dw = Atsjj + hj;) dej;, (30)

where t is the lamella thickness and sij is the volume elastic stress. At equilibrium, dw =0,
so that

hjj = - t sjj = - t Cijil ex, 31

Table 7 Calculations of interface stress h for noncoherent metal-metal interfaces [15].

Bilayer A/B h for (100) interface [J/m2]  h for (111) interface [J/ m2]

Ag/Ni 0.83 0.32
Au/Ni 0.71 -0.08
Ag/Cu 0.53 0.32
Au/Cu 0.33 0.01

Pt/Ni 0.04 - 057
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Figure 3. Schematic diagram of a molecule in a crystalline polymer lamella. The chain
folds at the lamella interfaces lead to a compressive interface stress.

where Cjji| is the elastic stiffness tensor. Rearranging this so that strain is the dependent
variable gives

ejj = -Sijkl hi/t, (32)

where Sjji] is the elastic compliance tensor. The strain relative to an infinitely thick lamella
should be proportional to the lamella thickness. This behavior has been observed in x-ray
diffraction experiments of orthorhombic n-paraffins [36], melt crystallized and solution
crystallized polyethylene [37], and crystalline random copolymers composed of

tetrafluoroethylene and hexafluoropropylene [38].
In order to simplify the analysis, let the surface stress tensor hjj be measured with

respect to the principal axes, so that the off-diagonal components are zero. Expanding and
rearranging Equation (32) gives

hy =~t (Sxeq ~ S1222)/(51152 - 5129, (33)

hy =—t(~S12e1 +S11€2)/ (511522 - S122), (39)
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where matrix notation has been used (11 —» 1 and 22 — 2). In the case of an isotropic
surface,

h =-tYe, (35)

where Y is the biaxial modulus equal to 1/(S;; + S1). Equations (33) and (34) were used to
obtain interface stresses for crystalline polymers and n-paraffins (see Table 8). In the case
of polyethylene, the interface stresses had a strong temperature dependence, presumably a
result of significant entropic effects.

Ruud et al. [39,40] have determined interface stresses in an artificially multilayered
thin film by measuring the amount of bending induced by the film in a much thicker
substrate (see Table 9). It should be noted that the experimentally measured value for
Ag(111)-Ni(111) is of opposite sign to that predicted theoretically (see Table 7). The reason
for this major discrepancy is not clear. A similar study by Bain et al. [41] investigating
strains in Mo(110)-Ni(111) multilayered films did not reveal any significant interface
stresses. However, it has been suggested [39,40] that this was possibly due to intermixing
between the layers.

TABLE 8. Experimental values of the interface stress hjj in materials that crystallize with a
lamellar structure [35].

Material hij [J/m 2) Temperature [CC]
Melt-Crystallized -0414, -0.168 25
Polyethylene

n-Paraffins -0.472, - 0.364 23

Random Copolymer of -02 300
Tetrafluoroethylene and

Hexafluoropropylene

TABLE 9. Experimentally measured interface stress h of multilayered thin films [39,40,42].

Interface h[J/m2]

Au(111)/amorphous Al2O3 1.13
Agl11)/Ni (111 -2.27
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Though the discussion so far has been limited to certain types of boundaries,
interface stresses are associated with all types of solid-solid interfaces, such as grain
boundaries and antiphase domain boundaries. One possible way to experimentally
determine the interface stress of grain boundaries is by measuring the elastic strain it
induces in a nanocrystalline material [see Equation (39)]. Cahn [43] has analyzed the
critical behavior of the interfacial free energy and the interface stress of antiphase domain
boundaries in ordered binary alloys with the B2 (B—CuZn) structure. An interface stress h
will be present if the equilibrium lattice parameter is a function of the long range order
parameter. Unlike the interfacial free energy o, which is always positive, the interface
stress h can be positive or negative. With respect to the critical behavior near the order-
disorder transition temperature T, Cahn [43] showed that the classical (mean field) theory
critical exponent for o is 3/2 [that is, o is proportional to (T¢ - T)3/2]. The critical exponent
for o according to modern critical theory is 1.3, while the exponents for h according to
classical and modern critical theory are 1/2 and 0.0, respectively {43]. Thus, the magnitude
of h/ ¢ tends to infinite as the critical point is approached.

