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A

DESIGN OF PERMANENT MULTIPOLE MAGNETS
WITH ORIENTED RARE EARTH COBALT MATERIAL

K. Halbach
University of California
Lawrence Berkeley Laboratory.

Berkeley, CA 94720

Abstract

By taking advantage of both the magnetic strength and the astounding
simplicity of the magnetic properties of oriented Rare Earth Cobalt material,
new designs have been developed for a number of devices. In this article on
multipole magnets, special emphasis is put on quadrupoles because of
their frequent use and because the achievable aperture fields (1.2-1.4T).
are rather large. This paper also lays the foundation for future papers on
a) linear arrays for use as "plasma buckets" or undulators for the production
of synchrotron radiation; b) structures for the production of solenoidal fields,

~and c) three-dimensional structures such as helical undulators or mu];ipo]es.

1) Introduction

For some applications, the mbst important of the many advantages
of permanent magnets is the fact fhat‘they can be made very small without
reduction of magnetic field strength. In conventiona]iy pbwered magnets,‘

the current density in the coils is inversely - proportiona] to the

‘linear dimension, leading to insurmountable cooling prob]emsland attendant

reduction of field étrengthﬁas size decreases,

We will discussvnew_désfghs that, with éurrently,avai]ab]e oriented
Rare Earth Cobalt (REC) materiaI; produce, in some devices, fields that are
as Strong or strongerbthan those achievab]efwith'conventibnal maghetsAof any

size.



.'Thus, REC hagnets will ha?e a performancé advantage over conventiona]
maghets regardless of size, Shifting the decision betheen the two to different
areas, such as convenience ef strehgth ‘adjustment,-price; etc. |

The advantage of REC is not Qn]y its strength, but also the.simplittty
of its hagnet1C'properties. This simp]fcity makes.REC systems easy to - | ~
'undehstahdvand tq treat aha]ytieally, Which‘in turn leads directly to |
improved deSigns.‘ For this reason, we devote some space to REC properties,
and' how they can be best described in the magnetostatic_equations,‘despite
the fact that these propertieé have.beeh known by workers in the field
since Strnat]) started the deve]opment of REC.-
_For the sake of completeness, we 1nc1ude s1m11ar1y the derivation of
some theorems. that are, at ]eastVIn prlnc1p]e, textbook material, but are
used so infrequently that they cennot be expected to be at the fingertips .=

of most readers.

2) Basic formulae, notation

For three djmensiona] (30) calculations, we use the standard Cartesian
coordinates x, y, z. Most of the two»dimensional (2D) calculations .are done
with comp]ex‘nuﬁbers that afe identified by under]ining the symbol. Specifi-
cally z is defined.by z=x+iy=r ei?z with i2 = -1. The complex
conjugate of a quantity ié.indicated by an asterisk.

In a vacuum_regiOn, the two dimensional field components Bg; By
(or Hy, Hy) can be derived from either a scalar potentiei Vora

vector potentia] that needs to have only a eomponent A in the z direction:



=DMy = -2V/Jx
By = - Ik == Qu/dy.

r The relationships between the defivatives

(1a)
(1b)

of A'ahd'V'are the same as

the Cauchy- R1emann conditions of the rea] and 1mag1nary part of an ana]yt1ca]

function of the complex variable z, i.e., the complex potent1a] F(z) = A+ iV

is such a functlon and if we use B = Bx + 1 By to descr1be the

two-d1mens1ona1 vector B it fo]lows from equ. 1 that

(@)

B* =

i df/dz
is also an analytical function of z. - The fieid at_lbcation_go, generated

by a current:fi]ament, I,'at_]ocation z, is given by

(3)

The coefficients of the Tay]or series expansion of F and B* are in the

customary fashion identified by the subscript of the expansioﬁ of F:

(4a)

L]

in ap. (4b)

 BM(zo) =D bn 2" s by =
B h=p

The same expansions, but with}n<0 will be used to describe'fie]ds in the

region rad]ally out51de of magnets. - MKS units are‘used_thrOughout, with

/“ lf/b /0 VsecA ¢



3) Properties of REC.
~3.1) The manufacturing prbéess.

To get a.rough undersfanding of the reasons fof the REC propertiés
described in sect; 3.2, we describe very briefly the major steps in one of
the hajqr manufacturing processes used today to produce REC.. For detai]é,
the reader is reférfed to the:bpok byAMcCaigz. o L o : .

| After a molten mixture of.rbugh]y five (atémi¢) partS‘Coba]t to one
(atohic) paft of some Rare Earth meta](s) is so]idified by rapid cooling,'a'
cruéhing and'milling process produces a pdwder that consists of particles
with linear dimensions of the ordér pf §um, 'Theﬁe grainS‘are magneﬁi-

cally highly anisotropic, "Qanting" to Be"po]arized only along one éris-
talline difection. Thé powder is then éxposed tofa strong magnéfic field
ahd subjected to high pfessdfe,vcaUang‘the fndividua] grains to physica]]y
rotate until their magnefftal]yvpréferred‘axes ére_para]]ei to the

Vapplied field. These aligned b]ockS of material are then sintered,

and machined or ground if necessary. 'Finally the material is exposed

'to'a very strong magnetic field in a direction para]Ié] or antiparaliel

to the previously estab]iéhédvpreferred diréction, brienting practital]y

all alignable magnetic moments a]ong-the'diréctiOn of magnetization,
commonly called the easy axis. .The‘property that makes REC SO ya]uab]e

.is that this magnetization is very stfong, and that ft can be changed

-~ in a substant{al way only by applying a strong field in the direction . ®
.opposite to the one uséd to magnetize the material. |

3.2) The B() relationship of REC.

