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Optimal shape design of structural elements based on boundary variations results in final designs 
that are topologically equivalent to the initial choice of design, and general, stable computational 
schemes for this approach often require some kind of remeshing of the finite element approximation of 
the analysis problem. This paper presents a methodology for optimal shape design where both these 
drawbacks can be avoided. The method is related to modern production techniques and consists of 
computing the optimal distribution in space of an anisotropic material that is constructed by 
introducing an infimum of periodically distributed small holes in a given homogeneous, i~otropic 
material, with the requirement that the resulting structure can carry the given loads as well as satisfy 
other design requirements. The computation of effective material properties for the anisotropic 
material is carried out using the method of homogenization. Computational results are presented and 
compared with results obtained by boundary variations. 

1. Introduction 

Shape optimization of linearly elastic sUHctures has been studied for more than fifteen years 
and has reached a level of maturity that makes it viable to implement the methods in CAE 
(computer aided engineering) systems for production use. For example, several software 
vendors of finite element general-purpose programs are introducing modules of shape 
optimization based on the successful implementation of sensitivity analysis for sizing design 
optimization problems in such codes. However, shape optimization is quite different from 
sizing problems. For sizing optimization problems, once sensitivity is known, design modifica- 
tion is rather simple, and a corresponding modification of a finite element model is straightfor- 
ward. Computing sensitivity is the same for shape sensitivity as for sizing problems if the shape 
of a structure is defined by a parametric equation using e.g. spline functions. In this sense, 
shape optimization is not different from sizing problems, but the ~hape change also implies 
significant change of the corresponding finite clement model so that s~msitivity analysis itself is 
not sufficient for shape optimization of structures. Therefore, unless finite, element analysis 
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and its preprocessing for mesh generation are fully integrated in a shape optimization module, 
it is quite difficult to utilize sensitivity analysis in practical shape optimization problems. Since 
most finite element analysis programs are intended to be independent of preprocessing, a 
shape optimization module in these programs cannot be easily implemented, whereas sensitivi- 
ty analysis is more or less straightforward. In other words, shape optimization algorithms may 
be installed in either a mesh generation or a geometric modeling module under the assumption 
that sensitivity with respect to design is calculated in the finite element analysis module. Even 
in this setting, there still remains a serious difficulty in that the topology of the optimal shape 
is unknown a priori. This means that choice of some basis functions to describe the boundary 
of a structure at the beginning of the optimal design process determines a restricted class of 
the optimal solutions that can be achieved. Also, it is very difficult to change the topology of a 
structure during the design process. If a singly connected domain is assumed at the beginning, 
the optimal shape that is obtained is within this class of domains, although the true optimal 
shape may be doubly connected, or perhaps even a structure with microvoids. This can only 
be avoided if an algorithm that automatically changes the topology of the finite element 
models is invoked. 

The development of the boundary movement methodology for shape optimization has 
attracted a great deal of attention and the literature on the subject is quite extensive; we refer 
to the survey [1] by Haftka and Gandhi. The boundary variation method can be implemented 
in various ways, for example by employing certain mesh moving schemes to define the shape 
of a given structure (see for example [2]). In this case the design variables are the coordinates 
of nodal points of a finite element model of a structure. Such schemes usually require some 
method that will maintain "regularity" of finite elements near the boundary, as in [3] where 
nodal points on the design boundary are moved in the normal direction of the current design. 
Also, Kikuchi et al. showed in [4] that "regularity" of the finite element model is very 
important near the design boundary so as to yield a physically sound optimal shape using these 
schemes. A different approach to represent boundaries in shape optimization is to introduce 
the boundary segment idea which describes the design boundary by a set of simple segments 
such as straight lines, circular arcs, elliptic arcs, and splines. The optimum is then sought 
within this restricted definition of the boundary. The idea is particularly suitable to geometric 
modeling in CAE systems, and is extensively applied in solving practical shape optimization 
problems. The method was used by Tvergaard [5] in 1973 and has had a revival in recent 
years, c.f. [6, 7]. For this method "regularity" of finite element mesh is also of great 
importance, especially in cases where large design changes occur. This can be handled by 
adaptive schemes as in [4] or by automatic remeshing of the finite elemlent model at each 
design iteration (see [6, 8]). 

The mathematical foundation for optimal shape design and design sensitivity analysis in 
boundary variation methods is well established. Sensitivity analysis for shape optimization 
problems is thoroughly studied in various settings by, for example, Haug, Choi and Komkov 
[9], Choi and Haug [10], Choi and Seong [11], Rousselet and Haug [12], Zolesio [13], Simon 
[14], and Haber [15], and these results have been applied to solve various shape optimization 
problems. The problem of existence of solutions has been addressed by Chenais [16]. 