4. Examples of Surface and Interface Stress
Effects in Thin Films

In this section, recent investigations concerning the effects of surface and interface
stresses on the structure and properties of thin films will be presented. Such stresses are
often an important factor in determining thin film behavior because of the high surface area
to volume ratio characteristic of these materials. It is shown that surface and interface
stresses can result in a significant intrinsic stress, induce higher order elastic behavior, and
affect the thermodynamics of epitaxy. Because of its similarity to the epitaxy problem, a
discussion of surface reconstructions in (111) oriented fcc metal surfaces is also given.

A. Strains and Elastic Modulus Variations in Ultrathin and Artificially Multilayered
Films

Consider the in-plane elastic strains induced by the free surface stress f in a free-
standing thin film of thickness t. The same type of analysis used to obtain Equation (35)
would in this case lead to [44,45]

£= —-2f/Yt. (36)

The factor of 2 accounts for the effects of both the top and bottom surfaces. Using typical
values for metals of f = 1 J/m2 and Y = 1011 J/m3 leads to an order of magnitude estimate
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of the induced compressive in-plane strain of € = -0.02/t, where t is measured in nm.
Therefore, a 10 nm film would have an in-plane strain of about -0.2%, while a 2 nm thick
film would have a strain of -1%. In principle, the surface stress can induce an elastic strain
greatly in excess of the yield strain obtained by an externally applied stress. These large
strains produce atomic displacements that are well out of the Hookean region of the
interatomic potentials, so that higher order elastic effects should be manifested. Based on
the theoretical calculations by Banerjea and Smith [46], the in-plane biaxial modulus of a
Cu(100) disk depends on the in-plane strain in the following manner [44]:

Y(e) = Y(0) [1 - Be], (37)

where B, which depends on the third order elastic constants, has a value of 15 to 25. Thus,
a -1% strain in a Cu(100) free standing film would increase the apparent modulus by about
15 to 25%. A more complete analysis gives [19]

Y=Y, +2B+2n-3+£'/D/t (38)

where Y is the modulus value for a bulk material, 1 is a factor that depends on Poisson's
ratio and is close to unity, and f ' is equal to df/de. Calculations of f ', which can be
considered an "excess surface modulus," have shown that it can be negative [19,47,48]. For
many (100) and (111) oriented fcc metal surfaces, the magnitude of f '/f is significantly
smaller than B {19], so that, according to Equation (38), the modulus should always be
enhanced when t is reduced below about 5 nm.

Enhancements of nearly 50% in the biaxial modulus, as measured experimentally
using a bulge test, were reported for free standing single crystal thin films of Au(100) when
the thickness was reduced to about 100 nm [49]. If Equation (38) were used to explain this
behavior, a surface stress of order 100 J/m2 would be needed. Actually, the apparent
enhancement is probably an experimental artifact. It has been shown [50,51] that
erroneously large values by factors of 2 or more in the elastic modulus of thin films will be
obtained from a thin film bulge test if the films are wrinkled. It is not easy to
experimentally investigate free standing films with thicknesses less than 5 nm. It is
however relatively easy to study them in a computer simulation. Elastic strains of order
1% and significant biaxial modulus enhancements were obtained in computer simulations
of ultrathin films [19,52-54] that were in excellent agreement with Equations (36) and (38).