The relationship between B ;, and H;i in the direction bara]]él to
the easy axis is schematically shown in Fig. ]; ‘The most important char-

acteristics of the B“ (H" ) curve are the fo]]owing:



a) It is, for 511 intents and purﬁoSes, a straight line over a
very wide range, with a typical slope dB, /dH,“ﬂf../(” ~1.04-1.08.
The point where the slope becomes significantly larger depends
on the details of the mahafacturing process, but is usually |

~well within the th1rd quadrant, at -H,,/HC‘\] 5-2.

b). The offset of the B " (H ) curve from the origin, the remanent
field Br, is typically .8T to .95T, wh1fh the coercive
fieldpoHe about 4-8% less than Br.. ; ‘ |

c) As long as one stays on the stra1ght ]1ne part of the B '(H" )
»curve, moving a]ong the curve does not change this straight line.

In tﬁe'range of interest here,atﬁe relationship bétweén’BI,.ahd Hl[ can |

“be repfeSehted'by:

By =0y * B - - (5a)
or, with - 3’: f//“ .

In the direction perpend1cu]ar to the easy axis, the re]at10nsh1p between

and HL is, to very good approx1mat1on described - by:.

By
W
H,

By =/t + B
or, with
/‘J_L 'I/J’l—- '|+Br//“6 HA,
yorom @



-

The.high degree,of anisbtropy éf gdod material maﬁifests ftse]f in thé
.large values 6f thé anisotropy fie]c&@/fA : ‘typical values are 12-40T,
giving va]ges of 1.02 to 1.08 for/ﬂi, and equ. (6) is usually valid up to
several Tesla. | | o |

Aside from the-REC material discussed so far, resin bonded REC material
is also available, w1th qua]1tat1ve1y the same propert1es but Tower valies
of By and He.. Some of the oriented ferrites have also similar proper-
ties, but with Br., .35T and 1arger values (Ag-].l) for the permea-
bilities M, and M). | |

The designs discussed>invthis paper can also be:implemented with-these
materia]s; we always refer to REC magnets becauée‘it is the’unique stréngfhv
of the REC materials, combined with the other propert1es described in this
sect1on that will open ‘the door to new and exciting app]1cat1ons.

3.3) Description of REC propert1es in the magnetostat1c ‘equations.

Equ's. (5a) and'(6) can be combihéd_into the veétor_equation:

- .~) “>

'B)/'(O/‘*H+B,.. - : (7a)

- ' _ :
In this equation By is the vector with the magnitude of the remanent

- =
field By in the direction of the easy axis, anq/u *H =M H + /ﬂ"H,,.

Equ's. (5b) and (6) can be similarly combined into 7

A |
=Y *B//b-Hc. . (7b)

. , B ’ -2
If we derive H from a scalar potential, we have to satisfy div B=0,

yielding with equ. (7a)

div Q/b/“* H) .— - div Br. B - | (8a)



If we derive simi]arﬂy'i?fYom'a vector potential, we get from equ. (7b) and
Ampéres law
curl )/ * B//’b J = curl Hz. .' (8b)

The anisotropy of the material'shows upkin two different ways:. in the
inhomogeneous termé-on'the right sides of equ's.'(8), and in the slight
anisotropy associatedvW1th the Qeak_differentia] permeability of REC. -
Because the permeabilities ére so close to one, we assume,»Un]ess stated
otherwise, that /A“ = /QL= 1. This veny’good appkoximatibn, together with
the asSumptidn of constant Hc and Bp, means that the material can be

a—

treated as vacuum_with either an imprinted charge density - div By
or an imprinted current density curl ;E.‘ This in turn has thé
consequenéé that the fields produced by different pieces of REC superimpose
linearly, and that they can be ca]cu]ated w1th fairly little effort when no
soft magnetlc mater1a1_1s present. It shou]d be noted that in case of
homogeneously magnetized materia], 1.e.,‘ﬁz,_8r-= const. w1th1n ‘the
matefié],-curl’ﬁz and'div E; are zeroveverywhere éxcept_at the surfaée,
where one encounteré delta functions that.51gnify the presence of burrent
sheets or chargé sheets." _

3.4) Calculation of.three_dfmensiona] (3D) fields produced by REC.