The state-of-the-art today for shape design is that shape optimization is possible under the 
assumption that the initial topology is fixed during the iterative design optimization. What is 
the next step in shape optimization? An answer to this could be the introduction of a new 
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method that can yield the optimal topology as well as the optimal shape of a structure. To do 
this, it is too difficult to use the methods that describe the design boundary using parametric 
equations, since change of topology cannot be expected in the design process. In other words 
it is necessary to represent the shape without using "shape" functions. The method introduced 
in this paper is a possible alternative approach to shape optimization. Roughly speaking, 
shape optimization problems are transformed to material distribution problems using compo- 
site materials. Two material constituants, substance and void, are considered, and the 
microscopic optimal void distribution is considered instead of shape optimization by boundary 
variations in the usual sense. An important feature of the procedure is that the homogeniza- 
tion method is applied to determine macroscopic constitutive equations for the material with 
microscopic material constituants. 

Materials with microstructure enter naturally in problems of optimal structural design, be it 
shape or sizing problems. This was first clearly demonstrated in the papers by Cheng and 
Olhoff [17, 18] on optimal thickness distribution for elastic plates, although some indications 
of this phenomena can be found in earlier papers by Cea et al. [19] and Tartar [20]. The work 
by Olhoff and Cheng led to a series of works on optimal design problems introducing 
microstrucutres in the formulation of the problem. Most work has related to the plate problem 
[21-24] and to the problem of optimal design of torsion bars constructed from two dissimilar 
materials in a given volume fraction [23,25,26]. The design of a beam using a two- 
dimensional model is described in Zochowski [27]. The plate design problem is a sizing 
problem while the torsion bar problem is a shape design problem (designing the shape of 
inclusion of a weak material in a strong material). In both cases it turns out that laminated 
structures give more efficient designs and thus microstructures have to be built up in order to 
obtain the strongest structures. This requires a consistent way for computing effective material 
properties for materials with microstructures and this can conveniently be carried out using the 
method of homogenization [20, 28-31]. Thus optimal design of structures is closely connected 
with studies of materials with microstructures and the very important problem of finding 
(optimal) bounds on the effective material properties for composites [32-38]. In mathematical 
terms the introduction of microstructures in the formulation of structural design problems 
corresponds to a relaxation of the variational problem that can be formulated for the design 
optimization, see e.g. [39, 40]. 

The design method described in this paper is strongly inspired by the works mentioned 
above as well as being related to modern production techniques such as numerically controlled 
milling and plastic forming with controlled porosity through controlled cooling. We take an 
approach where a structural element is understood in a broad sense a, being defined only by 
the loads it is supposed to carry, its volume (cost), and design require,,:: ~nts as stress and strain 
limitations. The only restrictions on the allowable shapes is that the el~ment should connect to 
the given surface tractions. The initial design in the iterative design optimization procedure is 
a rough block of space in which we fill material in an optimal way (or we have a rough block 
of material and remove material). The use of a fixed domain of simple geometry simplifies the 
construction of a finite element approximation and the necessity of remeshing is avoided. 

The nature of the method is such that it allows you to predict the topology of the structural 
member but it only results in a nonsmooth estimate of the exact form of its boundary. The 
method should be the first step in a two-step shape design procedure, where the second step 
consists of a traditional boundary variations optimization, based on the design computed in 
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the first step. This step will be speeded up considerably, as the first step gives a boundary close 
to the optimal, smooth boundary. Also, the first step will result in estimates of stresses and 
strains in the structure that will allow construction of an effective finite element mesh for the 
boundary optimization. 

2. General problem formulation for optimal design of linearly elastic structures 

In the following a general formulation for optimal structural design in linear elasticity is 
presented. The set-up is well known, but will be repeated here in order to introduce the" 
notation that will be used as well as to clarify ideas. 

Consider a mechanical element as a body occupying a domain K~ in !~ 3 and suppose that the 
body is subject to body forces f and boundary tractions t. In optimal design for minimum 
compliance we seek the optimal choice of elasticity tensor E#k t in some given set of admissable 
elasticity tensors, Uad. The admissible tensors will usually be allowed to vary over the domain 
of the body, so that EijkZ will be a function of the spatial variable x ~ 12, and we have 
Uad E (L®(K~)) 21, in general, corresponding to the 21 independent elements of E#k ~. 

Introducing the energy bilinear form 

aE(u , V) -- fn Eqkleki(U)eq(V) dx , (1) 

with lineafized strains 

e.(n) = ½x % + (2) 

and the load linear form 

L(v) = fo f . v dx + fr t .  v ds , (3) 

the minimum compliance problem takes the form: 

minimize L(u) (4a) 

E,jk, E Uod (41:)) 

subject to ae(u, v)= L(v) all v E U, design constraints. (4c) 

Here "design constraints" covers constraints on stresses, strains, displacements, etc., while 
sizing constraints, volume constraints, etc. are counted for in the choice of U.d. The space U is 
the space of kinematically admissible displacement fields. 