Although experimental measurements on ultrathin free standing films are
problematical, similar lattice parameter changes [19,44,45] and modulus variations [19,44]
are expected in artificially multilayered (superlattice) thin films owing to interface stress
effects. In this case, Equations (36) and (38) would still apply, except that f and f ' should be
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replaced with h and h', and t represents the bilayer repeat length. For systems with
sufficiently large interface stresses, strains of order 1% proportional to 1/t, and modulus
enhancements or reductions (depending on the sign of h) of order 20% are expected when
the bilayer thicknesses are reduced below 5 nm. This behavior has in fact been observed
experimentally [55]. The first experimental reports of modulus variations claimed
enhancements of 100% or more (such enhancements were termed the "supermodulus
effect”). However, the moduli were measured by the bulge test, and it is likely that the
apparent modulus enhancements were artifacts of the measurement [50,51]. Recent
measurements, using much more reliable ultrasonic methods, indicate that modulus
variations involving both enhancements and reductions of order 20% are found for several
multilayered metal films such as Cu-Nb [56]. Concomitant with these modulus variations
are elastic strains proportional to 1/t that can be as large as a few percent. Though several
theories have been proposed to explain this behavior, it has been most successfully
modeled as a result of interface stress effects [19,44].

Large elastic strains and modulus variations would also be expected for other types
of nanophase materials [35]. For example, in single component nanocrystalline metals and
ceramics, if the grains are modeled as spheres, then, by analogy with Equation (17), there
will be a strain dependence on the grain size d = 2r given by

€ =-4h/3Kd, (39)

where h is the interface stress associated with the grain boundaries and K is the bulk
modulus. Because of higher order elastic effects induced by this strain, the bulk modulus
will depend on d [57]:

K(d) = Ky +4h (B, -1 + h'/h)/3d, (40)

where K, is the bulk modulus for a bulk material and By, is the factor for the bulk modulus
that is analogous to the factor B for the biaxial modulus in Equation (37). Other properties
that depend on elastic strain should also be affected by interface stress effects. For
example, since the oscillatory nature of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction is strongly affected by changes in the interatomic distance, interface stress
effects in nanocrystalline materials could result in novel magnetic behavior.

B. Intrinsic Stress

Almost all thin films are deposited in a state of stress. These stresses develop
because certain processes occur which would result in the film changing its in-plane
dimensions if it were not attached to the substrate [58]. A well known example is thermal
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stress which develops in response to a change in temperature when the thermal expansion
coefficients of the film and substrate are different. Intrinsic stresses are defined as those
stresses that develop during film growth. Various mechanisms for intrinsic stress
generation have been proposed [58]. One possibility that has often been mentioned,
though it has been little investigated, is intrinsic stress generation due to effects of the free
surface stress f. (Many workers refer to this idea as based on "crystal size effects.”) There
appears to be some confusion in the literature as to the precise formulation of this effect, its
relative importance, and even the sign of the intrinsic stresses that are developed. Because
of this a relatively detailed discussion is presented below.

Consider an isotropic film of thickness t that is constrained to have its bulk lattice
parameter. Assume that there is not a strong film-substrate interaction so that f >> g.
Suppose that when the constraint is removed, the film elastically deforms on the substrate
in response to the surface stress f. Letting € represent the resultant elastic in-plane radial
strain, the elastic energy per unit area in the film is given by Yte2, where Y is the biaxial
modulus equal to E/(1 - v), where E is Young's modulus and v is Poisson's ratio. The work
per unit area performed against the surface stress can be expressed as 2fe. The total work
per unit area is therefore

w = 2fe + Yte2, 41)
The equilibrium strain * is determined by setting dw/de = 0:
e*(t) = —f/Yt. 42)

Based on this result, it has been sometimes argued that the intrinsic stress resulting from
opposing this deformation would equal ~Y e*(t), and therefore should be of the same sign
as f and be inversely proportional to t. However, this is not the correct physical picture
with regard to generating an intrinsic stress in a film. A film on a substrate that displays an
equilibrium strain relative to bulk does not have to be under a state of intrinsic stress.
Instead, if at some point during deposition the film is firmly attached to the substrate, an
intrinsic stress will subsequently be generated by the surface stress as the film thickness
increases.

