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Abstract

We have applied the Finite Element Method to the self-consistent elec-

tronic structure calculations of molecules and solids for the first time. In

this approach all the calculations are performed in ”real space” and the use

of non-uniform mesh is made possible, thus enabling us to deal with local-

ized systems with ease. To illustrate the utility of this method, we perform

an all-electron calculation of hydrogen molecule in a supercell with LDA

approximation. Our method is also applicable to mesoscopic systems.

http://arxiv.org/abs/mtrl-th/9412003v2


I. Introduction

Electronic-structure calculations of materials have a long history and var-

ious methods have been developed for that purpose. One of the most popular

methods for electronic-structure calculations of condensed matter systems today

is the use of plane-wave basis sets and pseudo-potentials (PWPP) with local

density approximation (LDA) [1]. This method usually has enough accuracy for

quantitative discussion, and reasonable efficiency to treat large systems. How-

ever, for localized systems such as the first row elements or transition metals, the

use of PWPP leads to a large number of plane-waves, thus making the calculation

almost impossible.

One way to avoid this difficulty is to use the ultrasoft pseudo-potentials [2].

In this method, the constraint of norm-conservation is relaxed, and the number of

plane-waves necessary for the calculation is considerably reduced. However, the

deficit charge must be restored at every step, and the calculation becomes compli-

cated. Furthermore, for systems with large vacuum regions such as molecules or

slab model of surfaces in supercell geometry, even the ultrasoft pseudo-potential

does not significantly reduce the number of plane-waves. So an efficient method

to deal with such systems is desirable.

II. Details of the Calculation

Here we propose another way to solve above difficulties. In our method, all

the calculations are performed in real space, and non-uniform meshes are used.

First, the unit cell is divided into ortho-rhombic elements in real space, and the

values of the wavefunctions on each vertex of the elements are taken as the basic

variables. Then the wavefunctions are interpolated in each element as follows.
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where h1, h2, h3 denote the length of the three sides of the element and ψ1, · · · , ψ8

denote the value of the wavefunction on each vertex of the element (Fig.1). Note

that ωs equals 1 at the s-th vertex and 0 at the other vertices.

In this way, the wavefunctions are approximated by continuous piecewise poly-

nomial functions. Here we put the values of the wavefunction of the i-th band on

every vertex in the unit cell in some appropriate order and write it as ~ψi.

The density corresponding to the wavefunction is approximated in the same

way and represented by ~n. Here the values of the density is calculated from

the square sum of the wavefunctions. In order to conserve the total charge, re-

normalization of the density is performed. Though the present treatment of the



density is not satisfactory, it causes no serious troubles such as instabilities, so

we adopt it for the time being.

In this approach, the total energy of the system is represented in the follow-

ing way. First, we confine ourselves to the periodic systems to handle the long

range Hartree potential efficiently. Furthermore, for simplicity we consider only

real wavefunctions and bare coulomb potentials, though the extension to com-

plex wavefunctions and separable norm-conserving pseudo-potentials is straight-

forward.

The total energy per unit cell is given by

Etotal = Ekin + Epot + Ehartree + Exc + Eewald (10)

in the LDA approximation. Rydberg units are used throughout the paper.

The explicit form of the kinetic energy is

Ekin =
∑

i

∫

cell
|∇ψi|

2
d~r. (11)

This integral can be calculated exactly in each element for the interpolated

expression, and the result is the quadratic form of the values of wavefunctions at

the vertices. So, with the aid of a constant matrix G, we can write

Ekin =
∑

i

t ~ψi ·G · ~ψi. (12)

We now go on to the potential energy. After the divergences of the long range

Coulomb potentials of nuclei and electrons are cancelled, the potential energy is

expressed as

Epot = −8π
∑

~G 6=0

n ( ~G)

G2
·

(

∑

i

Zi exp (i ~G · ~ri)

)

, (13)

where n ( ~G) is the reciprocal-space representation of the density and Zi and ~ri

denote the charge and the position of each nucleus in the unit cell respectively.



Here we define a potential in real space as

V (~r) = −
8π

Vcell

∑

i

Zi





∑

~G 6=0

1

G2
exp (i ~G · (~r − ~ri))



 . (14)

In practice, the above sum is calculated with Ewald’s method [3]. Using this

potential, the potential energy can be written as

Epot =
∫

cell
V (~r)n (~r) d~r. (15)

This can again be calculated in each element, and the result is the linear form of

the density. So we can write with the use of a constant vector ~v,

Epot =
t~v · ~n, (16)

where each element of ~v is calculated as the sum of several integrals of the form
∫

element V (~r)ωs (~r) d~r.