In the case of optimal shape design elements E#k i of U~d take on the form 

f f i  , (5) 
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where Eqk t is the constant elastic tensor for the material employed for the construction of the 
mechanical element, and X(X) is an indicator function for the part A m of n that is occupied by 
the material: 

X(x) = { 1 if x E  rim., 
i f  x •  n ~ ' ~  m . ( 6 )  

For sizing problems, like design of variable thickness sheets, the admissible Eq~t's have the 
form 

Eqk,(x) = h(x) F'qkt , (7) 

where again /~qkt is a constant tensor and h E L ®(n) is the sizing function. 
In the two examples above, it is natural to impose a volume constraint, and this would take 

on the form 

fax(x dx ffi Vol, Ja h(x) dx = Vol. (8) 
f 

Of the two design problems described above, the sizing problem is well posed, solutions 
exist [41], and for computations this problem is straightforward. However, the shape design 
problem as posed does not, in general, have a solution (cf. [39]) unless you regularize the 
problem in some way by introducing composite materials. Traditionally shape design problems 
are treated in a different way by defining shapes as given by mappings into R 3, defined on a 
given reference domain n o in R 3. Because of smoothness properties required in this method, 
the class of shapes that is considered will be diffeomorfic with the reference domain n o and 
shape changes will be boundary movements. In the mapping method the mechanical element 
is thus defined as ¢(n0), where ¢ is a diffeomorfism, ¢: n o ~ ¢(no) and n0 in R 3. By giving 
deformation fields etc. on the body ¢(no) in terms of deformation fields on the reference 
domain n o , shape design by boundary variations can also be stated as in (4) on the reference 
domain n o (see for example [12, 13, 14]). In this way the energy bilinear form as well as the 
load linear form will depend on the derivatives of the design variable ¢ E C ' ( n  0, R3). The 
linear form L will have the form 

t / .  
L(v) = L f"  vldet D~-'I dx + L t. vladj De-'l ds, (9) 

J , s  o . , , i  T 0 

where Dq~ denotes the .lacobian of the mapping q,. The energy bilinear form will have. the form 
as given in (1), with tile elasticity tensor Eqk t, 

Eqk t -- Eipkq(~p-1)ip(Dcp-1)tqldet D~o[ . (10) 

It can readily be seen from this that a moving boundary technique leads to a complicated 
functional dependence on the derivatives of the design function ~p, and this property has to be 
taken into account in any discretized, numerical method for solving problems of this type. 
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As discussed in the introduction this method actually has serious computational drawbacks, 
as well as being unable, in a rational way, to predict the eventual optimal topology of the 
mechanical element. In order to circumvent this unfortunate situation we thus need an 
approach which in principle is related to the general shape design statement used above and 
which has the computational attractive simplicity of the sizing problem. The method that we 
propose is to use composites of a priori simple form which allows you to describe the body by 
a density function that can take on values in the interval [0, 1] instead of only the values 0 and 
1 as for the indicator function statement above. This results in a problem that in nature is a 
sizing problem, and which at the same time allows you to predict the optimal distribution of 
material, that is, predict the optimal shape. 

The method consists of the following steps: 

Step 1. Choose a suitable reference domain that allows you to define surface tractions, 
fixed boundaries, etc. 

Step 2. Choose a composite, constructed by period repetition of a unit cell consisting of the 
given material with one or more holes. 

Step 3. Compute the effective material properties of the composite, using homogenization 
theory. This gives a functional relationship between the density of material in the 
composite (i.e. sizes of holes) and the effective material properties. 

Step 4. Compute the optimal distribution of this composite material in the reference 
domain, treating the problem as a sizing problem with the density as the sizing 
variable 

Step 5. Interpret the optimal distribution of material as defining a shape, in the sense of the 
general shape design formulation given above. 

3. The homogenization method 

In this section the homogenization method will be briefly reviewed for the sake of 
completeness of the paper. Details of homogenization methods can be found in the references 
sited in the introduction [28-31]; for homogenization of elasticity problems see also [42, 43]. 
Numerical studies of homogenization can be found in [44, 45]. For simplicity, plane problems 
are considered here. 

Suppose that a periodic microstructure is assumed in a neighborhood of an arbitrary point x 
of a given linearly elastic structure. The periodicity is represented by a parameter e which is 
assumed to be very small, that is, the elasticity tensor is given by E~kt(x ), where 

E~kt(x) = E~jk~(x, y ) ,  y = x / e ,  for i, j, k, l = 1 ,2 ,  (11) 

and y - ,  E~jkl(X , y) is Y-periodic, Y = (YtR, Y~,) × (Y2R, Y2v). The tensor E ~  ! of material 
constants satisfies the symmetry condition 

E E~k, = E~kt = E~j,k = E~uj. (12) 
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It is also assumed that E~k t satisfies the strong ellipticity condition for every x 

E~kt(x)XijXkt>~ mXijXij for some m > 0  and for every Xij= Xj~ (13) 

for every e; here the Einstein summation convention is applied. Let the domain occupied by a 
structure be denoted by ~O, with a Lipschitz boundary F, and let a body force f be applied in 
n.  Let a traction t be applied along a part of the boundary r T which is the complement of the 
part of the boundary r D on which displacement components are specified, see Fig. 1. 

