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DESIGN OF PERMANENT MULTIPOLE MAGNETS 
WITH ORIENTED RARE EARTH COBALT MATERIAL 

K. Halbach 
University of California 

Lawrence Berkeley Laboratory 
Berkeley, CA 94720 

Abstract 

By taking advantage of both the magnetic strength and the astounding 
simplicity of the magnetic properties of oriented Rare Earth Cobalt material, 
new designs have been developed for a number of devices. In this article on 
multipole magnets, special emphasis is put on quadrupoles because of 
their frequent use and because the achievable aperture fields (1.2-1.4T) 
are rather large. This paper also lays the foundation for future papers on 
a) linear arraysfor use as "plasma buckets" or undulators for the production 
of synchrotron radiation; b) structures for the production of solenoidal fields, 
and c) three-dimensional structures such as helical undulators or multipoles. 

1) Introduction 

For some appi icatioris, the most important of the many advantages 

of permanent magnets is the fact that they can be made very small without 

reduction of magnetic field strength. In conventionally powered riiagnets, 

the current density in the coils is inversely - proportional to the 

linear dimension, leading to insurmountable cooling problems and attendant 

reduction of field strength as size decreases. 

We will discuss new designs that, with currently available oriented 

Rare Earth Cobalt (REC) material, produce., in some devices, fields that are 

as strong or stronger than those achievable with conventional magnets of any 

Si ze. 
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Thus, REC magnets will have a performance advantage over conventional 

magnets regardless of size, shifting the decision between the two to different 

areas, such as convenience of strength adjustment, price, etc. 

Ilk 

The advantage of REC is not only its strength, but also the simplicity 

of its magnetic properties. This simplicity makes REC systems easy to 

understand and to treat analytically, which in turn leads directly to 

improved designs. For this reason, we devote some space to REC properties, 

and how they can be best described in the magnetostatic equations, despite 

the fact that these properties have been known by workers in the field 

since Strnatl) started the development of REC. 

For the sake of completeness, we include similarly the derivation of 

some theorems that are, at least in principle, textbook material, but are 

used so infrequently that they cannot be expected to be at the fingertips 

of most readers. 

2) Basic formulae, notation 

For three dimensional (3D) calculations, we use the standard Cartesian 

coordinates x, y, z. Most of the two dimensional (2D) calculations are done 

with complex numbers that are identified by underlining the symbol. Specifi- 

cally z 	is defined by z = x + iy = r eiP, with i 2  = -1. 	The complex 

conjugate of a quantity is 	indicated by an asterisk. 

In a vacuum region, the two dimensional field components B,  By  

(or Hx,  Hy ) can be derived from either a scalar potential V or a 

vector potential that needs to have only a component A in the z direction: 
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Bx =A/y = -?V/ix 	 (la) 

B = -dA/?x =—V/y. 
	 (lb) 

The relationships between the derivatives of A and V are the same as 

the Cauchy-Riemann conditions of the real and imaginary part of an analytical 

function of the complex variable z, i.e., the complex potential F(z) = A + iV 

is such a function, and if we use B = B + .i B y  to describe the 

two-dimensional vector B, it follows from equ. 1 that 

B* = i dF/dz 
	

(2) 

is also an analytical function of z. The field at location z 0 , generated 

by a current filament, I, at location z, is given by 

* 	 1: 	
(3) 

The coefficients of the Taylor series expansion of F and 
3* 
 are in the 

customary fashion identified by the subscript of the expansion of F: 

(4a) 

Ij 

= 	b 	Zfl•••l; j;•fl = 1 fl an. 	 (4b) 

The same expansions, but with n<O, will be used to describe fields in the 

region radially outside of magnets. MKS units are used throughout, with 

ec 
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3) Properties of REC 

3.1) The manufacturing process. 

.To get a rough understanding of the reasons for the REC properties 

described in sect. 3.2, we describe very briefly the major steps in one of 

the major manufacturing processes used today to produce REC. For details, 

the reader is referred to the book by McCaig 2 . 

