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SUMMARY

Circular membranes with fixed peripheral edges, subjected to arbitrary
axisymmetric loading were analyzed. A single governing differential equation
in terms of radial stress was used. This nonlinear governing equation was
solved using the finite difference method in conjunction with Newton-Raphson
method. Three loading cases, namely (a) uniformly loaded membrane, (b) a mem-
brane with uniform load over an inner portion, and (c) a membrane with ring
load, were analyzed. Calculated central displacement and the central and edge
radial stresses for uniformly loaded membrane, agreed extremely well with the

classical solution.
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INTRODUCTION

Composite laminates are being extensively used in aerospace applications
because of their high strength to weight ratios. Because of their widespread
use, these laminates in addition to several types of loads are subjected to
impact ;oads. Due to these impact loads composite laminates suffer visible
and invisible damage. Damage characterization and residual strength evalua-
tion of these impact-damaged composite laminates is of utmost importance.

During low-velocity impact on thin circular 8-ply quasi-isotropic lami-
nates, the laminates exhibit large deflection behavior. The displacement in
the laminates can exceed up to one laminate thickness [1]. Because of these
large deflections: the laminates exhibit mid-plane stretching. The mid-plane
stretching contributes to the membrane action. Therefore, a damaged composite
laminaté can be analyzed by decomposing the problem into two parts. The first
part consists of a thin plate with shear and flexural stiffness but no mid-
plane extensional stiffness. The second part consists of a membrane with mid-"
plane extensional stiffness but no shear and flexural stiffness. The results
of these two types of analyses will yield complete knowledge of displacements
and stresses 1n a quasi-isotropic laminate due to low-velocity impact. This
knowledge is needed for the damage characterization and residual strength
evaluations of these laminates.

The firet part of the analysis mentioned above 1s the well known small
deflection analysis of isotropic plates [2]. The second part, which 1is the
analysis of isotropic membranes with arbitrary axisymmetric loading, however,
needs further attention. The problem of an isotropic membrane subjected to
surface and edge loads has been studied by many investigators [3-10]. Hencky
{3], Dickey [4], and Shaw and Perrone [5] determined the deflection of a
uniformly loaded membrane. Kao and Perrone [6] used a nonlinear relaxation

method to obtain deflections in a uniformly loaded membrane. Goldberg and



Pifko [7] and Weinitschke [8,9] empioyed power series approaches to obtain the
solutions for annular membranes. In addition to the power series method
Weinitschke [8,9] presented an integral equation approach to the solution of
annular membranes subjected to surface and edge loads. Callegari and Reiss
[10] studied the axisymmetric deformations of a circular membrane subjected to
arbitrary normal pressure by using the shooting method. The reason for the
limited numerical solutions for arbitrary loaded membranes may be due to dif-
ficulties in using the conventional approaches used by earlier investigators.
One of the difficulties may be due to the large differences in magnitudes of
the radial and transverse displacements and the satisfaction of the two
governing equations involving these displacements.

The purpose of this paper, therefore, is to present an alternate formula-
tion for the analysis of circular isotropic membranes subjected to arbitrary
axisymmetric loading. In contrast to the earlier governing equations involv-
ing radial and transverse displacements, in this formulation a single non-
linear governing differential equation is used in terms of the radial stress.
The nonlinear differential equation was then replaced by a set of nonlinear
algebraic equations using difference quotients. Then by using the Newton-
Raphson method, these nonlinear algebralc equations were numerically solved
to obtain stresses and displacements. This type of formulation involving a
single governing equation avoids difficulties encountered with the differing
magnitudes of radial and trangverse displacements.

This approach 1s used to analyze (1) a uniformly loaded circular
membrane, (2) a membrane with uniformly distributed load over the inner
portion, and (3) a ring loaded circular membrane. The results for the radial
and tangential stresses as well as the radial and transverse displacements are
presented for each case. The results for the uniformly loaded circular mem-

brane are compared with those from the literature.