~In the absence of soft material, we derive the field at‘the‘locatioh

outside the material from a scalar potentia]l |
m?‘%)?-gradvy— . 9

with V given by an integral over the volume of the material: . =

/AOV(R) L fg{’r}dv. o (o)

|77
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a ; o
In case of homogeneously magnetized.REC piece, one has a charge
sheet at its surface. With equ. (8a) one therefore obtains in that case v

from an integral over the surface of the material:

- . ’
(e d? (A2
Vo= i —_—— = . (”)‘. . .
/L IT,. 'Yo l lf/(, ‘ "Y ’)’o [ . . o
. ,9 TR . .
It has been used that, for our model, —/ﬁb Hee A part1cu1ar]y

appealing property of this formula is the fact that the integral is

——

independent of. He.

For the case of- cont1nuous]y varying Hg, we use w1th K(R) = ~—l—-

1 ol

the identity
> )
§CK/M = - K div Ho = He grad’ K - div (K HC)

Because Hc = 0 outside the material, -gd1v(K He) d =S K Hca(a = 0..

With grad K = TzzfggTj. , we obtain
f_L_» Ho(y‘y) CIV | (12)
A NI | |

Vo= —

3.4) Ca]cu]étion of two-dimenéidn (2D) fields produced by REC.:‘

For a REC assembly that is sufficiently long in theﬂz;direction and
whose magnetizatiqn vectorbgi has no z component, the fields outside
the material can in the absence of soft steel in'good approximation be

described by:
Ef(éo) = . _ié;dx dy, S : (13)
In -7 , : N

with

Ao 5 =Bry/k - JBrxloh- ) (14)

4



whi

We have again used By f/“o.Hc?
It is shown -in the Appendix'that equ. (13) can, without restrictions

on Br = Byx + i Bpy, be written as

B*(20) = = _E—f__dx’ . (15)
T Ax (2z.-z)* - |

This formula can be considered.the 2D equivalent_of equ. (12), because

it expresses thedfie1d by an integral that contains the‘magnetization

itself, and not a combination of its-spatiai derivatiVesr

Equ. (15) has a property that 1s hlghly s1gn1f1cant for many
app]1cat1ons | If two. REC. assemblles are 1dent1cal, except that in the
second system the easy axis is rotated everywhere by the angle *-(2 re]atlve
to the easy axis or1entat1on in f1rst system, then the right hand s1de of
equ. (15) for the second system equals that of the first system but is

multiplied by e1P This allows us to state the

Easy Axis Rotation Theorem: If in a 2D, soft steel free, REC system
all easy axes are rotated by the ang]e +/3, then all magnetic fields

outside the REC rotate by the angle -Pmthout a change in amphtude.

F1g. 2 111ustrates th1s theorem. .The theorem}is qua]itative]y easy to
understand if one realizes that each vo]ume element of REC produces a
dipole f1e]d for which th1s theorem is va11d for obv1ous reasons.

For a homogeneously magnetized piece of REC, Er can be taken

outside the integral in equ. (15). Integratfng’first over x, one obtains:

B (20) = L ,_Z_. - (16a)

2_7C'. | -Zo —_
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Integration over y first yields

Br f _dx
A7 ( 2o =2

B*(z0) = - ) (16b)

and equ's. (16a) and (16b) can be combined into

B d2f

E*(Eo). = - -
il Z,-<£

. . (16¢)

The last three equations are given becéuse, dependingﬂpn the geometrical
shape of the REC piece, one of thesé integrals may be easier to evaluate
than the others or the integra]_in equ. (15).

Equ. (16b) (and Similar]y'edu. (16a)) can also be derived by using the
current sheet model for a REC biece with ftﬁ easy axis parallel to the
x-axis, and then invoking the easy axis rotation theorem.

To calculate fields inside the materia], the techniques deve]oped in
ref. 3 can be uéed. We summarize here only the result for‘the case of é
homogéneously magnetized piece of REC: By ffrst removing a circular
cylinder of material around the point gb, any.one of the equ's (16) can
- be used, with an infegration path as showh in Fig. 3. (Notice that the
integrals dver fhe straight Tines cancel.). ‘To obtain Ef, one has to add
thé contribtuion_gr/z caused by the removed cylinder. To obtain/ﬁbﬂf |
inside the materia]}\bne has to use My H* = B* - B*. a

Even though it ié;possib]e to write down explicitly the fields
produced by.the-multipole magnets discussed below, it isvmore convenient,
and gives more insight, to use the Taylor expansions introduced in

equ's. (4). To obtain the expansion coefficients, one has to use

in equ's. (16)
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_ : V) -’ﬁ; /
2 S0
T2 i (17e)
<o & m=j 2 ' .
and for use in equ. (15), one obtains by differentiation of equ. (17a):
R th, }'
l Z m Z, o | o
;Z 'n+u . R o (18a)
(%o_g) M=t Z. ! ¢ o -
For a field expansion radially‘outSide the magnet, one has to use
-~ | | |
| Z Zo - S _ o '
- M o | (17p)
E? éz ==t < } R S - :
and .
—0 /)l"_ .
/ LS M- 2, | | | |
z-211 2 " | B (18b)
(—o = ' h=-1 Z ' - 8 '

4) REC multipole magnets

4.1) Multipoles with continuous easy axiS'orientation. 