After a molten mixture of roughly five (atomic) parts Cobalt to one 

(atomic) part of some Rare Earth metal(s) is solidified by rapid cooling, a 

crushing and milling process produces a powder that consists of particles 

with linear dimensions of the order of 5Um. These grains are magneti-

cally highly anisotropic, "wanting to be polarized only along one cris-

talline direction. The powder is then exposed to a strong magnetic field 

and subjected to high pressure, causing the individual grains to physically 

rotate until their magnetically preferred axes are parallel to the 

applied field. These aligned blocks of material are then sintered, 

and machined or ground if necessary. Finally the material is exposed 

to a very strong magnetic field in a direction parallel or antiparallel 

to the previously established preferred direction, orienting practically 

all alignable magnetic moments along the direction of magnetization, 

commonly called the easy axis. The property that makes REC so valuable 

is that this magnetization is very strong, and that it can be changed 

in a substantial way only by applying a strong field in the direction 

opposite to the one used to magnetize the material. 

3.2) The B(H) relationship of REC. 

The relationship between B, 1  and H 11  in the direction parallel to 

the easy axis is schematically shown in Fig. 1. The most important char-

acteristics of the B (H 1  ) curve are the following:
11 
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It is, for all intents and purposes, a straight line over a 

very wide range, with a typical slope dB 11  /dH, 1 /',' ( , 1 	1.04-1.08. 

The point where the slope becomes significantly larger depends 

on the details of the manufacturing process, but is usually 

well within the third quadrant, at -H,,/Hcl.S 2 . 

The offset of the B 11  (H, ) curve from the origin, the remanent 

field Br, is typically .81 to .951, whilh the coercive 

fiéld,/'oHc  about 4-8% less than Br. 

As long as one stays on the straight line part of the B 1  (H,, ) 

curve, moving along the curve does not change this straight line. 

In the range of interest here, the relationship between B11and Hii  can 

be represented by 

B, 	/11,01Ht1 + Br 	 (5a). 

or, with• 	I//A 

H 1  = J,B,, I/v - Hc. 	 (Sb) 

In the direction perpendicular to the easy axis, the relationship between 

B 	and H 	is, to very good approximation, described by: 

or, with 

/L l/tj. l+Br//4o HA, 

BL =to/4H. 	 (6) 



The high degree of anisotropy of good material rnanifest.s itself in the 

large values of the anisotropy fieldJiJA : typical values are 12-40T, 

giving values of 1.02 to 1.08 fort,  and equ. (6) is usually valid up to 

several Tesla. 

Aside from the REC material discussed so far, resin bonded REC material 

is also available, with qualitatively the same properties, but lower values 

of Br  and  Hc.  Some of the oriented ferrites have also similar proper- 

ties, but with Br 	.35T and larger values ( 	1.1) for the permea- 

bi1ities/4and/4. 

The designs discussed in this paper can also be implemented with these 

materials; we always refer to REC magnets because it is the unique strength 

of the REC materials, combined with the other properties described in this 

section, that will open the door to new and exciting applications. 

3.3) Description of REC properties in the magnetostatic equations. 

Equ's. (5a) and (6) can be combined into the vector equation: 

—) 	
—)--) —) 

B/ o/4 *H+Br. 	 (7a) 

In this equation, Br  is the vector with the magnitude of the remanent 

field Br  in the direction of the easy axis, and/A. * H =/11 H + 

Equ's. (5b) and (6) can be similarly combined into 

H = 
	

* B// 	Hc. 
	

(7b) 

If we derive H from a scalar potential, we have to satisfy div B=0, 	 - 

yielding with equ. (7a) 

div ( ,M t'*  it) = 3= - div 	 (8a) 
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If we derive similarly B from a vector potential, we get from equ. (7b) and 

Ampres law 
-) 

curl 	* B//s = j = curl H c . 	 (8b) 

The anisotropy of the material shows up in two different ways:. in the 

inhornogeneous terms on the right sides of equ's. (8), and in the slight 

anisotropy associated with the weak differential permeability of REC. 

Because the permeabilities are so close to one, we assume, unless stated 

otherwise, that /1,, = 	1. This very good approximation, together with 

the assumption of constant Hc  and  Br,  means that the material can be 

—) 
treated as vacuum with either an imprinted charge density - div Br 

-) 
or an imprinted current density curl Hc. This in turn has the 

consequence that the fields produced by different pieces of REC superimpose 

linearly, and that they can be calculated with fairly little effort when no 

soft magnetic material is present. It should be noted that in case of 

-, -> 
homogeneously magnetized material, i.e, Hc, Br = const. within the 

material, curl Hc and div Br are zero everywhere except at the surface, 

where one encounters delta functions that signify the presence of current 

sheets or charge sheets. 