In the same way, the Hartree energy can be written as

Ehartree = 4π
∫

cell
ϕ (~r)n (~r) d~r, (17)

with

ϕ (~r) =
∑

~G 6=0

n ( ~G)

G2
exp (i ~G · ~r). (18)

Note that ϕ (~r) depends on the desity in contrast with V (~r). As a result, ϕ (~r)

must be calculated every time the density is changed. The direct use of the right

hand side of (18) is costly, because the fast Fourier transform (FFT) is necessary

to obtain the values of n ( ~G) for all ~G. So we calculate ϕ (~r) by minimizing

I [ϕ] ≡
∫

cell

{

1

2
|∇ϕ|2 − (n (~r)− n̄) · ϕ (~r)

}

d~r (19)

with the conjugate gradient method under the contraint,

∫

cell
ϕ (~r) d~r = 0, (20)



where n̄ denote the average of the density. It can be easily shown that ϕ (~r)

given in Eq.(18) minimizes the functional (19) under the same constraint. This

technique for calculating Hartree potential is adopted in [4] for a different reason.

Here we approximate ϕ (~r) in the same way as the density, and write it as ~ϕ . In

this method, ~ϕ need not be so exact when the total energy is far from convergent.

Accordingly, when the density is changed, only a few iterations are necessary to

get the new ~ϕ . Similar idea on this procedure is described in [5].

Now we can calculate the Hartree energy and the result is the bilinear form

of ~n and ~ϕ . Thus we can write with a constant matrix F ,

Ehartree = 4π t~ϕ · F · ~n. (21)

The rest of the total energy, Exc and Eewald can be easily handled, and will

not be given here.

Now that the total energy is expressed as the function of {~ψi} , we go on to

minimize it with the conjugate gradient method [1] under constraints

∫

ψi(~r)ψj(~r) d~r = δij , (22)

or in our notation,

t ~ψi · F · ~ψj = δij. (23)

Here F is a sparse and symmetric matrix whose diagonal element is propor-

tional to the volume of the element to which the vertex belongs. So if we apply

the conjugate gradient method directly when we are working with non-uniform

meshes, the conjugate gradient vector is destroyed in the orthogonalization pro-

cedure, and the minimum of the total energy is never reached. In order to avoid

this difficulty, we transform the wavefunctions as

~ψ′
i = T · ~ψi for ∀ i. (24)



Then the constraints become

t ~ψ′
i · F

′ · ~ψ′
j = δij , (25)

with

F ′ = t
(

T−1
)

· F ·
(

T−1
)

. (26)

We choose the matrix T that makes F ′ nearly the unit matrix. Another possible

solution is to use the unconstrained minimization [6], in which no explicit orthog-

onalization is required. Note that this transformation is different from the usual

pre-conditioning, which is determined by the form of the total energy.

III. Example

To demonstrate the utility of the present method, we calculated the equilib-

rium structure of hydrogen molecule in a cubic supercell as illustrated in Fig.2.

An all-electron calculation was performed with non-uniform meshes shown in

Fig.3. At the boundary between elements with different size, the wavefunctions

are constrained to be continuous. The calculated density is shown in Fig.4. The

values of the calculated bond length and vibrational frequency are given in Table

I and compared with those from experiments and other theories. The agreement

is satisfactory.

Bond Length (a.u.) Vibrational Frequency (cm−1)
This work 1.46 4424
Other theory 1.45 4277
Experiment 1.40 4400

Table I. The other theory is from Ref [10], in which LDA calculations are

performed with Gaussian orbitals. The same form for ǫxc is adopted in these

calculations [11, 12].



IV. Discussion

The advantages of this method are as follows. (i) Since all calculations are

performed in real space, no FFT is necessary in contrast with PWPP. (ii) We can

use non-uniform meshes. In the terminology of PWPP, we can effectively change

the cutoff-energy locally. Accordingly, we can express localized orbitals without

any serious difficulties. Furthermore, we can reduce the number of variables

considerably when we calculate the electronic-structure of surfaces in a supercell

configuration as illustrated in Fig.5. Similar idea is introduced in Ref [4, 7], in

which plane-wave is used with adative Riemannian metric. (iii) In this method,

the effect of the potential of the nucleus appears only in an integral form, so

the divergence of the bare coulomb potential at the origin does not cause any

difficulty. (iv) Orbitals localized in given regions of space [8] and their overlap

matrix are naturally treated in this approach. (v) Our method is much easier to

implement than PWPP.

One clear limitation of this method is that it will be ineffective if we perform

dynamical simulations with non-uniform meshes, which lead to the Pulay-like

forces [9].

V. Conclusion

In conclusion, we have applied the Finite Element Method to the self-

consistent calculation of electrons successfully for the first time. Since this method

has several advantages over PWPP, it will be considerably favorable for the calcu-

lations of some systems. Extensions of this method to higher order interpolation

formulas and separable pseudo-potentials are under way.
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Fig.1. An element and its vertices.

Fig.2. Hydrogen molecule in a cubic supercell (12 a.u. on a side). The cal-

culations were performed with an eighth of the supercell.

Fig.3. In practice, we used the mesh twice as dense as this figure. The mesh is

taken approximately logarithmic.

Fig.4. The calculated density of hydrogen molecule. The singularity at the

nucleus is well described.

Fig.5. In the vacuum region, only a small number of elements will suffice.