LIST OF SYMBOLS

a radius of membrane

E Young's modulus

h thickness of membrane

o number of regions

n node number

N. radial tension force

Ng tangential tension force

p(r) pressure at any radius r

r,6,z cylindrical coordinate system

Ar elemental length

u radial displacement

u normalized radial displacement

w trangverse displacement

W normalized transverse displacement
€» €g radial and tangential strain

cf;ae radial and tangential stress
"r;Be normalized radial and tangential stress

v Poisson's ratio

ANALYSIS
Membrane Configuration and Strain-Displacement Relations
Figure 1 shows an axisymmetrically loaded circular membraﬁe with fixed
peripheral edge, with thickness h and radius a. Since the deflection
surface is axisymmetrical, the displacement can be resolved into two com—

ponents: (1) a component u in the radial direction, and (2) a component w




perpendicular to the plane of the membrane. From large deflection theory [2],

strain-displacement relations for an isotropic membrane are

2
du 1 ,dw
&3 T2 (dr)

[y]
]
e

0 (la)
and the corresponding stresses are,
2
- E du ., 1 .dw u h
I vz)[a';“f ar) +";]
2
-—F _Ju, ,du, v dv
% (l_vz)[r‘“" rt32 (dr)] (1b)

Note that the assumption of large deflection but with small strains is

made in this formulationm.

Equilibrium Equations
The equation of equilibrium in the radial direction is

dN

" .
Nr Ne+rF=0 (2)

If N. and Ny 1in Eq. (2) are replaced by o.h and ceh,

respectively, and the thiékness of the membrane is assumed constant, the
equation of equilibrium in radial direction is,

dci
cr-ce+r-—dr = Q v (3)

The equation of equilibrium in the direction perpendicular to the plane

of the membrane, with general axisymmetric loading p(r) can be written as

T
2nrha, %%+of p(E) 27E dE = 0 0



The stress and strain displacement relations (Eq. (1)) and equilibrium
equations (Eqs. (3) and (4)) when combined form four nonlinear partial

differential equations with four unknowns G, O© u, and w.

e)
Derivation of a Governing Equation

Using the stress and strain displacement relations (Eq. (1)), the radial

displacement u was expressed as

u --% (oé - vao.) : (5)

The term %%f was obtained by differentiating the radial displacement u,

with respect to r.
do do
du 1 r 0 T
ar = & (% = ve.) +E(dr VI ) . ®
The strain in the radial direction €. was expressed in terms of the
radial and tangential stresses and by using the strain-displacement

relations (Eq. (1)),

2
1 du , 1 /dw
e =g (o = vog) [a?*"z'(a?)] 7
By using %%- from Eq. (6) in Eq. (7) the following relationship was
obtained:
do do 2
Sy () ez el el L (), |
(o °r)( E)"'E[dr “dr]+2(dr 0 ®
doi
From the equation of equilibrium in radial direction (Eq. (3)), Iz vas

written as
do
T 1
dr T (of d9) ®
Substituting Eq. (9) in Eq. (8) and rearranging the terms the following

relationship was obtained:



do do 2
r 0 r 1 (dw
E(d_r""F)"'f &) = (10
dcse
Further, IF Vas obtained by differentiating the equation of equilibrium

(Eq. (3)) in radial direction with respect to r, as

dcye dcr dzor
i CiEtr 3 (i)
dr
do

Substituting this value of -d—r-g in the governing equation (Eq. (10)),

the following relationship was obtained:

2
do d"o 2
T r r 1 [dw -~
E\3d T2 *7(&) 0 (12)

By using the equation of equilibrium (Eq. (4)), in the directiomn

perpendicular to the plane of membrane, (-g%) was written as

T 2

2 c{ p(E)2nE dE

\
(E) Zmrho (13)

‘ dw 2
Substituting this value of (d—r-) in the governing equation (Eq. (12)) gives
T 2

. dar dzdr 1 6( p(8)E dE

=13 +r + - |———] =0 (14)

E dr drz 2 rhar

Equation (14) 1s a nonlinear differential equation in terms of the radial
stress that governs the large deflection response of the membrane ﬁwith arbi-
trary axisymmetric loading. Several investigators obtained the governing
equation in terms of the radial stress g, similar to Eq. (14). Dickey [4]
and Weinitschke [8,9] presented the differential equation for uniformly dis-
tributed load. Callegari and Reiss [10] obtained the differential equation

for a membrane with an arbitrary axisymmetric loading.