In this setting, equilibrium of the structure can be characterized by the minimum potential 

AO "~ FD ~ 

T ~ X  
, v  1 " 

microstructure 
enlarged 

microstructure 
enlarged 

Y 2 litHi!iiiil H 

I I I;i!lit;II I cell structure Y 
[,liiiii4 H at A 

v Y  1 

l cell structure Y 
at B 

vy 1 
Fig. 1. A structure with composite microstructur¢. 
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energy principle: the displacement u ~ for equilibrium is the solution of the minimization 
problem 

rain F~(v~), (14) 
v~EU 

where F ~ is the total potential energy defined by 

F~(v ~ ) = ½a~(v ~, v ~ ) - Z(v~)  , (15)  

a~(u, v) = fa E~klekl(U)%(V) dx , (16) 

fo f . v d x  + t. ds , (17) 

and U is the admissible linear manifold such that 

U ---- {V  ---- Viri: V i E HI(•), v i --" gi on I'D}. (18) 

Here, g is the specified displacement along the boundary F D, and e(v) is the linearized strain 
tensor. It is clear that the solution to the minimum problem depends on the parameter e 
characterizing the microstructure, i.e., 

u' (x)  = u(x,  y),  y = x l e  . (19) 

Now assume that an arbitrary admissible displacement v ~ is expanded as 

v~(x) ffi Vo(X) + ev , (x ,  y)  , y = x / e ,  (20)  

where v 0 E U and v~(x, y) is defined in 1~ u Y, vt(x, .) is Y-periodic, and v~ = 0 on F v × Y. 
Noting that 

a o~ 1 0~ 
ox--~ (~(x ,  Y)I,=,,,)- Ox, + -8 "0Yi' (21) 

the total pot¢ntial energy is expanded as 

F'(,, ') " f .  -" / 0°°~ Oo,~( OVo, av,,~ 
= E,iktt '~xt+"~i/k '-~x+-~-~ildX 

Ja f" v°'dx - frT t" Vo ds + eR'(vo, v,) , (22) 
I 

4 

where R ~ is the remainder which is bounded for fixed v o and v~. Applying the relation 
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fo ~fof~ lim~_,0 O(x, x/e) dx = - ~  ~(x, y) dy dx , (23) 

we see that 

lim~_.,o F~(v~)= F(vo, vl) , (24) 
where 

- ~  ~11 f ~ Y,~-~x t-'{Ov°k --~t /~-~jOVlk~( Ov°i ~Ovli) 

If the pair {u0, ul} is the minimizer of the functional F, it satisfies the following two 
equations: 

1 (0U0k OUlk ~ 0Voi 

- L  oo,, for ovory Oo. 
and 

1 _,[OUok OUtk] eVli 
jyj ~frE,m(x ,y ,~--~xt÷-~t  ! -~xj d y d x = 0  for every v, . (27, 

If u~ is assumed to be decomposed into 

8Uop 
utk(x, y)= -xPq(y) - ~ q  (x), (28) 

and if X pq satisfies 

f,( o~:'~ oo,, ., E,~,- E,j,,, ayq J ~ d y = 0 for/,  t= 1 and 2, (29) 

the second equation is automatically satisfied. Substitution of (28) into the first equation yields 
the homogenized equation 

fa " Ou°' O°°' fn frT E~m(x) Ox t &r/ dx = f .  u o dx + t" Vo ds for every Vo, (30) 

where 

n l f r  ( k, E~jk,(x) = - ~  Elm(X, y)_ Eijpq(X, y) OXp ] dy . (31) Oyq / 
Define 

f H 0Uk 0Ui an(U, V) = J~ Eijki(X) Ox t Oxj dx, (32) 



206 M. Ph. Bendsee, N. Kikuchi, Optimal topologies in structural design 

ay(X kt, v)= fy Eijpq(X, y) i)X~l ovi dy,  (33) 
ayq ~2,~ 

and 
f oqv/ 

L~(e) = Jr Eqk' by~ dy . (34) 

Thus, the following problem on the micro~'~opie level and associated homogenized problem on 
the macroscopic level constitute the necessary (and sufficient) conditions that are obtained by 
passing to the limit e---> 0 in the minimum principle (24). 

Problem at microscopic level in the cell Y: 

ki V) L~(v) for every v E Uy, (35) X EUy:  ar(x kl, = 

where Ur is the admissible space defined in the cell Y: 

Ur = {v = v~er~" vj E H~(Y)/R, v~ takes equal values on opposite faces of Y} 
(36) 

(R is the set of constant functions defined on Y). 
Problem at macroscopic level: the homogenized problem on O" 

u E U: an(u, v)= L(v) for every v E U o , (37) 

where U o is the homogeneous case of U, i.e., g = O. 
It is noted that the homogenized elasticity tensor is also given by 

H 1 X kt pkt, " Eqk,(X)-  " ~  av( - X q - eq) , (38) 

where Pq= y~8~kev k. Also note that the homogenized energy form all(U, V) is given by the 
minimization problem 

all(U, V) ---- lim min 1 ~-.o ~evv - ~  a~(u + ~' v + ~) , (39) 

where the average energy in the umt cell is minimized over all periodic disturbance 
deformation fields cp of period Y (ef. [35]). 

We note here that the derivation above is for a mierostrueture without holes, but the 
formulas for the effective material constants still holds true in this case also, as proved in 
[45, 46]. 