This idea can be made quantitative in the following manner. Consider a film that
has become firmly attached to the substrate at a thickness t,. Assuming no intrinsic stress
generating mechanisms have operated, the film would be deposited in a stress-free state
with its equilibrium in-plane lattice parameter equal to ag[1 + €*(to)], where ag is the bulk
lattice parameter. During further deposition, if the film were not constrained by the
substrate, the equilibrium strain relative to bulk e*(t) would be given by Equation (42), and
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the equilibrium strain relative to that of the film of thickness t, would be Ae = €*(t) - e*(to).
However, since the film of thickness t, was constrained by the substrate such that it could
not elastically deform in the plane of the film, then as the film becomes thicker, the
substrate must impose an in-plane biaxial stress to oppose the latent strain At. As a result,
an intrinsic stress s is generated in the film due to surface stress effects equal to

s(t) =—-YAe=£(1/t - 1/to). 43)

As t — oo, the intrinsic stress approaches a value of s = —f/t;. Even though the above
analysis considered just the effects of the surface stress, and it was assumed that the film of
thickness t, was stress-free, the result given in Equation (43) is nevertheless of general
validity. That is, Equation (43) represents the contribution to the overall intrinsic stress of
the film resulting from the surface stress, independent of other stress generating
mechanisms (and even if the lattice parameter is different from ao[1 + €*(t,)] when the film
thickness is t).

Consideration is now given to the proper value of the film thickness t,. It would
appear plausible that growing crystallites first become constrained when substantial
impingement occurs. The thickness at which this occurs would depend in part on the
thermodynamics of the film-substrate interface; in particular, it would depend on how
well the film wets the substrate. The thickness t, would also be dependent in large part on
kinetic factors, such as the deposition rate and the surface mobility of the adatoms (which
in turn depends on the deposition temperature). Experimental studies have indicated that
a metal film deposited by physical vapor deposition can become continuous at a thickness
as small as 1 nm [59]. Referring to Equation (43), and using reasonable values of f =2 N/m
and t, = 5 nm, the magnitude of the intrinsic stress generated when t >> t,, is of order —4 x
108 Pa. It should be noted that the intrinsic stress has the opposite sign of the surface
stress.

Since most experimental and theoretical investigations of surface stresses for metals
give positive values, the proposed mechanism would be expected to produce a
compressive intrinsic stress in metallic films. It is generally found that at the end of
nonepitaxial growth, metallic films exhibit a tensile intrinsic stress. However, it is often
observed during the early stages of deposition that the film is initially deposited with a
compressive stress which increases in magnitude with increasing thickness, up to a certain
thickness, after which a competing tensile stress generating mechanism appears and
eventually dominates. Two popular models to explain generation of a tensile stress in
metal films are the grain growth model and the grain boundary relaxation model [58]. In
both processes the total grain boundary volume reduces with time. This reduction would
lead to a densification of the film were it not constrained by the substrate. Kinetic analyses
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of these processes have been given by Doerner and Nix [58]. They showed that in both
cases a significant amount of time can elapse before a perceptible tensile stress is
developed. During this time the film can grow to a thickness many times larger than t,. As
a result, a compressive intrinsic stress due to the surface stress can develop before the other
processes generate a competing tensile stress that eventually dominates. (Of course, for
some thin films the surface stress could be negative; in those cases, the intrinsic stress
generated by the surface stress would be tensile.)

In the above discussion, the effect of the film-substrate interface stress was not
considered. If there is a strong epitaxial relationship between a film and substrate, this
interface stress g could of course be very important and in fact dominate the behavior.
However, if there is not a strong epitaxial relationship (for example, metal deposition on an
amorphous substrate), then the interface stress is expected to be much less important. In
either case, the effect of the film-substrate interface stress can be formally taken into
account by considering f to be a net surface stress equal to the sum of the free surface stress
and the film-substrate interface stress. If the film is polycrystalline, the interface stress h of
the grain boundaries could contribute a term to the intrinsic stress. In the case of films with
a columnar microstructure, this term will depend on grain size and not on film thickness
[57]. As a result, the grain boundary interface stress will not play a role in intrinsic stress
development until significant grain growth occurs, and it is therefore not expected to be
important during the early stages of deposition.