SOLUTION METHOD

To solve the governing equation (Eq. (14)) for the radial stress, Dickey
[4] used integral equation method, Weinitschke [8,9] used integral equation
and power series approaches and Callegari and Reiss [10] used the shooting
method. 1In contrast, here a numerical method of solution is proposed. The
nonlinear differential equation was replaced by a set of nonlinear algebraic
equations using difference quotients. Then using the Newton-Raphson method

[11], these nonlinear algebraic equations were solved numerically to obtain

| the stressges ana displacements. The details of the solution method are as
follows.

The solution domain was discretized into m regions and (m + 1) nodes.
Denoting o.(n) as the radial stress at the nth node, the governing equation

(Eq.. (14)) was rewritten as, at any node n:

r 2

n
r do (n) dzc (n) I p(E)E A
23—+ r r +L10 = 0 (15)
E dr n drz 2 rnhof(n)

To simplify the evaluation of the integral in the above equation, the
following assumption will be made. Consider an ith region with ry.; <r < ry.
Although the applied pressure varies within the region ryp €< Ty the
pressure will be assumed to be uniform in this region with a value py- The
magnitudez of Py 1s assumed equal to the value §f the pressure at the mid-
point of this region, i.e., at r = (ri + ri_l)/Z. As the number of regions
in the model become large, the size of each region reduces and hence the

variation of the pressure within each region also becomes insignificant. With

this assumption the governing equation (Eq. (15)), reduces to



dcr(n) a® cr(n)

dr + rn dri

3

NI:’H

n

2
o 1 1 2 2
vy ‘:?_ﬁo(—n)— PIEACE ri-l)J "0 (1e)
n r i=1

First and second derivatives of the radial stress from the governing

equation (Eq. (16)) were replaced by

dcf ) qi(n +1) - of(n -1)
dr nth node 2 Ar
and
2 _ _
d 9, ) QE(n + 1) Zdi(n) + oi(n 1)
dr2 nth node (Ar )2

For the circular isotropic membrane with axisymmetric loading the
boundary conditions were:
(1) Both the radial displacement u and the transverse displacement w
equal zero at the fixed edge (r = a).
(2) The radial displacement u and the slope %% equal zero at the
center (r = 0).
Since the governing equation (Eq. (14)) was derived in terms of the
radial stress, the transformation of boundary conditions was done by using
stress and strain-displacement relations (Eq. (1)), and equilibrium equations

. (Eqs. (3) and (4)). When u=0 and r = a are substituted into Eq. (5) for

radial displacement, the boundary condition (1) above can be transformed to

Og = Vo, at r =g (17)

e



Using this boundary condition in the equilibrium equation in radial direction
(Eq. (3)), (Eq. (17)), was further transformed to

dci
oi(l -v)+r el 0, atr=a (18)

The boundary condition (2) above is a statement of symmetry about r = O, the
center of the membrane. This symmetry condition can be expressed in terms of

the radial stresses,

dcf
= " 0, at r =20 (19)
dcf
The derivative Ir vas replaced by the finite difference quotient as

Aar(z) ~30(1) - 9.(3) =0, at r=0.

Using the governing equation (Eq. (16)),

do.(n) %5 (n) (rz )2
E dr n dr2 8 ho (n)

i=1

and boundary conditions (Eqs. (18) and (19)) in the form of finite difference
quotients at each node, m + 1, nonlinear algebraic equations were obtained;
These algebraic equations contained m + 1 unknowns, viz., qi(l) oo di(m + 1).
By using the Newton-Raphson technique [11], these (m + 1) equations were
solved to obtain the radial stress at each node.

The equation of equilibrium in the radial direction (Eq. (3)), was used

to obtain the tangential stress, g at each node. The radial

e’

displacement, u, and the slope, %%, at any node were obtained by using

Eqs. (5) and (12), respectively, and the o, and o, values at that node.

8
Then using the boundary conditionms,
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w=0 at r = g,

dw
-EOat:rO

and the finite difference representation of the slope, %%, at all the

(m + 1) nodes, the transverse displacements, w, were determined.