3.4) Calculation of three dimensional (3D) fields produced by REC. 

In the absence of soft material, we derive the field at the location 

outside the material from a scalar potential 

H(r0 ) = - grad V. 
	 (9) 

with V given by an integral over the volume of the material 

o V() = 	(!dv. 	 (10) 

•Lt 7JIrI 
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In case of homogeneously magnetized REC piece, one has a charge 

sheet at its surface. With equ. (8a) one therefore obtains in that case V 

from an integral over the surface of the material: 

•= 	 ( ' 	 Jia_ 	(11) 

io i 
- 

It has been used that, for our model, Br /'o  Hc. A particularly 

appealing property of this formula is the fact that the integral is 
—:, 

independent of Hc. 	- 
—). 

For the case of continuously varying Nc,  we use, with K(i~ ) 
= L'r-70  

the identity 

= - K div H = Nc grad K - div (K Nc). 

Because H = 0 outside the materialj' div(K I) dv =K ic'da = 0. 

With grad K = 	___..--. , we obtain 

TO 1 . IV g 	 (12) 

To 

3.4) Calculation of two-dimension (20) fields produced by REC. 

For a REC assembly that is sufficiently long in the.z-direction and 

—> 
whose magnetization vector Br has no z component, the fields outside 

the material can in the absence of soft steel in good approximation be 

described by: 

B*() = 	(dx dy, 	 (13) 
I 
 20- 

with 

A/b  j 	)Bry/Dx - c)Brx/c9Y. 	 (14) 
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We have again used Br  =/to  H. 

It is shown in the Appendix that equ. (13) can, without restrictions 

on !r = Brx + 1 B.y , be written as 

* 

This formula 

it expresses the 

itself, and not a 

i(13qy  
dx dy. 	 (15) 

/ J(z-z)2 

can be considered the 20 equivalent of equ. (12), because 

field by an integral that contains the magnetization 

combination of itsspatial derivatives. 

Equ. (15) has a property that is highly significant for many 

applications: If two RECassemblies are identical, except that in the 

second system the easy axis is rotated everywhere by the angle + 	relative 

to the easy axis orientation in first system, then the right hand side of 

equ. (15) for the second system equals that of the first system, but is 

multiplied by e'P. This allows us to state the 

Easy Axis Rotation Theorem: If in a 20,soft steel free, REC system 

all easy axes are rotated by the angle +f, then all magnetic fields 

outside the REC rotate by the angle -f3without a change in amplitude. 

Fig. 2 illustrates this theorem. The theorem is qualitatively easy to 

understand if one realizes that each volume element of REC produces a 

dipole field for which this theorem is valid for obvious reasons. 

For a homogeneously magnetized piece of REC, B .  can be taken 

butside the integral in equ. (15). Integrating first over x, one obtains: 

2Z— (16a) 



-10- 

Integration over y first yields 

B*(i) = - 	 (l6b) 

27Cc JpZ 
and equ's. (16a) and (16b) can be combined into 

c 	/ * 	 oiZ 
! (.o). = - ____ 	-- U. 	 (16c) 

it( J 

The last three equations are given because, depending on the geometrical 

shape of the REC piece, one of these integrals may be easier to evaluate 

than the others or the integral in equ. (15). 

Equ. (16b) (and similarly equ. (16a)) can also be derived by using the 

current sheet model for a REC piece with its easy axis parallel to the 

x-axis, and then invoking the easy axis rotation theorem. 

To calculate fields inside the material, the techniques developed in 

ref. 3 can be used. We summarize here only the result for the case of a 

homogeneously magnetized piece of REC: By first removing a circular 

cylinder of material around the point z o , anyone of the equ's (16) can 

be used, with an integration path as shown in Fig. 3. (Notice that the 

integrals over the straight lines cancel.). To obtain B*,  one has to add 

the contribtuion 8r'2  caused by the removed cylinder. To 	 ?0-1 

inside the material one has to use/'o H* = 3* - .*r . 