To produce a strong 2N - multipole magnet with good field qua]1ty, one
wants to arrange the REC in such a way. that in equ._(4b) by is large,
and that all other bp are as sma]lvas poss1b]e. ‘Using equ. (18a) in equ.

(15), we obtain

b | .,__1_3_,» |
(29 —n / ’”ﬁ‘ ’
; _
With By Zpg %d zZ=r e‘fﬁ we get

En’lt” ’? “P( (/}(P) ("m)?)) ’Va("'”f’( (19)
| lm 7”*" f A
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From this equation follows directly that the largest possible real by is

- obtained by choosing

/3(@ - PrnT). - " o  (20)

Equ. (19) also shows the expected fact that a p1ece of REC contr1butes the
more to the multipole strength the closer’ it is to the point z=0.

If the space between the two circles |z ;— r] and |zl =rp is fllled

w1th REC, with By = constant and ’B(q)) given by equ.(20), b, =0 for
n#N, giving for ,.Z.OI <ry | '
o f\/.l - _ vN"I' - o
s ( ) B (-G ) fer 23,0100
.E*(_Z_o) = B,}.. [n(r‘z/r‘]) fort N=T. ' - (21b).

Inspection of the field for [z’ > rp, using equ. (18b)" 1nstead of
equ. (18a), shows that the f1e1d outside th1s mu]t1po]e magnet is exactly
zero. | | | ‘

The fact that "recipe" equ. (20) leads to a perfect mu]tipo]e is‘not
surprising when one realizes that as a dlrect consequence of -equ. (20) the
current dens1ty J (in equ. (8b)) 1ns1de the mater1a1 has on]y the component
Je = He= (WM 41)- scnﬂy/'y', with the current sheets at the ‘inside

and outside boundar1es of the REC being proport1onal to sin N?Oeﬂso.

Pl
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‘Equ's. (21) were giveh for N=1,2 by J.P. B]éwett(4) in an
unpublished report in 1965. However that réport does not mention the‘
'.anisofropy of the méterié],’andvconsequently does nét give the deSign
'recipe representd,by equ. (20). | |

The just discuésed multipole obviously producés the strongestAand
cleanest mu]tipolé field possible within a circular aperture of a pure REC
multipole with a given amount of material. A study of the field inside the
material shows ihét one can find ciosed curves that‘are perpehdicu]ar toi?>
' evérywhere. Replacing the material inside such a'blosed éurve by Soft
steel with.very large pérmeabi]ityAwillfredyce the amount of REC v
Qithout changing the field in thé aperture.significant]y.- It fé.my:subjéc?
tive judgementfthat the potentia].saving§ are too small to be worth thg
resulting complication of cdnstructionrin case of strong_mu]tipbles,vand
this avenue has thefefore not béen.puréued in the study of the segménted
mu]tipo]es. | |

Since the above mentiohed steel contours can fange into the aperture
region, this approach can be used to.deSign-muitipo]es that have steel
poles controlling the field in the apérture énd use’fair]y little REC.
However, with the exceptidn-of dipolgs, thgsé;magnets’have weaker pole tip
fields than the pure REC multipoles. While it is my opinion that incorpbre
ation of Stee1 fnto the design wi]l not intreaée.the upper limit of the
achievab]e-mu]tipoie‘streﬁgth, given by'eQu,.(Z]a), I have»nb proof for
this assessment. - | | |

In order to satisfy equ. (20), 6ne neéds during the alignment brocess
strong magnetic fields with a distribution of ioca] difection givgn.by
equ. (20); Since a 2D vacuum field satisfying thét=conditibn must Béhave
like §ﬁ~4[£N+] in the region of 1nteres£, it is highly unlikely that one

can produce REC.with precisely the desired easy axis distribution,
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- particularly for small magnets. Fortunately, the segmented magnet design .
discussed below has a performance'veny c]qse tonthat of the ideal REC .
multipole.

4. 2) The segmented mu1t1po]e magnet.

To get a reasonab]e approximation to equ. (20), we segment the magnet
into M geometrically identical pleces such that, ignoring the direction of
the easy axes, the structure is invariant to rotation by the ang]e 27?;/’ﬂ7
about z=0. .Throughout each’piece, the easy axis boints in the same
direction, but that direction advances (in the x-y coordinate system) by
(N+1)+27C/M from one piece to the next. Th1s means that re]at1ve to a
coordinatevsystem fixed in the piece, the easy axis advances by_NeZﬂyM-fron
one piece to the next. | | |

Us1ng equ's. (17), (16c) and (4b),- produced by one such. piece can
be expressed (for both pos1t1ve and negative n) by

0(2

bp= sgn(n) ______,‘ ’N e : . (22)
Y7 P |
If the contribution to by coming from a reference piece is Cpn, then the
contr1but1on from a piece rotated by p( relative. to the reference piece. is
CXUNH) -(o(nh)