C. Thermodynamics of Epitaxy

When an epitaxial film is deposited by a layer-by-layer growth process onto a thick
substrate that has a lattice parameter different from that of the film, the misfit strain can be
accommodated by straining the film in order to bring it into partial or complete registry
with the substrate and/or by generating misfit dislocations at the film-substrate interface.
If this misfit strain is not too large, there is a critical film thickness below which the
equilibrium film-substrate interface is coherent, and above which it is thermodynamically
favorable for some of the misfit to be accommodated by interfacial dislocations.

A simple model [60] for the critical thickness for epitaxy will now be presented that
is based on one given by Matthews [34], except that it is extended to include surface stress
effects. Let € be the uniform radial strain in the film relative to its bulk equilibrium state.
Three separate work terms can be considered: the volume elastic energy, the work
associated with changing the defect structure at the film-substrate interface, and the work
to stretch the film surface. The elastic energy per unit area can be expressed as Yte2.
According to Equation (28), the change in the film-substrate interface energy per unit area
can be expressed as 2(g — 0g)e. The work per unit area to stretch the film surface can be
expressed as 2 3y/d¢€ € = 2(f - Y)e. (This term was incorrectly given as 2fe in reference 60).
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The factors of 2 in the second and third terms reflect the two-dimensional nature of the
planar strain. The total work per unit area can be expressed as

- w=Yte? + 2(g — 6o)e + 2(f —Y)e. (44)

Most analyses of the thermodynamics of epitaxy only consider effects of the first two terms
on the right hand side of Equation (44). Such analyses are incomplete as they ignore the
effects of the free surface stress which can be significant. The equilibrium strain €* can be
determined by minimizing w with respect to €:

£*=—(f+g~vy-00)/Yt (45)
The critical thickness can be obtained by setting £* equal to the misfit strain ep,:
te=—(f+g—-y—-00)/Yemm. 46)

Figure 4 gives plots of the critical thickness for epitaxy as a function of the
magnitude of the misfit strain. The parameters g and 6o were calculated using Equations
(26) and (27) and employing typical values for metals and semiconductors for the shear
constants and the Burgers vector. The difference between the surface stress and surface
free energy was taken tobe f—y=2]J/ m2. Curve (a) is for em, > 0, and curve (c) is for e, <
0. Curve (b) was obtained by setting f =; it is representative of previous models that have
ignored the effects of the surface stress. Comparison of curves (a) and {c) shows that at the
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Figure4. Critical thickness for epitaxy as a function of misfit strain [60].
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larger magnitude misfits, inclusion of the surface stress term in the analysis can change the
critical thickness by almost an order of magnitude when the sign of the misfit strain is
changed.

D. Surface Reconstructions of Clean Metal Surfaces

Recently, it has been found that clean (111) oriented Pt surfaces reconstruct above
0.65 Tm, where Ty, is the melting temperature [61]. The reconstruction can be described as
a continuous commensurate-incommensurate transformation in which the surface layer is
isotropically compressed relative to the underlying bulk lattice. A similar reconstruction
occurring above 0.65 T, has also been reported for (111) oriented Au surfaces [62]. At
lower temperatures, a 23 x V3 reconstruction has been observed in Au(111) that can be
described as an insertion of an extra row of atoms every 23 rows on the surface [63]. This
one-dimensional relaxation represents a surface compression of about 4%. All other clean
(111) fcc metal surfaces studied (Ir, Al, Ni, etc.) have not displayed a surface reconstruction.