Even though it is.possible to write down explicitly the fields 

produced by the multipole magnets discussed below, it is more convenient, 

and gives more insight, to use the Taylor expansions introduced in 

equ's. (4). To obtain the expansion coefficients, one has to use 

in equ's. (16) 
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Gf 
(17a) 

and for use in equ. (15), one obtains by differentiation of equ. (17a): 

'I 

(18a) 

For a field expansion radially outside the magnet, one has to use 

- 

2 '-2 	 (17b) 
-0 - 	-- f 

and 

00 

" 	C 	
(18b) 

4) REC multipole magnets 

4.1) Multipoles with continuouseasy axis orientation. 

To produce a strong 2N - multipole magnet with good field quality, one 

wants to arrange the REC in such a way that in equ. (4b), 	is large, 

and that all other bn  are as small as possible. Using equ. (18a) in equ. 

(15), we obtain 

With B r = BrT2fld  ' 	z = r el?,  we get 

Jan P(ti r _1)) 	 (19) 

21cJ 
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From this equation follows directly that the largest possible realis 

obtained by choosing 

(20) 

Equ. (19) also shows the expected fact that a piece of REC contributes the 

more to the multipole strength the closer it is to the point z = 0. 

If the space between the two circles 	z=  rl and ILI= r2 	is filled 

with REC, with Br = constant and given by equ.(20), bn  =0 for 

n$N, giving for I.oI 	< ri 

B*() (i— (a)') {or  

i  

B*(zo) = B 	Ln(r21r1) for N = 	1.  

Inspection of the field for 1z1 > r, using equ. (18b) instead of 

equ. (18a), shows that the field outside this niultipole magnet is exactly 

zero. 

The fact that "recipe" equ. (20) leads to a perfect multipole is not 

surprising when one realizes that as a direct consequence of equ. (20), the 

current density j (in equ. (8b)) inside the material has only the component 

= Hc - ( iV -tj) , ~ (.n At 	with the current sheets at the inside 

and outside boundaries of the REC being proportional to sin N 	also. 
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Equ's. (21) were given for N=1,2by J.P. Blewett( 4 ) in an 

unpublished report in 1965. However that report does not mention the 

anisotropy of the material, and consequently does not give the design 

recipe representd by equ. (20). 

The just discussed multipole obviously produces the strongest and 

cleanest multipole field possible within a circular aperture of a pure REC 

multipole with a given amount of material. A study of the field inside the 

material shows that one can find closed curves that are perpendicular to H 

everywhere. Replacing the material inside such a closed curve by soft 

steel with very large permeability will reduce the amount of REC 

without changing the field in the aperture significantly. It is my subjec-

tive judgement that the potential savings are too small to be worth the 

resulting complication of construction in case of strong multipoles, and 

this avenue has therefore not been pursued in the study of the segmented 

multipoles. 

Since the above mentioned steel contours can range into the aperture 

region, this approach can be used to design multipoles that have steel 

poles controlling the field in the aperture and use fairly little REC. 

However, with the exception of dipoles, those magnets have weaker pole tip 

fields than the pure REC multipoles. 	While it is my opinion that incorpor- 

ation of steel into the design will not increase the upper limit of the 

achievable multipole strength, given byequ. (21a), I have no proof for 

this assessment. 

In order to satisfy equ. (20), one needs during the alignment process 

strong magnetic fields with a distributionof local direction given by 

equ. (20). Since a 2D vacuum field satisfying that condition must behave 

like B*,l/zN+l  in the region of interest, it is highly unlikely that one 

can produce REC.with precisely the desired easy axis distribution, 
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particularly for small magnets. Fortunately, the segmented magnet design 

discussed below has a performance very close to that of the ideal REC 

multipole. 

4.2) The segmented' multipole magnet. 

To get a reasonable approximation to equ. (20), we segment the magnet 

into M geometrically identical pieces such that, ignoring the direction of 

the easy axes, the structure is invariant to rotation by the angle 2 11//' 

about z=0. Throughout each piece, the easy axis points in the same 

direction, but that direction advances (in the x-y coordinate system) by 

(N+l)b21t7M from one piece to the next. This means that relative to a 

coordinate system fixed in the piece, the easy axis advances by N21'ç'M  from 

one piece to the next. 

Using equ's. (17), (16c) and (4b), bn  produced by one such, piece can 

be expressed (for both positive and negative n) by 

JIZ 
s g n ( n) 	

I3
_. 	 (22) 

tf,tCJ ?' 