Ch- L& e b , where the first -exponential factor comes from the -
rotation of the easy axis by (:(N+1), and the second factor from the
integral in equ. (22). With ,/ = 7%-27‘[,//‘1, we get for the whole

assembly . : : _— ' e

”i (27 m (N- u)/M
=c- 2 £ e |

m=0

If (N-n)/M is zero or a pos1t1ve or negat1ve 1nteger, the sum equals M. If

(N=n)/M is not an 1nteger the geometr1ca] series is zero, yielding

B (2o) =M D Chzo"lin= N+VH,  (23)
[ .
B
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Depending whether one wants to know the fie}ds in the aperture region or
outside the magnet; one takes the sum over either positive or negative n.
Fig. 4 shows the geometry for a trapezoidal reference piece that is
bisected by the x-axiS and whose magnetization fs characterized by By.
We a]]ow discussion of a smal]er than maximum possible angular s1ze
(2 7L /M) by making the angular size of the reference piece £ ] /77
For n > 0, Cp is most easily obtained by using equ. (]7a) in equ. (16b).
Using thet Cpn in equ. (ig) giveszi_‘ ‘ "4ﬁ_l Ib _
B*(20) = By Z(f—-) = (-3 )-Km
o V=0 Vi , o -
SNevn |  (2%2)
' | sim(n€T/M]
n = cosMERM) 2R T

. j‘(/*(rf‘” /] :éh("‘z/”;} : J

For the geometry indicated by déshed lines ih Fig. 4, i.e., for circular arcs
of radii ry, rz as inner and outer‘boundariesv,'_(;n is most easily
calculated with equ's. (15) and (18a), and K, in equ's. (24a) has to be
replaced by | |
¢im(tm+n-§7K/1) ) <
Kn = ’ ’ ' (24b)

(m+1) 7‘6//"]

It follows from equ. (24) that for a given Bp, and for n = N> 1,
there always exists an upper limit for the field strength at the
magnet aperture, while for the dipole this upper limit is controlled in

essence by the B“ (HI') curve in the thfrd quadrant.
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Comparlson of equ's. (24) with equ'é. (21) shows'thaf the fundamental
v harmonic of the segmented multipole is smaller by a factor KN than the
equivalent ideal REC multipole and that for ¢ =1 one comes close to

thé ideal strength if the number of REC pieces per period,
M= M/N, | » (25)

is equal or larger than eight.

In the somewhat unusual case that one'e]ecfs to use for M" a small
value like 2, it follows in general from equ's. (15) and (18a) (and specffi-
ca]]y, of course, from eﬁu's. 24) that Ky is Targest notvwhen é;equa1s
one, but for _ | | _
M____/j_'___) e

£ = 24 Al '/N)'»

provided- this value is smaller than one.
From equ's. (24) we can extract the amp11tude of the field due to the .
harmonic n = N + V-M relative to the ampl1tude of the fundamenta] N. For the

qualitative]y representat1ve case of trapezo1da1 REC p1eces, we obtain from

equ. (24a) for that ratio Q(v) at lg[ =r, and for § =

| Y/ 0 | | ’(Y/'Y' )""' o
r N-J il /AR :

Qv) = (_ - oS/ - v (27)
'Yl) h-1 /V’ [' {T’,/VLJN,

~For r=ry, the values for QCV) are uncomfortably large. Fortunately in most
applications the 1afgest r/ry of concern is, while close to one, still small

, vM . :
enough so ‘that the factor(r/ry) reduces Q(v) to acceptable levels even for

the most unfavorble case,W/é ]. FShould, howeyer;‘Q(l)'be larger than accept-

able, Q(1) can be made to vanish by choosing
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¢ - 1/(1+N/M)'=.l - .1/(1+M"). | E - (28) |

For that vé]ue off, Q(v) ‘be‘comes' :

vM - | A~
e X
. 7 N-j v Sem /L JepmI {-—‘(—’V-’}
o =[5 hcws 2 - L T )

. 3 _ S"‘MI’/';(;" ,»(1’)
: o Tt
Fér reasonabjy large values of M, it is unlikely that.the worst of these

~ harmonics (n = N+2M) will ever cause any probiemé.v .

The deSign'represehted by équ.v(28) means.that one has a Wedgeesﬁaped
non-magnetic spéce between adjacent pieceS’ovaEC; ‘While these gaps could
be imp]eﬁented by having apprdpriate nofcheé in the magnet'aSSemb]yvfixture,
an alternate method df making Q(1) = 0 would be the use of a non-magnetic.
spacef betweeh adjacent REC pieces. For that kind of design'it would be
<advantageods'to have spacers df uniform'thickhess D. Referring to Fig. 5A
for the'defihition of symbols, application of equ. (16a) and (17a) gives

for the field -in that case.