A theory for surface reconstruction of fcc metal surfaces using the Frenkel-
Kontorova model for a one-dimensional surface was proposed by Needs et al. [9]. The
surface was modeled as a linear array of atoms connected by springs, and the atoms sat in a
sinusoidal potential that represented the underlying lattice. The stability of the surface was
characterized by a parameter P which, for the case of a (100) oriented surface of a simple
cubic metal, was given by [9]

P = ma(f - y)/2(2kwW) 172, 47)

where a is the lattice parameter, f and 7y are the surface stress and surface free energy of the
unreconstructed surface, k is a spring constant associated with surface bonds, and W is the
peak- to- peak amplitude of the sinusoidal surface-substrate interaction potential. If
IPl <1, an unreconstructed surface is stable; otherwise, a surface reconstruction is
expected. This model was applied with appropriate modifications to (111) oriented
surfaces of Au, Pt, Ir, and Al. Although it was expected that accurate values for f and vy
could be obtained from their first principles calculations, Needs et al. found that values for
k and especially for W could only be crudely estimated. Their results suggested that all of
the metals, including Au and Pt, should be stable to reconstruction. The lack of agreement
with experimental observation was attributed to the uncertainty concerning k and
especially W. Nevertheless, the model clearly demonstrated that although there may be a
driving force for reconstruction, the energy cost associated with the loss of structural
coherence of the surface with the underlying bulk is generally too large to make the
structural transition thermodynamically favorable.
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Herring [3] proposed a continuum model to analyze this type of surface
reconstruction that was recently rederived and extended [64]. Consideration will be given
first to the one-dimensional compression associated with the low temperature surface
reconstruction of Au(111). As with the epitaxy model, there are three terms whose sum
represents the work per unit area needed to introduce an elastic strain in the top
monolayer. First, there is a term that takes into account the elastic energy of the surface
layer that is strained by an amount € < 0 in one direction, but is constrained not to deform
in the perpendicular in-plane direction. This elastic energy can be expressed as Ee2t/2(1 -
v2), where t is the surface layer thickness. The second term is associated with the energy of
the noncoherent interface between the strained surface atoms and the underlying lattice.
This term can be taken as the energy needed to form a periodic row of "surface" edge
dislocations that accommodates the in-plane misfit strain € and can be expressed [64] as
aGblel =—-aGbe, where G is the shear modulus and o = [47(1 - v)]-1, where v is Poisson's
ratio. Lastly, there is a term associated with the change in the surface free energy owing to
the elastic strain € and concomitant change in the surface density of atoms which can be
expressed as (f - ¥) . The total work associated with the transformation from a structurally
coherent surface to a relaxed surface of unit area can be written as

w = Ete2/2(1 - v2) — oaGbe + (f - y)e. (48)

An instability criterion can be established by setting w < 0. Restricting attention to the
onset of the reconstruction transition (e — 0) leads to the following condition for the surface
to be unstable [3,64]:

f-1/Gb>a. (49)

The parameter B = (f - ) /Gb can be interpreted as the change in energy per unit elastic
strain of the surface divided by an elastic energy related to the formation of a dislocation.
When § is less than the critical value o = 0.1, the unreconstructed surface is stable. If B
exceeds the critical value, the surface is predicted to reconstruct.

The above analysis applies to a surface reconstruction associated with a one-
dimensional compression. The total work associated with a two-dimensional compression
can be expressed as

w = Yte2 - 20Gbe + 2(f - y)e, (50)

where Y is the biaxial modulus, and the factors of 2 reflect the two-dimensional nature of
the total strain. This equation is essentially equivalent to Equation (44) with the misfit
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strain em set equal to zero. It should be noted that setting w <0 for € — 0 leads to the same
stability criterion as for the one-dimensional case.

The instability criterion developed above will now be compared to experimental
observation. Consideration is first given to the set of metals considered by Needs and
coworkers: Al, Ir, Pt, and Au. The parameter B was computed [64] for each surface using
the values of the surface free energy and the surface stress given in Table 1, and is given in
Tablé 10. As can be seen, the criterion B > 0.1 correctly predicts which metals have been
observed to display a surface reconstruction (Au and Pt). Although Au and Ir have about
the same driving force for surface reconstruction, equal to (f — y), Ir has a shear modulus
almost an order of magnitude larger than that of Au. As a result, the opposing force for
reconstruction, the energy to create a noncoherent interface, is large enough to keep the
unreconstructed surface of Ir stable but small enough to allow Au to reconstruct. The same
calculation for B was also performed for Pb and is given in Table 10. Since B exceeds the
critical value of 0.1 and is close to that for Au and Pt, the model predicts that the clean
Pb(111) surface should reconstruct [(64]. This surface has not been studied in detail, so it is
not known if it displays the predicted reconstruction.