If the contribution to bn  coming from a reference piece is ç y , then the 

contribution from a piece rotated, by OC relative.to  the reference piece is 

Cn 	
(Nt) 	() 

where the first 'exponential factor comes from the 

rotation of the easy axis by(N+l), and the second factor from the 

integral in equ. (22). With 	. 'fl.27t//1, we get for the whole 

assembly 

!_1 	(f;:-414. (N..t)//l 

If (N-n)/M is zero or a positive or negative integer, the sum equals M. If 

(U-n)/M is not an integer, the geometrical series is' zero, yielding 

3* 
() = M  2 'C 

	

0fll; fl = N+YM. 	(23) 

V 
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Depending whether one wants to know the fields in the aperture region or 

outside the magnet, one takes the sum over either positive or negative n. 

Fig. 4 shows the geometry for a trapezoidal reference piece that is 

bisected by the x-axis and whose magnetization is characterized by Br. 

We allow discussion of a smaller than maximum possible angular size 

(2 ?/M) by making the angular size of the reference piece  

For n > 0, ç is most easily obtained by using equ. (17a) in equ. (16b). 

Using that C n  in equ. (23) gives: 	 Oh  

00 	) n-1 

 

n = N +YM 	 I 	(24a) 

Kn  = cosn(17/M) . 

YL 

For the geometry indicated by dashed lines in Fig. 4, i.e., for circular arcs 

of radii rl,  r2 as inner and outer boundaries, 	is most easily 

calculated with equ's. (15) and (18a), and Kn  in equ's. (24a) has to be 

replaced by 

g).7t//f) 
(24b) 

It follows from equ. (24) that for a given Br, and for n = N > 1, 

there always exists an upper limit for the field strength at the 

magnet aperture, while for the dipole this upper limit 'is controlled in 

essence by the B 1  (H 1 ) curve in the third quadrant. 

41 
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Comparison of equ's. (24) with equ's. (21) shows that the fundamental 

harmonic of the segmented multipole is smaller by a factor KN than the 

equivalent ideal REC multipole and that for 	=l one comes close to 

the ideal strength if the number of REC pieces per period, 

= M/N, 
	 (25) 

is equal or larger than eight. 

In the somewhat unusual case that one elects to use for M' a small 

value like 2, it follows in general from equ's. (15) and (18a) (and specifi-

cally, of course, from equ's. 24) that KN is largest not when 	equals 

one, but for 

(26) 

providedthis value is smaller than one. 

From equ's. (24) we can extract the amplitude of the field due to the 

harmonic n = N +11 M relative to the amplitude of the fundamental N. For the 

qualitatively representative case of trapezoidal REC pieces, we obtain from 

equ. (24a) for that ratio Q(Y) at 1z ( = r, and forE = 1 

Qfr)(

r1 IV-! 	 ________ 
_). 	

- i '' 	I-frfLJ 	
(27) 

For r=r1, the values for Q(Y) are uncomfortably large. Fortunately in most 

applications the largest r/r1 of concern is, while close to one, still small 

enough so that the factor(r/ri) 	reduces Q(v to acceptable levels even for 

the most unfavorbie case,V= 1. Should, however, Q(l)' be larger than accept-

able, Q(l) can be made to vanish by choosing 

p 

(-.4 
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E = l/(l+N/M) = 1 - 11(1-fM'). 	 (28) 

For that value of j, Q( v)  becorries 

Yfrl 
i-J 

'yi 	N-! 	 ~i)i IC Ii-1'iI 	((_J 

• 	 f_-IT!i 

For reasonably large values of M, it is unlikely that the worst of these 

harmonics (n = N+2M) will ever cause any problems. 

The design represented by equ. (28) means that one has a wedge-shaped 

non-magnetic space between adjacent pieces of REC. While these gaps could 

be implemented by having appropriate notches in the magnet assembly fixture, 

an alternate method of making Q(l) = 0 would be the use of a non-magnetic 

spacer between adjacent REC pieces. For that kind of design it would be 

advantageous to have spacers of uniform thickness D. Referring to Fig. 5 

for the definition of symbols, application of equ. (16a) and (17a) gives 

for the field in that case 

00 

(Z~o  = !r2 	 x 	(30a) 

ro 	(1-i)(C'() • 

6A
)  

with 

= 2 cosa 0 (tan. 0  - tan.1) j(40- ° )/cos40  , (30b) 



so 

tan2 = tan 0  - 	 ( tani0 - tanOi). 	(30c) 

To eliminate the harmonic n = N+M in the case where the term proportional to 

(r1/r2)l in equ. (30a) can be neglected, one has to satisfy 

= ()l) =o 
	

(31) 

giving, with equ. (30b), 

2N _____ 
D/r1 = 
	 CoS 7L/Il 	

(32) 

Formulas for reference pieces with shapes other than trapezoids are easily 

derived following the same general procedure, but are not given here. From 

these expressions follows the general rule that the allowed harmonics 

n = N-e-YM tend to be the smaller the better the inside REC boundary 

approximates a circle. 

