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PREFACE

The work reported herein was performed as part of the base technology

activity under the Flow Induced Vibration Programs (189a Nos. 02659 and

02683) sponsored by ERDA/RRD. The overall objective of the activity is

to develop new and/or improved analytical methods and guidelines for de-

signing LMFBR components to avoid detrimental flow induced vibration.

In a typical reactor system, many components are susceptible to flow-

induced vibration. One set of components includes nominally circular cy-

lindrical shells coupled to other shells through a liquid, such as shrouds,

thermal liners and flow directing baffles. Designing to avoid large ampli-

tude motion, that is, to avoid a resonance condition or unstability condi-

tion, and the prediction of component response, require knowledge of the

dynamic behavior of the components. However, two circular cylindrical

shells separated by a narrow fluid gap do not respond as single shells,

rather, interaction with the fluid causes coupled vibration. The funda-

mental natural frequency of the coupled system will be lower than that of

a single shell.

For the purpose of understanding the dynamics and controlling the

vibration in reactor components, this paper presents a study of two cylin-

drical shells arranged concentrically and containing and separated by fluid.

An exact frequency equation is obtained for the general case and an

approximate closed-form solution is given for the shell system with an

incompressible fluid. The results illustrate the significance of the

interaction of two shells in a liquid and are useful in design and

evaluation of system components containing circular cylindrical shells.

Of particular importance are the added mass coefficients obtained in the

paper. Those coefficients will be used in the development of sets of

design curves to be included in a future design guide.
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NOMENCLATURE

a,b,d,e Constants given by Fq. (19)

c phase velocity

c. Speed of sound in fluid

E. Young's modulus

f1 (j«l,?,3,4,5) Coefficients given by Eq. (16)

F. (r), G. (r) Functions given by Eq. (11)in in

h. Thickness of shell

it Axial wavelength

n Circumferential wave number

P Fluid pressure

q. Radial surface loading component

r Radial coordinate

R Radius of shell

t Time

u., u Axial displacement of shell

v.,v Circumferential displacement of shell

V Fluid radial velocity

w.,w. Radial displacement of shell

z Axial coordinate

a.

': V ) V2
1 "1

VRi

Angular coordinate

ai Ri

Foisson's ratio

iv



NOMENCLATURE (cont'd)

p. Shell density

a. Fluid density

<t> . , <fr, F?aiid velocity potential

u> Circular frequency

p.(l-v,2) 1/2

Cl. Dimensionless shell frequency in vacuo given
by Eq. (19).
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DYNAMICS OF A COUPLED SHELL/FLUID SYSTEM

by

S. S. Chen and G. S. Rosenberg

ABSTRACT

This paper presents a study of two concentrically located circular

cylindrical shells containing and separated by fluids. An exact frequency

equation is derived for the general case and an approximate closed-form

solution is obtained for the shell system with an incompressible fluid.

It is found that the lowest frequency of the coupled system is associated

with one of the out-of-phase modes, and is lower than the frequencies of

the individual shells.



I. INTRODUCTION

Flow-induced vibrations are of great concern in the development and

design of Liquid-Metal-Cooled Fast Breeder Reactor systems. One set of

problems includes nominally circular cylindrical shells coupled to other

shells through a liquid. Examples include shrouds, flow directing baffles,

and thermal liners. In a typical reactor system such components are subject

to variou3 excitation sources including fluid flow and structural borne

disturbances. The particular case of two concentric shells containing

and coupled through the fluid is treated here. For example, the wotion

of a thermal liner may be influenced, significantly, by the surrounding

fluid and the reactor vessel or other reactor internals. This requires a

kind of "subsystem" treatment in place of analyzing the vibration behavior

as a single component. This study of a concentric double shell system

provides an improved characterization of the vibration behavior for

designing components such as those given in the examples.

Many studies have been made on the vibration of cylindrical shells

containing fluid. Accounts of the work in this field have been published

[1]. The system studied in this paper is characterized thrc«gh the use

of Flugge's shell equations and potential flow theory. An exact frequency

equation is presented for the general case and a closed-form solution is

given for the shell system with an incompressible fluid.



I I . THE FREQUENCY EQUATION

Consider two concentric c ircular cy l indrica l s h e l l s containing and

separated by acoustic media as shown in Fig. 1. The motion of the s h e l l s

i s described by the following Fltigge's she l l equations [2]

~ 2 i\-\>3\ : h. . ~2 ~l 1 + v . 3 v .