RESULTS AND DISCUSSION

In this section, first a convergence study for the above outlined method
is presented. Then, the present method is illustrated for circular membranes
with different loadings, shown in figure 2:

(1) Uniformly lﬁaded circular membrane.

(2) A membrane with uniformly distributed load over the inner portion.

(3) A membrane with a ring load.

For all the cases analyzed a Poisson's ratio of 0.3 was assumed. The

stresses and displacements were expressed in the dimensionless forms, using

Hencky's normalized formulation as,

u = W
a(E%)
W= LA
1/3
a(Ex)
Eh
- Ur
Op = 5 2 \1/3
2
- %
PN v
pa E
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Convergence Study

To study the convergence of the present method, the circular membrane was
idealized into m number of regions with (m + 1) nodes, (where nodes are
numbered from the center to the outside). The number of regions, m, wused in
this convergencé study were 8, 16, 32, 60, and 64. Figures 3(a) and 3(b)
present the relative errors in the normalized maximum deflections and
stresses, for a uniformly loaded membrane and for a membrane loaded uniformly
over the region O < §-< 0.5. The solution shows rapid convergence and about
60 regions were found to be necessary for a membrane loaded uniformly over the
region O <-§ < 0.5, to yield a solution which is within 0.001 percent‘of the
converged solution. In contrast much fewer than 60 regions were necessary for
the uniformly loaded membrane. However, a 60 regilon idealization is used in
the analysis and all the results are presented for this idealization.

The Newton-Raphson method [11] used here needs initial Bf values for
the iterative process. The sensitivity of the present method to these initial
values was studied. Table 1 presents the number of iterations needed to
achieve convergence for a range of initial E& values for the three configu-
rations studied. The initial ?& values were as low as three orders of mag-
nitude smaller than the maximum converged value of E& and as high as three
orders of magnitude higher. For the uniformly loaded membrane with each of
these initial values the present method converged to the same solution. The
other two configurations showed similar convergence, thus showing insensi-
tivity to the initial Ei values. When the 1initial Ef values were farther
away from the converged values the number of iterations needed were around 40
compared to about 8 when the initial Ef values were closer to the éonverged

?& values.
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Uniformly Loaded Circular Membrane

The first problem analyzed was that of a uniformly loaded circular
membrane, for which classical solution [ref. 3] exists. The uniform loading
was represented by setting the magnitude of loading terms py through pgy
equal to unit values. Using these values in Eq. (16), the governing equation
for the membrane was solved by using the procedure outline earlier. The
values of u - and W displacements and stresses Ef and 39 #re presented
in figures 4 and 5, respectively. A comparison of the present solution with
Hencky's classical soluéion [3] and Kao and Perrone [6] nonlinear relaxation
method soiution is shown in Table 2. The central displacement as well as

central and edge radial stresses obtained by present method are in excellent

agreement with the earlier reported results as shown in Table 2.

A Membrane With Uniformly Distributed Load Over the Inner Portion

The second example is that of a membrane with uniformly distributed load
over an inner portion. A particular case of loading over the region
0 < §-< 0.1 was analyzed. 1In the corresponﬁing solution, this loading was
represented by setting the magnitude of loading terms p; through pg equal
to unit values and terms py through Pg1 equal to zero. Again using the
governing equation (Eq. (16)) with the loading terms discussed before, the
solution was obtained for stresses and displacements at each node. The
corresponding values of u and w displacements and Ef and 36 stresses

are ghown in figures 6 and 7, respectively.

A Membrane With a Ring Load:
The last problem considered here is one where the membrane carried a
uniformly distributed ring load. As a specific case the ring load was assumed
to be spread over the region 0.5 < §-< 0.6. Since loading was considered over

the region . 0.5 <Z« 0.6, in the corresponding solution, this loading was
a

13




represented by setting the magnitude of loading terms p; through pj;  equal
to zero, p3p through pjyy equal to unit values; and p3g through pg; equal
- to zero. Using these values in Eq. (16), the governing equation for the
membrane with the ring load was solved by using the procedure outlined earlier.