To describe the fields (radially) outside the rnultipole, we expand 

B* in liz0.  By using equ's. (17b) and (18b) instead of equ's. (17a) 

and (18a), we get instead of equ's. (24): 

B*() 	 n-i  

n =VM-N 	 f2a) 

K- n = cos-n(€iN). 	
c/i 	

(trapezoid) 

- 

= 	
(circular arcs) 	 (32b) 

1ii) ic//I 
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Equ. (32a) is valid for Jo( > r2/cos(f/M) for the 
file 

trapezoid, and for Iio I > r2 for'6cular arc case. Without going into 
details, it is clear that at these limits B(z 0 ) is somewhat smaller than it 

is at (zcl = ri. Since fljfl = M-N = N(M'-l), the field decays very 

rapidly with increasing 1 .zI provided M is reasonably large. Shielding the 

space radially outside the multipole against these fields will therefore be 

rarely necessary. We therefore give the expansion for the field 

perturbation caused by a circular steel shell with/k =and Iz! = R 

without derivation: 

it 

Sleet 

n = -, N+YM 	 (3) 

are the expansion coefficients of the unperturbed field in 1 iz0  as used 

in equ. (32a). Notice that the fundamental (n=N) is not affected by the shield 

unless M has the exceptionally low value 2N. 

The results of this section show very clearly that the following 

properties are important for the design of good segmented multi pole magnet: 

The REC should be placed, with the largest possible volume filling 

factor, as closely to the Thusiness" region as possible, "hugging" the 

aperture circle as well as possible. 

In order to produce strong fields of high quality, one should 

approximate equ. (20) reasonably well, with M'=8 easy axis orientations 

per period being a good guide number. 
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To arrive at a design, one has to combine these two essential require-

ments with considerations like availability, or ease of production, of REC 

pieces of various shapes; ease of assembly, etc. Trapezoidal segments, as 

discussed above, seem to be a good choice, but it is quite possible that 

assemblies of tightly packed small rods with circular, hexagonal, or 

other, cross sections may be preferable under some circumstances. 

4.3) The segmented REC quadrupole. 

Because of their special importance for accelerators, we discuss some 

details of quadrupoles, adding to the summaries published elsewhere 5 ' 6 . 

Since quadrupoles with trapezoidal segirients are quite typical, we restrict 

the discussion to this specific class of magnets. 

From equ. (24a) follows for the fundamental harmonic for E = 1: 

* 
.. (.o)  

ly 
(34) 

K2 = cos 2 (jt/M) 

Table 1 

M= 	4 	8 	12 	16 	20 	24 

	

= .32 	.77 	.89 	.94 	.96 	.97 

Table 1 shows that in order to get a strong quadrupole, one should choose M=12 

or 16. The gradients achievable with a 16-piece quadrupole are impressive, 

in particular when they are compared with those of conventional quadrupole 	For 

M=16, r2/r1 = 4, (which is still quite compact) and Br = .95T (which is 

commercially available), one obtains an aperture field of 1.34T. In contrast, a 

high quality conventional quadrupole is very difficult to make with more than iT 

at the aperture, and even that is possible only for fairly large aperture magnets. 
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High aperture fields are of particular importance for linear 

accelerators with small apertures. For an aperture with r1 = 2mm, it is 

possible to achieve a gradient B' = 6 Tcm, and the diameter of such a 

quadrupole could be smaller than 2 cm. Clearly, it is impossible to 

achieve anything resembling this with conventional magnets 1  and conven-

tional REC quadrupole designs fall short of this gradient by at least a 

factor of 2. 

Fig. 6 showsa schematic cross section of a 16-piece quadrupole, with 

the easy axis direction indicated in each piece. It follows from.that 

diagram that one needs pieces with five different orientations of the easy 

axis relative to the trapezoidal shape to make this 16-piece quad. If one 

rotates all easy axes by 22.5 0  in the same direction, only four different 

pieces are required, which may be advantageous for the manufacturer. 