For shape optimization, it is necessary to solve the cell problem to determine the 
homogenized elasticity tensor for a given mierostructure that can define an appropriate 
material distribution. Thus, the cell problem is solved by finite element methods. To do this, 
the cell domain Y is discretized by appropriate finite elements, the admissible space Uy is 
approximated by Uvh using a finite element method, and then the finite element approxima- 
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tion X kh ~ E Urh of the X kt is obtained as the solution of the discrete problem 

kl kl Xh E Uyh: a y ( X h  , Vh) ki = L r (Vh) for every v h E Urh. (40) 

Using the approximation the homogenized elasticity tensor is defined by 

H 1 ~hklp ) 
hEqk,(X) =-~ fy (Eq,t(x, y) -  Eqp,(x, y)'~yq dy. (41) 

By simple algebra, it can be obtained that 

1 kt kl, q " hEqHkl- EqHkl-" ~ a y ( X h  -- X Xh -- X q )  • (42) 

Noting that the orthogonality of the approximation error to the finite element space implies 
that 

ay(xkh I -- kl ~ -  ~i j )= dy( kl__ xki Uh -- i]) for" every ~h ~ ~JYh , (43) 

the finite element approximation error of the homogenized elasticity tensor is bounded by the 
interpolation error of X q and Xk~: 

1 . . . .  q i,i Xkl, ~t Xkl) 
F,,j",,I F £ [  - x " ,  x ,  - X ' J ) V a , , ( X ,  - X ,  - , ( 4 4 )  

where ,y~ is the finite element interpolation of X 's. 
Only plane problems are treated in this paper, so we let the cell structure Y be discretized 

by four-node isoparametric elements in which each component of ,i ,kt for k, j = 1 and 2 is 
interpolated by bilinear polynomials of the coordinates in the master element. 

The finite element calculations on the unit cell are used for the computation of the 
homogenized elasticity tensor which is applied for the shape optimization. An important issue 
in the finite element modeling of the cell structure is thus whether the results are very sensitive 
with respect to the specific choice of finite element mesh. To examine mesh sensitivity, 
consider two different microstructures as shown in Fig. 2. The first one consists of two 

First Cell Structure second cell structure 

(hard/soft materials) (hole/substance) 

Fig..2. Two different microstructures. 
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different materials; a soft and a hard material. If Young's modulus of the soft material is very 
small, say 10-2--10 -3 times the Young's modulus of the hard material, the soft part can be 
regarded as voids or holes. The second cell contains a rectangular hole. That is, the hole is not 
approximated by a very soft material in the second case. 

For the first cell, the soft and hard materials are isotropic, and are characterized by Young's 
moduli Esoft = 10 and Eha,d = 1000 a_,_,d the same Poisson's ratio v = 0.3. In order to test for 
mesh sensitivity, the initial discretization is defined by 16 x 16 uniform, square four-node 
isoparametric elements. On this finite element model the h-adaptive method is then applied 
twice, using an error measure based on the interpolation error as given above (for details, see 
[45]). The resulting finite element meshes are sh vn in Fig. 3, and the computed homogenized 
elasticity tensors are given in Table 1. Note that plane stress is assumed in this study. There is 
a difference of about 20% between the values of E1~11 obtained from use ef the initial and 
adapted meshes, respectively. It is thus clear that the mesh sensitivity is very significant in this 
case. 
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Fig. 3. Adapted finite element mesh (cell 1). 

Table 1 
Finite element mesh sensitivitj for the first cell 

Mesh Ezlli El m E2:,~2 El~,12 

16 x 16 149.80 71.61 149.80 87.12 
1st Adap 127.12 62.91 1 2 7 . 1 2  75.90 

2nd Adap 125.79 62.62 125.79 75.28 
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For the second cell, which has a rectangular hole, a 20 × 20 mesh is used at the initial 
discretization, and the h-adaptation is applied three times as shown in Fig. 4. In this case, the 
substance material is characterized by E111~ = E2222 =30 and Ell22----E1212-10. After 
homogenization is performed, the computed elasticity tensors are as given in Table 2. In this 
case, mesh sensitivity is very small, say, less than 1.5% in E~I~. 

From the above examples it can be concluded that it is better not to replace holes by soft 
materials when the goal is to determine the homogenized elasticity tensor for materials 
containing microscale voids. Thus, in the present study~ a cell structure with a rectangular hole 
is considered. 

For use in shape optimization, the homogenized elasticity tensor must be obtained for a 
"continuously" varying size of a rectangular hole in the cell so that the density of the 
substance of materials can be a continuous design variable for the optimal "material 
distribution." To this end, it is certainly impossible to determine the homogenized elastic 

I I I , , I  I I 

• ! , . I  i , . ! . . . !  . . . . .  

i ; l  i : :  . i  
• . -  - .  

• . . • 

m m  

I i i I i i 
i I I I I i 

I 
Fig. 4. Adapted finite element grid (cell 2). 