TABLE 10. Calculated values for the stability parameter B for clean (111) fcc metal surfaces
[64].

Metal i}
Al 0.041
Ir 0.034
Pt 0.19
Au 0.19
Pb 0.17

It is possible to derive from the continuum model an expression for the equilibrium
amount of elastic strain associated with the reconstruction. This can be obtained by setting
dw/0e = 0. From Equation (48) the equilibrium strain for the one-dimensional compression

is
| £=(oGb +7v-H)(1- v2)/Et. (51)

Using Equation (51), a calculation for the strain in the low temperature reconstruction of
Au gives € = — 3%. This can be considered in reasonable agreement with the experimental
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value of —4%. For the case of the two-dimensional compression associated with the high
temperature reconstructions, the equilibrium strain would be

e=(aGb+y-/Yt. (52)

The fact that experimentally the strain appears to vary continuously for the high
temperature reconstructions of Au(111) and Pt(111) may indicate a significant dependence
of fand yon temperature.

Other metal surface reconstructions may be attributable to surface stress effects. For
example, it appears that it is thermodynamically favorable for several clean (100) oriented
fcc metal surfaces to reconstruct by having the top layer of atoms transform from a square
lattice arrangement to a hexagonal (111)-type arrangement due to the reduction in surface
free energy [64]. However, this type of reconstruction has only been observed for a few
metals (Au, Pt, Ir). Interestingly, the inequality (f — ¥)/Gb > o appears to successfully
predict which (100) oriented surfaces will reconstruct in this manner [64]. One possible
reason for this is that surface stress effects may enhance the kinetics of the transformation
by allowing the (100) surface to overcome an activation barrier by first transforming to an
intermediate state in which the ideal 1 x 1 surface experiences an in-plane compression.

Based on a suggestion by Orowan [65], Andreussi and Gurtin [66] developed a
continuum model to describe the "buckling” (or "wrinkling") of a free surface due to surface
stress effects. They showed that when the sum of the surface stress f and the "surface
modulus” f ' is less than zero, there is a driving force for the surface to buckle. The
predicted wavelength and amplitude of the buckling was found to be of order 0.1 nm when
f+f' wasof order —1]/m2. As pointed out by Dregia et al. [48], this model can be used to
explain the 2 x 1 reconstruction of Au(110) and Pt(110). The reconstructed surface can be
described as having a "missing row" structure which results from removing every other
row of atoms from the top monolayer. Computer simulations using embedded atom
potentials performed by Dregia et al. [48] indicated that f + f ' is less than zero for the (110)
oriented surfaces of Au and Pt, and the predicted periodicity of the buckling was close to
the value of two interatomic distances characteristic of the missing row reconstruction.
Interestingly, a similar buckling of Au(111) surfaces was observed by Marks et al. [67] using
high resolution electron microscopy, except that the wavelength and amplitude of the
buckling were several atomic spacings.

It has recently been suggested [68] that every surface for which f # ¥ should display a
reconstruction of the type discussed for (111) oriented surfaces of Au and Pt. However, it is
only correct to say that when f # v, there is a driving force for reconstruction. In most cases
the opposing force, which is the energy cost associated with the top monolayer losing
structural coherence with the underlying lattice, is too large to make the reconstruction
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thermodynamically favorable [9,64,69,70]. Except for the examples cited above, it is not
clear what role if any the surface stress plays in other types of reconstructions. Unlike
metals, where most low index 1 x 1 surfaces are stable, many semiconductor surfaces
display a reconstruction. This suggests that the driving forces for reconstructions observed
in semiconductors are different from those for metals. In the case of Si(111), Vanderbilt [71]
has shown that the 7 x 7 structure is more stable than the ideal 1 x 1 because of dangling
bond reductions despite surface stress effects that oppose the reconstruction.
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