Since one has, in either case, a reasonably large number of pieces that are 

supposed to be identical, it may be advantageous to measure magnetization 

direction and magnitude for each piece, and then assemble the quadrupole in 

such a way that magnetization errors do the least harm to the field quality. 

For this reason, it may be a blessing in disguise that with present manufac-

turing techniques, the individual REC pieces are fairly small. This often 

forces the use of several layers ofREC in the axial direction, increasing 

the number of pieces and therefore improving the error cancelling statistics. 

For a 16-piece quadrupole with ri/r2 = .25, the first undesirable 

harmonic (n=18) field has, at /zI=rl,  an amplitude that is approximately 

6% of the fundamental (see equ. (27) for N=2). Eliminating that harmonic 

with a flat sheet of the thickness given by equ. (32), the first non-

vanishing harmonic is n=34, with a relative amplitude of about 3% at the 

full aperture. Theorder of this harmonic is high enough that no attempt 

has yet been made to eliminate it also. 

/ 
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The fringe fields at the end of a segmented quadrupole (or other 

multipole) are fairly easily calculated by, using the charge sheet model 

and equ. (11). If the cross sections of the REC pieces are trapezoidal, 
CTS Sf 	i 

the charge sheets have rectangular 	 and the integrals can be 

expressed by elementary transcendental functions, making the 3D field 

calculation rather easy. The rele.vant formulus are not reproduced here 

because the fringe fields of REC inultipole magnets have some rather remark-

able properties (to be discussed inSect. 4.4) that make fringe field 

calculations necessary in only very rare instances. 

R. F. Holsinger has built a prototype quadrupole with r1 = 1.1 cm; 

r2= 3 cm; M = 16; and consisting of three 16-piece layers in the axial 

direction. Comparisons were made between measurements of that magnet, 
(?), 

computer runs of that magnet with PANDIRA, and the predictions made with 

the simple theory presented here. The results obtained with these pro-

cedures agreed very well with regard to the amplitude of the quadrupole 

field and the allowed higher harmonic n=18. The only significant, but 

expected, discrepancy was the presence of the harmonics n=6, 10, 14 in the 

computer model and the real magnet, while these harmonics do not exist 

in the simple model 	that assumes /j =/4 1, = I. 	At (z= r1 the amplitudes 

of these harmonics were, relative to the quadrupole field, .2% for n=6; 

.1% for n=14; and << .1% for n=lO. While these errors are so small that 

they are unlikely to cause problems in most applications, one can easily 

imagine methods to eliminate these harmonics, if necessry. If, for 

instance, one has a gap between adjacent pieces for the elimination of 

n=18, one could incorporate movable thin strips of soft steel into these 

gaps to tune away these undesired harmonics. The real magnet also had 

approximately.5% sextupole, as well as some other multipoles, present. 

Since the individual REC pieces were not measured, it is expected that 

these harmonics can be significantly reduced when this is done and 

.1 
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properly taken into account in the assembly. Another obvious tuning 

method would be the removal or addition of small amounts of REC at appro-

priate locations, but it is unlikely that such efforts will really be 

necessary. 

4.4) Important practical consequences of applicability of linear 

superposition principle. 

it is obvious that the linear superposition principle is of crucial 

importance not only for specific important theorems, like the easy axis 

rotation theorem or the selection rule for possible harmonics (equ. 24a), 

but to the whole mathematical descriptiOn of REC magnts presented here. 

However, there are some very important practical consequences of the linear 

superposition principle that are obtainable without any mathematical 

derivations. 

We consider first the following conibination of two REC multipole 

magnets: One quadrupole is located, tightly fitting, inside the aperture 

region of another quadrupole. If each of these quadrupoles alone produces 

the same gradient, and both quadrupoles are rotated about the common 

axis by equal amounts in opposite directions, then the gradient in the 

aperture can be continuously changed between zero and twice the strength of 

the individual quadrupole. By similarly pairing two dissimilar multipoles, 

one can make combined function magnets. 

Care has to be taken for these combinations of REC magnets, and in 

particular for combinations of conventional steel magnets with REC magnets, 

that the REC is not driven into the nonlinear part of the B fl  (H, ) curve. 