Table 2 
Finite element mesh sensitivity for the second cell 

Mesh E.lt  fi-'1122 E2222 E1212 
lnit 13.015 3.241 17.552 2.785 

1st Adap 12.910 3 .178  17.473 2.714 
2nd Adap 12.865 3 .146  17.437 2.683 
3rd Adap 12.844 3 .131 17.421 2.668 
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Fig. 5. Representative square holes in the unit (square) cell. 

constant for all the possibilities of the material density (that is, the size of a rectangular hole in 
the cell). Thus, we compute the homogenized elastic tensors for certain sizes of the hole, and 
other values are then interpo~tted by, e.g., Legendre polynomials, in order to have a 
continuous variation with respect to material density. An example for a square hole is shown 
in Figs. 5 and 6 in which four representative square holes and the interpolated components of 
the homogenized elastic tensor are given, respectively. It is noted that the variation of the 
elastic moduli is highly nonlinear, as shown in Fig. 6. This nonlinearit~ w~! play an important 
role in the shape optimization and will be examined by comparing the res:,ts obtained in the 
case of a linearly varying elasticity tensor. It is also important to note that if the cell structure 
is rotated in relation to a fixed reference frame (for example the coordinate system of the 
shape optimization problem), the transformed elastic tensor is very different from the one for 
the unrotated case. The influence of the rotation of the cell becomes very strong when the size 
of the hole becomes large, as shown in Fig. 7, and it can be seen that a possibility of rotation 

Rigidity ee Function of Denetky Ioquare hole) 

tO0. 
. - - -  I=1111 

00- 
- -  El122 

6O- .... E1212 

40~ 

2O 

....o.,.~'.; '~ .,,"- 
0 . . . .  

-m-  
I I I I " " ! I 

0.0 O.i! 0,4 0.6 0.8 i.O 1.8 
density 

Fig, 6. Interpolated elastic moduli. 
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. . . .  E1212 
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• , .  ~ ,  • 

I "  ~. " - . . .~  

t~'" "~ 
6 - /_..., .., 

-.% 
~,, ,, .% 

f." :% 

0-  
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Fig. 7. Elastic moduli with respect to rotation of the ceil. 

of the cell is quite important for our purpose of shape optimization. This strong dependence 
on rotation is clear from a physical point of view, as a cell with a large hole will have almost 
no shearing stiffness, while the same cell rotated 45 degrees has a quite significant shearing 
stiffness. 

4. The optimization method 

The method of homogenization allows us to compute the effective properties for a material 
with infinitely many, infinitely small holes and we are thus in a position to compute the 
optimal distribution of such a composite material in a given domain. Le t /~  be a suitable 
chosen domain in [R 2 that allows you to introduce the given surface tractions (see Fig. 8). 
Assume that a design composite with a square unit cell with a square hole is to be distributed 
in this reference domain/2. Homogenization gives us a relationship 

E~ik, = E#kt(¢=, #) (45) 

between the effective material constants of the composite, the poi:~twise varying hole size ¢, 
and the pointwise varying angle of rotation 0 of th~ ~:ell. The hole size a is given as a ffi A2 
with A being the length of the side of the hole=. T~e density of material is/~ ffi (1 - a). 

The problem formulation for minimization of compliance for a given volume of material by 
distribution of the composite material takes on the f0rm 

minimize L(u) 
P,@ 

so that a(u, v)= L(v) for all v E U ,  (46) 

fn ~ dx ~Vol ,  0~/.~ ~ 1, 
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il iii!iliiii ii i ! !!! 

Fig. 8. Different choices of design domain n,  for a given set of surface tractions. 

where the notation of Section 2 is used. We notice that this problem finds the optimal 
distribution of square holes in the domain • and it is thus a shape optimization problem, even 
though it has the form of a sizing problem! 

Solving problem (46) by means of computations is carried in the following three steps: 

Step 1. The material constants E#kt(/z) are computed for a number of values of cell hole 
size (say 6 values) and the complete functional dependence of E#~: on /z is 
approximated by interpolation with Legendre polynomials defined on the interval 
[0, 1]. The dependence of E#k t on 0 is given by the well-known frame rotation 
formulas, as mentioned in Section 3. 

Step 2. A finite element approximation scheme is constructed for the analysis problem of 
(46). ~ should thus be chosen in order to simplify the analysis problem as much as 
possible. 

Step 3. The design variables/.t and 0 are discretized by assigning a constant value in each 
element of the finite element model. An optimization scheme based on the 
optimality criteria for (46) is constructed. This scheme requires data provided by 
the homogenization computations as well as the finite element analysis. 
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The methodology for finding the optimality criteria for the problem stated above is well 
known [47], so we will restrict ourselves to stating the result. As the adjoint deformation of 
the problem is just the deformation field u, the optimality criteria are given as 

OEokl 
Oi~ eO(U)ekl(U)= A + ~ll - */2, (47) 