. 3z 2 1 2 R 2 J - 1 2 R 2 i 3 9 2 J i 2 R i ™ «

•V. W£,\*\r mJ X 9t

1 + v, 3 2
U j r , -x2 1 - v ' " 2

2R
\ *_\ .fj,iL + i l A (1 + _V\ i l l
i 3z3° LR2362 2 r 4Rji az2j

iL ^ M " 2AR,2 3 9 3 Z
2 J i - E i 3 t 2

,r h i a 3 , v i a , ( 1 ' v i ) h i 3 3 1 + t ( 3 - V h i a 3 , 1 3 ]
L - 1 2 R 3 R 3 z 3 2 | u i •_- W R 2 ^ 2 R 2 36 j V i

L.R2 12 R* 1 2 3z4 6R2 3z2362 12 R*
X I X X

P i ( l - v 2 ) 32w±

where the index i denotes the variables associated with the inner shell

(i = 1) and outer shell (i = 2); u., v. and w are the displacement components

of the shell middle surface; r, 6, and z are cylindrical coordinates; t is

the time; and q is the radial surface loading components per unit area.

The physical characteristics of the shells are defined by the mean radius

R., wall thickness h , density p., Young's modulus E. and Poisson's ratio v..

i

I i.
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Fig. 1. A Coupled Fluid/Shell System.



The governing fluid field equation can be expressed as

cf
(2)

where the index i denotes the central region (i = 1) and annular region

(i - 2) and c is the sound velocity. The corresponding fluid radial

velocity and fluid pressure are

i (3)

vl "i 3t

where a is the fluid density.

The interface conditions are

(4)

r-R.
at

r-R,
(5)

3t

and the surface loading q. are given by

ql = Pl
r=R, r-R,

(6)

Solutions of the following form are assumed

u. = u.cos n9 exp[i2ir(ct -

v. = v.sin n9 exp[i2ir(ct - :

«. = w.cos n6 exp[i2ir(ct - :

(7)



where n is the circumferential wave number, c is the phase velocity, A is

the axial wave length, and u., v., and w. are arbitrary constants to be

determined. Similarly, the fluid velocity potential may be defined by the

following expression:

n9 exp[i2Tr(ct - z)/£] (8)

Substit iing Eq. (8) into (2) gives the following form of Bessel's equation:

Integrating Eq. (9) and applying the condition of regularity at r = 0 and

the interface conditions at r = R. and R., Eqs. (4), yield

12, f

where

> c

1/2'

j C i < C

(11)

c. < c
C, \ 1

/2 ~

\flt-
and the prime denotes differentiation with respect to r.

Introduce the following dimensionless variables:



T, =
I !!i !i_ |
•L Ei J

h.
(12)

1

and the dimensionless frequency Si which is related to the circular frequency

of vibration ia by

1/2

0 ± = R.u
P±(l-vJ)

(13)

Subscituting Eqs. (7) into (1) and using Eqs. (3), (4), (6),(8), and (10) gives

six linear, algebraic homogeneous equations

11

al2

a13 ° 0
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where

a.2

a.o = - K-

- v,

"2

1 + v ̂

T-JV
.2

12

I (15)



2 .^'ilL V, 2

2 6i 2
+ I £ (3-v.)na.

62

a16 = 1 + it

ai7 i ̂ ;

6
a26 = 1 + Y | [1 - 2n2 + (a2, + n2)2] - fi2

and

A " P 2 n < V G 2 n ( V " F2n(R2>G2n(Rl>

f
 Fln<V1 = F L ( R

f2 - I tG2

f3 " I fF2

f4 = I (ig tG2n<R2>F2n<R2> " F2n<R2>G2n<R2>^

f5 " I (^j IF2n<Rl>G2n<Rl^ " G2n<V F2n<V >

(contd.)

The frequency equation is obtained by setting the determinant of the

coefficient matrix in Eq. (14) equal to zero; it can be written as

a1,6±,iii,v1,Y<,a2/°i» n) = 0 (17)

Several limiting cases can be deduced from Eq. (14):

(a) For a. = 0, the equation gives the frequency for two empty

shells.

., ....L



(b) For n = 0, the equation gives the dispersion relation for axially

symmetric modes.

(c) a. = 0 yields the frequency equation of the circumferential motions.

(d) When either one of the shells is rigid, the equation becomes the

frequency equation of the other shell.
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III. - GENERAL FREQUENCY SPECTRA

For a given shell-fluid system, Eq. (17) can be solved for the frequency.