A combination of magnets that would be fairly immune from this danger is a 

multipole inside the homogeneous field of a coaxial solenoid, since in 

this case the solenoidal field is everywhere perpendicular to the easy axis. 
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A different method to modify the effective strength of a REC quadrupole 

would be to assemble it from quadrupoles of relatively short axial lengths 

whose quadrupole field orientations can be adjusted. While this would be 

fairly easy to do, such a scheme obviously modifies the optical properties 

of the system in a non-trivial way, and this aspect of such a system is 

currently under investigation( 8 ). 

Another important application of the superposition principle is the 

treatment of the fringe fields at the ends of multipole magnets. We 

deal here with two distinctly different aspects of fringe fields that 

are both very simple and important. 

First we consider a multipole of finite physicallengthL whose left end 

is cut off in an arbitrary fashion, and whose right end is shaped such that 

the left end would fit it perfectly, without forming any gap. (See Fig. 7) 

Another way to express that geometry is to state that the length of REC 

along any line parallel tothe axis is either L or zero. Keeping the left 

end of the multipole fixed in space, we first consider the field quantity 

G1(r,T,z) produced by a semi - infinite !nultipole, with Go(r,?) repre- 

senting the 2D field deep inside where it does not depend on z. Then the field 

quantity G(r,tf',z) produced by a multipole of length L is given by 

G(r,?,z) = Gl(r,?,z) - Gl(r,?,z_L). 	 (35) 

00 

If we now calculate the optically important fG(z)dz, it is easy to 

see that equ. (35) leads to 

G(rq,z)dz = L. Go(r,?). 	
(36) 
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This equation says not only that the effective length for the fundamental 

harmonic of interest equals the physical length of the multipole, but also 

that the integral over a field quantity vanishes if that field quantity is 

zero in the 2D cross section! 

Next, we consider the properties of the fringe fields produced by a 

semi-infinite multipole, produced by cutting an infinite multipole by the 

x-y plane at z=O (see Fig. 8), i.e., we look at the fringe field function 

G1(z) for the specific case of the "square" end. If Vi(rqz) is 

the scalar potential produced by the multipole located at z>O, then the 

scalar potential produced by the multipole located at z<O must be 

Vl(r,r,_z). If V(r,(f,z) is the scalar potential inside the infinitely 

long multipole, the following obviously must hold: 

Vi(r,,z) + V1(r,t_z) = V o (r,çD). 	 (37) 

Applying to this equation the appropriate operator to get the field 

quantity G l (r,(/,z) of interest, we get, if no derivative with respect 

to z is involved: 

+ Gi(rf-z) = G0 (r, V = 2 Gi(rq? o) 	(38) 

From this follows that 

61  ( 	 , z)z z1 G 1 
 ) 	

(39) 

if zl is sufficiently large. This means that the effective boundary is 

at z=O, and that the fringe field integral over a field quantity vanishes 

if that quantity is zero in the 2D. cross section. Notice that this 
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statement is stronger than the one made above with respect to equ. (36), 

which required integration over the fringe fields of both ends. 

If the operator to obtain the field quantity of interest is proportional 

to (t)z), we get instead of equ. (38) 

Gl(r,7,z) = (l)G](r,r,z). 	 (40) 

Integrating this Gi(r,cz)  over the fringe field region gives zero 

when Th2, but not necessarily when?)t= 1. 

'-I 
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Appendix 

Using equ. (14) in equ. (13), one of the two integrals that have to be 

evaluated in equ. (13) is 

I i c 	Y 

	

1 	o?Xt 

Carrying out the integration over x first, and integrating by parts, one 

obtains 

• 	I 	 cy dy (± 	
- 

	

—I 	J 2 -Z  
Included in the integration area is a thin strip of vacuum outside the REC 

Hcy = U there, so that the line integral over y vanishes. Applying the 

same technique to the other integral necessary for the evaluation of the 

integral in equ. (13), one obtains equ. (15). 
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FIGURE CAPTIONS 

B(H) - curve in direction parallel to easy axis. 

Effect of rotation of easy axes on magnetic field. 

Integration path for calculation of field inside the REC material. 

One piece of a segmented REC multipole. 

One piece of a segmented REC multipole with flat sheet spacer. 

Schematic cross section of a 16 piece REC quadrupole. 

Geometry of specific finite length REC multipole. 

Fields at the end of a REC multipole. 
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