B I I R
B*(zo) = Br/ (Z) COLoCOS <y (300)
| (AR ENCE RS -

@

| R S
X [S‘t'n Aot (n-1) '('Y'CO'HL) St G J
{ ; } Vo] (’V\( io z: ) ) |

with _ |
D/ry = 2 cos&g(tand g - tany) Ql(ﬁ,-"‘j)/cos oLy , (30b).
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rA

tan%2'= tano, - ,jyzv(tana(o -ﬁtanOC]). (30c¢)

To eliminate the harmom'c n = N+M 1n the case where the term proportwnal to

(ri/r2)n- -1 in equ. (30a) can be neg]ected one has to satisfy

M-T |
= ‘(7r-¢o)/(»n-1). =, N /‘11 (3],) :. i
giving, with equ. (30b);
AN /M

D/ry .= N+M-| Cos 7‘0//'7 _ (;32)
Formulas for reference pieces with 'sh'apes otheh than trapezeids are eas'ﬂ'y
derived fol]owing the same general procedure; but are notAgiven here. From
these expressions follows the .genere] rule that the ailowed ha’rmonics' |

= N+'YM'tend‘ to be,"the smaller the better the' inside RECVboundary
~ approximates a circle. | | ' ”

To describe the fields (radia]]y) o&tside the mu]tipo]e, Wevexpand
_@*'in’ 1/z4. By.usi'ng equ's. (17b) and (18b) instead of equ's. (17a) .
and (18a), we get instead of eqﬁ's. (24): , - |
- My ) N+t

(8] =B

—

7$F\le :

B*(z,) =Z bop zo™-1 =
Vv

g

n =\/M—N

sem €X/Y

cos~N( €7C/M)- w1
i C

<
!
=]
[

(Trapezoid)

K . = sen(n) €2 /M) (circular ;ércs) - (32b)

(n~1) X /M
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Equ. (32a) is valid for [zol hz r2/cos(fi(t/M) for the
trapezo1d and for 'zol > r2 forx 1rcu1ar arc case. _W1tnout going into
details, it is clear that at these limits B(zy) is somewhat sma]]er than it

is at Llo‘ = ri. Since hmin = M-N = N(M'-1), the field decays very

rapidly with“increasing ‘EDI provided Mis reasonably large. Shielding the -

"space radially outside the mu]tipole'against these fieIds will therefore be

rarely necessary. We therefore give the expansion for the field
perturbat1on caused by a c1rcu]ar steel she]l w1th/u. «9and l l- R

without der1vat1on - v /

X e * Q”L .
‘- 2o (b ) /R
B(ze)=/ 40 (-0 /N .

Steel A

n= —‘Nr+‘YﬁM ¢ - ~.l o ] (33)

b are the expansion coefficients of the unoerturbed field in 1/zo as used

in equ. (32a). Notice that the fundamental (n=N) is not affected by theishier
unless M has the. except1ona11y low value 2N. |
The results of th15 sect1on show very clear]y that the fo]]ow1ng
properties are 1mportant for the design of good segmented multipole magnet
1. The REC should be p]aced, with the 1argest poss1b]e volume f1]11ng
factor, as closely to‘the "business" region as possib]e, "hugging" the
“aperture circle as we]] as possible.- |
2. In order to produce strong fields of h1gh quality, one shou]d
approximate equ. (20) reasonab]y well, with -M'=8 easy axis orientations

per period being a good guide number.
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N To arrive at:a design, one has to combine theéeffwo essentiai require--
ments with considerations 1ike availability, or ease of production, of REC
pieces of various shapes; eéSe'of assembly;_etc. Trapezoidé] segments, ase
discussed above, seem to be a good choice, bdt it is quite possible thaf'
assemblies of tightly packed - small rods w1th circular, hexagona]

other, cross sectlons may be preferab]e under some circumstances.

4.3) The segmented REC quadrupo]e.

Because of their special importance for, acce]erators we discuss some
details of quadrupo]es, adding to the-summar1es pub]1shed elsewhereds0, |
Since quadrupo]es with'trapezoidal'segments,ere quite-typica],bwe.restrict |
: the d1scuss1on to this specific class of magnets. '

From equ. (24a) follows for the fundamental harmonic for'£

8 (zo)— ——-~B ES ( 7') K

5(m2/o//j

Kz = cos2(ft/M) ~ - A7/ M
__ Table 1 -
Moo= 4 8 12 16 20 24
kp= .32 .77 .89 .94 9% .97

Table 1 shows thet in order to get a strong quadrupo]e One should choose M=12

or 16. The gradients achievable with a 16- plece quadrupo]e are impressive,

in particular when they are compared with those of convent1ona] quadrupo]eS’ For‘
M=16, ra/n = 4, (which is still quite cempact) and Bp. =..95T (which is |
commercially available), one obteihs an aperture field of ]‘34T.1»In contrast; a
high quality conventional quadrupole fs very difficu]t to make wffh more thén,TT

at the aperture, and even that is possible only for fairly large aperture magnets.
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High aperture fields are of particular importance for linear
accelerators with small apertures. For an aperture with rj = 2mm, it is
possible to achieve a gradient B' = 6 Tém'1,_and the diameter of sdth.a‘
qﬁadrupo]e could be smal]er.than 2 bm. Cléarly, itvis impossib]e to

achieve anything resembling this with conventiona]ymagnets, and conven-

tional REC quadrupole designs fall short of this gradient by at least a

factor of 2.