In presentation, a double shell system with sodium at 250°F is considered.

Both inner and outer shells are made of stainless steel and both central

and annular regions are filled with sodium. The shell and fluid properties

are given as follows: E. = E 2 = 27.5 x 10 psl, v = v = 0.27,

Px = P 2 = 0.2885 lb/in.
3, &1 = 0.0074, «2 = 0.0180, o^ = a2 = 0.0333 lb/in.

3,

ci = c
2
 = 102240 in./sec and R2^

Ri = 2' E c l u a t i o n (17) was explored for

the following range of fl. and a.: 0 < il. < 5.0 and Q < a., < 3.0.

Figures 2, 3, and 4 show the dispersion curves for n = 1 and 2 and

for three cases: (a) a shell system in vatuo; (b) a shell system with

incompressible fluid; and (c) a shell system with compressible fluiu.

In case a, there are six branches; each shell has three dispersion

curves and they are independent of each other. The first two branches,

in which the motion is predominantly radial motion, are of most importance

in practical considerations. In case b, there are also six branches only.

In this case, the fluid in the annular region effectively links the two

shell motions and the shells are strongly coupled. The lowest two branches

are predominantly associated with the radial motions. It is seen that the

frequencies of these two branches are lowered significantly. In the first

mode, the two shells move out of phase, while in the second mode, the two

shells move in phase. In the first mode, since the fluid in the annular

region has to be displaced, the fluid inertia's effect is much more

important.

In case c, when the fluid is compressible, there exist infinite branches.

Some are predominantly associated with structural motion and some are pre-

dominantly associated with fluid motion; they may be called structural

modes and acoustic modes, respectively. For small p., the interaction between
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Fig. 2. Frequency Spectra of a Shell System in Vacuo.
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Fig. 3. Frequency Spectra of a Shell System Containing Incompressible Fluid.
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Fig. 4. Frequency Spectra of a Shell System Containing Compressible Fluid.
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the fluid and shells is weak. The frequencies of structural modes are

close to those of empty shells and the frequencies of the acoustic modes

are close to those of a fluid cylinder and a fluid annulus enclosed by

rigid walls. On the other hand, for large u., the frequencies of

structural modes decrease due to the increase of fluid loading and the

acoustic node frequencies approach those of a fluid cylinder and fluid

annulus with pressure-release walls.

Consider the first two branches in Figs. 3 and 4, it is seen that the

effect of fluid compressibility is to slightly lower the frequencies of

the structural modes. In general, if the structural modes with low

frequency are of interest, the fluid nay be considered as incompressible.
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IV. APPROXIMATE SOLUTIONS

It is of little trouble to obtain the roots of the exact frequency

equation (17). However, it is still interesting to examine approximations

to the low frequency for possible implications that may be deduced for the

system.

Deleting the in-plane inertias of the shells, assuming that the fluids

are incompressible, and using the Donell's shell equations (obtained by

2
deleting all terms in Eq. (15) multiplied by 5., except the term
,2
i 2 2 2

TV (a.+n ) in a,, and a.,), it can be shown that the radial displacements
1/ X J.O iX>

w. and w. are given by

e-0.

where

51 = 12

bft
2 "1

-2
(18)

-2 2.2
22+ n 2 ) 2

b - u, -51
(19)

,-,1/2

k -
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Note that 5L and jL are the dimensionless frequencies of the inner and

outer shells in vacuo, respectively.

Consider' two special cases: (a) the outer shell is rigid, and (b)

the inner shell is rigid. Case a corresponds to a shell containing a fluid

and submerged in a fluid annulus, while case b corresponds to a shell

containing fluid and a rigid cylinder. The frequencies for these two

cases are denoted by 8.. and V, , respectively. From Eq. (18) it is

seen that

•L-li
1 +u f + p, i-̂ i f.

and (20)

i u (l + u^k*

It is obvious that both frequencies are reduced due to the fluid

loading. It is useful to use the concept of added mass in this problem.

In terms of dimensional quantities, from Eqs. (20) it can be shown that

the frequency of the shell with fluid is equal to that of the empty shell

whose density has been replaced by the shell density and the added mass.