OEokt 
ao e°(u)ek'(u) = 0 ,  (48) 

with A ~ 0 being the Lagrange multiplier associated with the volume constraint and T/i, i = 1, 
2, ~/i ~ 0, the Lagrange multipliers for the constraints/~ - 1 ~ 0 and/~ ~ 0, respectively. The 
material parameters EOk ~ are given explicitly in terms of Legendre polynomials in/~ and in 
terms of cosines and sines in 0. Thus the derivatives appearing ia (47) and (48) can be 
computed explidtly. The strain terms of (47) and (48) are in their turn computed using the 
finite element approximation discussed above. Finally, the nonlinear equations (46) and (47) 
in/L and 0 are solved by iteration using a recursion formula 

fmax{(1 - ~ ) ~ ,  0) if hkD~k ~max{(1 -- ~')/~k, 0}, 
P'k+~ ---- |P'kD~k if max{(1 - ~)~g£k, 0) ~ hkD~k ~ min((1 + ~)/'£k, 1}, 

[ rain{(1 + ~')/~k, 1} if rain{(1 + ~')/~k, 1} ~ hkD~k, 
(49) 

for the density/~. Here D denotes 

A- O Eokl (5o) 

T/is a weighting factor, and ~" a move limit. After updating/~k to/~k.l, the updated angle Ok÷ ~ 
is computed by solving (48) using a combined Newton.bisection method. Note that /~k÷t 
depends on the present value of the Lagrange multiplier A k, and that A k should be adjusted in 
an inner iteration loop in order to satisfy the volume constraint (this constraint is active). The 
values of 7/and ~" are chosen by experiment, in order to obtain a suitable rapid and stable 
convergence of the scheme. 

The optimization algorithm described above is just one among many possible choices that 
can be made. When deciding on use of a specific algorithm in the present situation it has to be 
taken into account that a very fine discretization mesh will have to be used if you seek 
prediction of the fine details of shape. Thus the algorithm employed should be able to handle 
a large number of variables, as well as requiring only a few function calls, which in this case 
means performing a finite element analysis. 

5. Computat ional  results 

The optimization method described above has been tested in various ways on the much 
studied problem of optimal shape design of a fillet. This problem is, for example, treated in 
[4,5,7,8,48,49,50].  
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Two different settings of the fillet problem will be presented, allowing for different 
possibilities for connecting the surface tractions of the problem. Figure 9 illustrates the two 
cases considered. For Case A only part of the structure is free to be redesigned and in Case B 
the full connecting structure between the surface tractions can be freely designed. Case A is 
the situation usually seen in the literature. 

The example problems are treated as plane elasticity problems, so the results on homogeni- 
zation described in Section 3 apply in the form stated there. The optimization problem that 
was solved for the examples was the case of minimization of compliance for a given volume of 
material, as described in Section 4. In what follows, results for three different volume 
constraints will be illustrated, the volume constraint being given as the percentage of the full 
design area that is available for the construction of the fillet. 

For the sake of comparison, a design optimization was also carried out for the case of a 
rigidity that is linear in the design variable, as for variable thickness sheets, cf. Section 2. Such 
design problems have been studied in detail in [51], and are very well-behaved problems. 
Figure l0 shows results for this type of problems and illustrates that this representation of 
stiffness gives a good indication of the two-dimensional optimal shape for high volume 
fractions, while for low volume fractions it is difficult to interpret the results so as to define a 
two-dimensional shape. This is, of course, not surprising as we are dealing with a true 
three-dimensional problem that just happens to have a two-dimensional model. That is the 
variable thickness is a hidden three-dimensional feature. However, the design of variable 
thickness sheets does indeed give well-defined shapes as three-dimensional structures. 

The testing of the design method using composite materials has been carried out for various 
different formulations that all relate to the description of the method given in Section 4. Two 

B 

Fig. 9. The design cases. 
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i 
,,¢ 

C. r. 

:3ig. 10. Design of variable thickness sheets. Left-hand column for Case A, right-hand column for Case B. Volume 
is (a): 91%, (b): 64%, (c): 36%. 

types of basic square cells were used, one with a square holes and just one variable needed to 
describe the resulting composite, and one with a rectangular hole that needs two design 
variables. For both types of composites an optimization was performed including or excluding 
the angle of cell rotation. Figures 11-14 and Table 3 show some of the results obtained. 

A basic requirement for any shape design method is, of course, that the resulting designs 
are not very sensitive to the choice of finite element discretization, and that the results are 
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Fig. 11. Results for two different discretizations. Case B with voids as square holes. Left-hand column for 16 x 10 
mesh, right-hand column for 32 x 20 mesh. Volume is 91%, 64%, 36%, respectively. Black areas indicate material, 
and density of voids is illustrated as a removal of black areas. The voids are drawn element-wise as a rotated, 
macroscopic hole; note that the voids in reality are at microlevel. 

stable with respect to an increase in the number of elements used. If both these requirements 
are satisfied it indicates that the optimization problem is well posed and one can have faith in 
the results. The present method seems to satisfy these requirements, as indicated in Fig. 11. 
Some caution should be taken when using the method with very fine discretizations. This may 
be tempting in order to get very good approximations of an eventual smooth design boundary, 
but a very fine mesh has a tendency to result in very small sensitivity of the functional near the 
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Fig. 12. Comparison with two-variable composite design, Case B with voids as rectangular holes. Volumes are (a): 
91%, (b): 64%, (c): 36%. 