.Fig. 6 shows a schematié‘tross seCtibh of'a 16-piecé quadrupo]e,'With
the easy axis direction 1ndicated:in‘each piece. It.fol]ows from that .
diagram that.one,needs piece$ Qith five different,orientatiohs of the easy
axis.relative to the trapézoida] shape to make this.]ﬁ-pfece quad.. If one
rotates all easy axes by 22.50'ih the same direétion, on]y'four differ¢nt

pieces are required, which may be advantageous for the manufacturer.

" Since one has, in either case, a reasonably large number of pieces that are:

supposed to‘be identical, it may be advantageous to measure magnetization
directioh and magnitude for each piece, and then assenble the quadrupo]e in
such‘a way that magnetizéfioﬁ-errors‘do the ]east harﬁ to the field quality.
For this reason, it may be a blessing in disguise’that with present manufac-
turing techniques, the individual REC pieces a}e fairly small. This often
forces the use of severé1 layers of REC in the axial direction, increasing
the number of pieces and therefore improving thekérkof cance]jing statistics.
For a 16;pieCe'quadrupo]e with ry/rp = .25, the first undesirable
harmonic (n=18) field has, at [ z|=ry, an émplitude that is approximately
6% of the fundamental (see equ. (27)vf6r N=2); ﬂE]iminating.that harmonic
with a flat sheet of the.thickhessfgiven‘by edu; (32), the first non-
vanishing harmonic is n=34, with_a relativéfamplitude of ébout 3% at the

full aperture. The order of this harmonic is high enough that;no attemptAv'

~has yet been made to eliminate it also.
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The fringe fields at the end of a segmented quadrupole (or other
multipole) are fairly easily calculated by using the charge‘sheet mode]l
and equ. (11). If the cross sections of the REC piece§ are trapezoidal,

v CToss sectiong

the charge sheets have rectangular. and the integrals can be
expressed by elementary transcendental functions; making thé 3D field
| calculation rather easy. The reieyant formulus are not réproduéed here
because the fringe fie]dsiof REC multipole magnets have some rather remark-
able properties (to be discussed in-Sect. 4.4) that make fringe fié]dv
calculations necessary.in only very rare instances. | ;

R. F. Holsinger has built a prbtotypevquadrupo]e.with f] = 1.]'cm;
ro= 3 cm; M = 16; and consisting of three 16-piece layers 1n-fhe.axialv ;
direction. Comparisons were madé.befween measurements of that maghet,
computer runs of that magnet.with PANDIRA?)ahd the predictions madE-wiﬁh"
tﬁe simple theory presented hére., The results-obtéined with these pro-
éedures agreed vefy well with regard to the amp]itude of the quadrupole
field and the allowed higher harmonic n=18. The on]y.significaht, but
expected, discrepancy was the presence of the harmonics n=6, 10,_14 in the
computer model and the real. magnet, while these hannohjcs do not -exist
in the simple model that assumes'/ﬂL =//4“ =1. AL [z]= r1 the émp]itudes
of these harmonics were, relative to the quadrupole field, .2% for n=6;
.1% for n=14; and <<..1% for n=10. While these errors are so small that
they are unlikely to cause problems in most applications, one can'easily
imagine methods to eliminate these harmonics, if necessry. If, for
instance, one has a gap between adjacent pieces for the elimination of
n=18, one could incorporate movable thin strips of Soft steel ihto these
gaps to tune away these undesired harmonics. The_réa] magnet also had
approximately .5% sextupole, as well as some 6ther'mu]tipo]es, present.
Since the individual REC_pieces.were not measured, it is expected’that

these harmonics can be significantly reduced when this is done and

W
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properly taken into account in fhe,assemb]y.' Anothér,obvious tuning
method WOuld be the removal or addition of small émounts of REC at appro-
priate 1ocatiohs,‘but it is unlikely that such efforts will really be -
neceésary. | | |
4.4) Important pfacticé]'consequences of appljcability of linear
superposition principle. |
It‘is obvious that the linear superposition principle is of crucial
importance not only for specific importanf theorems, like fhe easy axis
rotation theorem or the selection‘ru]e for possible harmonfcsv(equ. 24a),
but to the whole méthematical descriptibn of REC magnts presented here.
However, there are some very impdrtaht-practita] consequences of the linear
superpbsition prfncip]e that are obtainable withodt any'mathematical
derivatibns, | o
We consider first the following cdmbination‘of two REC multipole
magnets: One'quadrﬁpole is 1oca£ed, tightly fitting, inside the‘aperture
region of another quadrupole. If each of these quadrupoles alone prodqcés
the same gradient, and both quadrupoles are-rotated about the common
axis by equal amounts in opposite directions, then the‘gradient in the
apefturé éan be cohtinuous]y.changed between zero and twice the strength of
the individual quadrupo]e. By similarly pairing two-dissimilar multipoles,
one can make combined function magnéts; | | B
Care has to be taken for fhese combinafions of REC magﬁets, and in
particu]ér fdr combinationquf conventional steel_magnets Qith REC magnets,
that the REC is not driven into the'nonlinear paft of the B" (H") curve. |
A combination of magnets thaf would be fairly immune frém fhis danger is a
multipole inside the homogéneous field of a coaxia] solenoid, since in

this case the solenoidal field is everywhere-perpendiéular to the easy axis.
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A diffekent method to modify the effeétive strength of a.REC‘qUadfupole
would be to assemb]e_it from quadrupoles of relatively short axial lengths
whdse quadrupoie field orientations can be adjustéd. ‘While this would be
fairly éaéy to do, such a scheme obviously modifies the optical propefties
of the systém in a non-tri?ia] way, and this aspect of such a system is
currently under inVestigation(8). | o