The corresponding values of u and w displacements are presented in
figure 8 and_stresses Ef and ;é are presented in figure 9. Figure 8 shows
that the transverse displacement w 1is constant up to the ring load and then
starts decreasing and becomes zero at the clamped edge. In contrast, the
radial displacement u 1is zero at the center, increases gradually until it
reaches the peak value in the loading region and then starts decreasing and
becomes zero at the fixed edge. On the other hand, the normalized stresses
;% and Ge are of the identical magnitude in the unloaded region
0 < §»< 0.5 and then decrease for larger values of r.

As pointed out in the introduction, when u and w differ by large
amouﬁts a simultaneous method of solution presents difficulties. As the
pfesent method does not use u and w as parameters, rather uses a single
parameter, E& thése difficulties are avoided. Therefore, it is interesting
to compare the differences in magnitudes of u and w values for various
problems analyzed. For a membrane with uniformly distributed load u and w
are of the same magnitude, whereas in the case of membrane loaded over an
inner portion and for the ring loaded membrane, the displacements differ by
two and one order of magnitude, respectively. |

Because u and w do not differ by large amounts in the case of uni-
formly loaded membrane, one would expect the simultaneous solution to be effi-
cient and feasible. 1Indeed, it is so as demonstrated by Kao and Perrone [6].
Because u and w differ by large amounts for the arbitrarily loaded mem-

branes, one would expect difficulties with simultaneous solution method. This

14




may be the reason for the limited numerical of the solutions for these two
loading cases. The present method on the other hand avoided these problems by
using a governing equation in a single parameter, the radial stress. The
present method is demonstrated to have good convergence characteristics even
when the initial Ef values are unrealistically large or small. Thetefore,
the nonlinear governing equation in terms of the radial stress and the Newton-
Raphson technique appear to be the ideal choice for large deflection problems

of arbitrarily loaded membranes.

CONCLUSIONS

Circular membranes with fixed peripheral edges, subjected to arbitrary
axisymmetric loading, were analyzed. Earlier finite difference methods used
transverse and radial displacements as parameters and developed two nonlinear
simultaneous equations. These differential equations were solved simulta-
neously, to obtain solutions for transverse and radial displacements. However
because of solution difficulties, only limited results are available. In the
present formulation a different apprach was taken. Instead of two nonlinear
simultaneous differential equations, a single nonlinear differential equation
in terms of radial stress was developed. This nonlinear equation was solved
by using the finite difference method in conjunction with Newton-Raphson
method. Three different loading cases, namely, (a) uniformly loaded membrane,
(b) a membrane with uniform load over an inner portion, and (c¢) a membrane
with ring load, were analyzed.

The results from the present method show that for arbitrary loaded mem-
brane, transverse and radial displacements differ by large amounts, which
probably explains why the simultaneous solution method fails to yield a

satisfactory solution.

15




The present method shows good convergence characteristics for various
types of loadings. Also central displacement and the central and edge radial
stresses for uniformly loaded membrane by the present method agreed very well

with the classical solution.
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Table 1. Sensitivity of the present mgthod

of the initial values of o

Number of iterations required for convergence

Uniform loading over the region

- Initial i
G, values - ~ - N
0<=«1 0<=¢<0.1 0.5 < =< 0.6
a a a
0.0001 25 22 23
0.001 20 16 17
0.01 14 10 11
0.1 8 : 8 5
1.0 9 19 15
10.0 20 27 26
100.0 31 41 37
Converged.
S (r = 0) 0.4310 0.1104 0.1237
Converged
?& (r = a) 0.3329 0.0235 0.0971

3Membrane idealized with 60 regions.
bConstant radial stress Vaf was assumed at all 61 nodes.
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TABLE 2.

for Uniformly Loaded Membrane

Comparison of Normalized Displacements and Sttesses

- w r
W= y O =
L (pa 1/3 r ZaZE 1/3
Eh 2
h
Central transverse Central radial Edge radial
_deflection _ 8tresss - stress
w at r =20 o at r =20 g at r = a
T r
Hencky* 0.6536 0.4310 0.3280
(reff 3)
Kao and Perrone 0.6541 0.4289 0.3306
(ref. 6)
Present results 0.6534 0.4310 0.3329

*Values taken from

reference 6.
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