optimal design with respect to the design variables that are assigned values in each element. 
This has the effect that in such cases the design optimization becomes unreliable, and very 
sensitive to stoppping criteria, weighting factors, etc. However, for very little available 
material, a fine mesh is needed in order to be able to represent a beam-like layout of the 
material. As note ~ above the optimization was tested for square holes as well as rectangular 
holes in the square cell (see Fig. 12). The numerical experiments indicate that it is 
advantageous to use just one variable for the definition of the distribution of material. First oi 
all the introduction of more than one variable does not significantly improve the performance 
of the structure, so it does not pay off to use the extra computer time required in this case, 
and secondly the sensitivity of the compliance functional with respect to a too detailed 
description of the microstructure is so insignificant that the performance of the optimization 
scheme is degraded in a way similar to the degradation seen from use of a too fine 
discretization of the structure. The critical variable for the optimization method thus seems to 
be the density of material, and not the microscopic definition of this density. However, the 
different descriptions of the microstructure do lead to somewhat different structures, that is, 
the outer shapes are very similar while the inner structure (formation of microscopic holes, 
etc.) tend to differ. It should be pointed out that in any case the results give a fair definition of 
shape with very little true composite material in the optimal structure. Also, for moderately 
low volume fractions the method works like a method for lay-out of truss-like structures (see 
e.g. [52]). 
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Table 3 
Compliance values for optimal designs, Case A 

Volume 
Solid design area has 
compliance 3.52 91% 64% 36% 

square holes, coarse mesh 3.53 4.19 7.55 
square holes, fine mesh 3.54 4.26 7.96 
rectangular holes 3.55 4.15 7.17 
rectangular holes, no rotation 3.55 4.21 6.96 
rectangular holes, lumped 3.55 4.17 7.27 
boundary variation 3.55 4.20 8.96 

As discussed in the preceeding section the angle of rotation of the cell is important for the 
shearing stiffness of the resulting composite and it turns out to be very important for the 
optimization method presented here. It can be seen from Figs. 11-14 that the method gives a 
fairly precise definition of shape, that is, the optimization results in design with a density of 
material that typically only takes on the values 1 and 0. Thus, even though intermediate 
densities are allowed, the optimization method builds a structure with very small domains 
filled with the composite material. However, if the angle of rotation of the cells of the 
composite is not introduced as a design variable, considerable areas of the resulting structure 
are made of a composite of intermediate density. The resulting designs may still be of interest 
if composite structures are to be produced, but for de~nitio~ of shape the introduction of the 
cell rotation is crucial. This property is illustrated in Fig. 13. 

The optimization method results in material distributions that give a good definition of 
shape, but even with the cell rotation taken into account the optimal design still includes some 
small areas of composite material. If such composites with microscopic voids are difficult or 
impossible to produce, it will be convenient to introduce some method for getting designs with 
no composites from the optimal designs computed using composites. This can be done 
interactively, where the designer chooses the final shape of the element to be produced from 
the shape produced by the optimal design procedure just described. An alternative is to 
numerically perform a lumping process where in each element of the discretized structure it is 
decided whether this element should be solid or void in the macroscopic scale. The lumping is 
based on the distribution of material computed in the optimal design procedure, with a cut-off 
value for material/void defined from the requirement that the volume should be unchanged. 
Such a lumping method has also been employed by Cheng and Olhoff [18], and, as in their 
work, the lumping in the present case has in most cases insignificant influence on the 
performance of the structure. This means that the lumping process is an efficient method for 
computing nearly optimal, practical designs. Some examples are given in Fig. 14. In some 
cases, however, this crude lumping process can lead to a break-up of the structure and isolated 
pieces of material, in which case a final acceptable design must be done manually. 

Finally, the shape optimization method proposed here was compared with a standard 
boundary variations technique, as described in [8]. For a considerably higher computing cost 
this method gives comparable values of the criteria as well as very similar shapes for higher 
volume fractions, where it is unnecessary to include holes in the structure, while for little 
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Fig. 15. Results obtained by boundary variations. Case A, with volumes 91%, 64% and 36%. 

available material the resulting shapes are different and the compliance for the method 
proposed here is significantly smaller. In the ideal situation, the two methods should be 
combined, by using the density method described here as a preprocessor for a boundary 
movement technique in order to obtain the smooth and detailed optimal shape of a structure 

(see Fig. 15). 

6. Conclusions 

As shown above the proposed optimization method can provide the optimal shape as well 
as the topology of a mechanical element. The method is a material distribution method, based 
on the use of an artificial composite material with microscopic voids. 

Further investigation of the sensitivity of the results with regard to choice of particular 
microstructure should be carried out and extension of the present method to three-dimension- 
al problems is of great importance for the applicability to real-life problems. It is noted that 
the boundary variations method for three-dimensional structures is very difficult to implement 
because of the difficulties encountered in representing the boundary surfaces. In other words, 
extending the boundary variations method to three-dimensional problems is not straightfor- 
ward but the present method should easily be extended. 
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