Anofher fmportant application ofAthe superﬁosition principlebis the -
treatment of the fringe’fiers at the ends of multipole magnets. We
~deal here with two distinCtly diffefentAasﬁects of fringé_fiélds that
are both very simple and important. | | |

 First we chsider a mU]tipo]e of finite bhysiCa]flength,L whose left end
is cut off in an arbitrary fashioh, and whose right end is shaped such that
the left end would fit it perfett]y,~without forming any gap. (See Fig. 7)

Another way'tq expressvthat geometny is to state that the length 6f REC

a]ohg any_line para]1e1't0~the axis is either L or zero. Keeping the'leff
end of the multipole fixed,in spa;e, we first ¢onsider the fieid:quantjty
G](r,qhz) produced by a éemi-infinite‘multipole, with Gg(r,Y» repré- 
-senting the 2D field deep inside where it does not depend on z. Then the field

quantity G(r,?ﬁz)'produced by a mu]tipoléAof 1éngth L is given by
G(r:?’Z) = G](Y‘,T,Z) = G](Y‘,?’,Z-L:). N ._ . (35)

If we now calculate the optically important j‘G(z)dz; it is easy to
o

—

see that equ. (35) leads to

gG(r,go,Z)dz = L Go('r,if)ovv | (36).
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This‘equation sayé not only that the efféctive length for the fundamenta]
harmonic of interest equals the phys1ca] length of the mu]t]pole but also
that the 1ntegra1 over a field quant1ty van1shes if that field quantity is -
zero in the 2D cross section!

Next, we consider the properties of the frihge fields produced by a
semi-infinite multipole, produced by cutting an infinite multipole by the
X=-y pléne at z=0 (see'Fig. 8), i.e., we look at.the'fringe fie]d‘fUnctjon

G](i) for the specific case of the "quaré" end. If V](h;f,z) is

“the scalar potential produced by the multipole located at z>0, then the

scalar potential produced by the multipole located at z<0 must be
V](r,?{-z)..lf V](r,?%z)iis the scalar potential inside the infinitely

long multipole, the fhllowing ohvtous]y mqst hold:
W(rge) + Y]I.(F,(f,fz) - §o<é,¢). -

Applying tolthis eqhétion.the approprtatejhperator to Qet'the fie]d‘
quantity G](r;?Zz) of interest, we get, if no dehivative_wfth respect
to z is'inv01yed:

G]-(‘r,.(f;z’). + G](r,trﬁ,-é) = Go(r,?é =2 Gy(r, ?0',-0) -~ (38)
From this fol}ows that | o | o . |

56 v ¢,2)dz = 2,6, (w) e

if z7 is suffiCient]y’large.' This means that the‘effectivh boundary is

at z=0, and that the fringe field integral over a field quantity vanishes

if that quantity is zero in the 2D. cross section. . Notice that this |
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statement is stronger than the one made above with respect to equ. (36) ,v
which required integration over the fringe fields of both ends.
If the operator to obtain the field quant1ty of 1nterest is proportwnal

to (a/’g)z), we get instead of equ. (38)
G] (Y‘,?,Z) = '(']) G] (‘rs?&"'Z)° - : ‘- ‘ (40)

Integrating this G] ¢z) over the fr‘mge field region g1ves zZero

when "m’l but not necessarﬂ_y when m= 1,
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Appendix

Using equ. (14) in equ. (13), one of the two integrals that have to be
evaluated in equ. (13) is
T . af/cy/ﬁj’\/ ;(X

Xl Zo—kAly

Carry1ng out the 1ntegrat1on over x f1rst and 1ntegrat1ng by parts, one

¢(>/

_t-
: iy
R,
*1

-obtains . _
[ oL bosy L (Bey ey
ThoAre J 2o-z 0 Arc J(z,mzZ)b

Included in the integration area is a thin strip of vacuum outside the REC,
Hey = 0 there;'so that the line integral over y vanishes. Applying the
same technique to the other integral necessary for the evaluation of the

integral in equ. (13), one obtains equ. (15).
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FIGURE CAPTIONS

B(H) - curve in directjon para11e1-to easy axis.

Effect of rotation of easy axes on magnetic field.

Integration pafh for calculation of field inside the REC material.

‘One piece of a segmented REC multipole.

One piece of a segmehtedbREC multipole with flat sheet spacer.
Schematic cross section of a 16 piece'REC quadrupole.

Geometry of. specific finite length REC mu]tipo]é.

- Fields at the end 6f a REC multipole.
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