The added masses are

°1R1 °2R1
a • f + f
added p.h. 1 Pini 2

for case a; and (21)

padded p 2h 2
 r3

for case b. f , f,., and f_ are the added mass factors which are functions

of n, a. .and R,/R.. For a = 0 , Eqs. (16) give
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f. -i
1 n ( 2 2 )

.• p n

Next, return to Eq. (18) concerning the coupling system. In this

case, the frequency equation is

h — 2 2 2 —2 —2
(ad + be)R, - (aft. + dSOfl.. + J2, £JO = 0 (23)

1 2 1 1 1 2

Equation (23) gives two frequencies; the smaller one S2..- is associated

with the out-of-phase motion and the larger one fi.. is associated with

the in-phase motion of the two shells. Mathematically, it can readily

be shown that if

|f < 1 (24)
then

a u, n10

o u , a 1 0

(25)

Physically, this means that the freuqency of the out-of-phase mode is

always less than those of the uncoupled system, while the frequency of

the in-phase mode is always larger than those of the uncoupled system

provided that

(i + ,2f3) i i + Vlfx + Vl ^ j £2j > W lp 2 (j£: f4f5

Equation (26) can be replaced by

f2f3 > f4f5 (27>

Note that the coefficients f« and f_ are proportional to the fluid

pressure acting on the inner and outer shells due to the motion of the
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inner and outer shells respectively; while, the coefficients f and f

are proportional to the fluid pressure acting on the outer and inner shells

due to the motion of the inner and outer shells respectively. Equation

(27) is found to be satisfied in all cases.

From Eqs. (20) and (25), it is clear that when either shell is

rigid, the frequency of the other shell can be calculated in terms of the

shell frequency in vacuo and the added mass factor. If both shells are

elastic, the coacept of added mass factor is no longer useful. However,

when the frequencies of two shells are not close to each other, the shell

with higher frequency may be considered as rigid in computing the lowest

frequency of the coupled system. The frequency obtained in this way is

the upper boui.3.

Finally, it should be mentioned that, in general, the error of Eq. (23)

is small in the low frequency range. Moreover, the error decreases as

na. increases and is negligible for large values of not.. This is similar

to that of a single shell containing a liquid [3].
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V. APPLICATIONS

Turning now to a specific numerical example, consider the following

dimensional values: R = 34.1875 in.; R = 34.625 in.; h, = 0.25 in.;

h2 = 0.625 in.; E = E 2 = 27.5 x 10 -> .i; v x =
 v

2
 = °'27'> pi = P2 = °- 2 8 8 5

lb/in.3; ^ = ° 2
 = 0-°333 lb/in.3; ^ = H2 = 41 in. The fluid is considered

to be incompressible and the shell is assumed to be simply-supported at

both ends. The frequencies of this finite shell system can be obtained

using the frequency equation (17). The frequencies of the system depend

on the axial wave number and circumferential wave, the lowest frequency

is associated with the lowest axial wave number; i.e., the shell length is

equal to the half wave-length. The frequencies of the out-of-phase and

in-phase modes for this case have been computed and presented in Fig. 5.

For comparison, Fig. 5 also shows the frequencies for four related cases:

(1) the inner shell in vacuo; (2) the outer shell in vacuo; (3) the shell

system with rigid outer shell; and (4) the shell system with rigid inner

shell.

These examples illustrate the dynamic characteristics of a coupled ;

shell-fluid system as discussed previously. Another character exhibited

in this figure is that the circumferential wave number associated with
i

the lowest frequency for a coupled shell-fluid system, in general, is

different from that of an empty shell. As shown in the figure, this

circumferential wave number of the inner shell changes from 7 to 6, while

that of the outer shell does not change. In the case of the double shell ;

system, the lowest frequency of the out-of-phase mode is associated with •

n = 6, while the in-phase mode with n = 5. This behavior is attributed j

to the fact that the distribution of stretching energy and bending energy ;

of the shell-fluid system is different from that of an empty shell.
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Fig. 5. Natural frequencies of out-of-phase and in-phase modes of a coupled
shell system and related cases: (1) inner shell in vacuo; (2) outer
shell in vacuo; (3) the shell with rigid outer shell; and (4) the
shell system with rigid inner shell.
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VI. CONCLUSIONS .AND DISCUSSIONS

A general method for calculating the frequencies of a coupled shell/

fluid system is presented in the paper. Following are some important

conclusions: (1) There exist structural modes and acoustic modes. If

the structural motions are of primary interest, the fluid may be considered

as incompressible. (2) There exist out-of-phase modes and in-phase modes.

The lowest frequency of the system is always associated with one of the

out-of-phase modes. (3) The lowest frequency of the shell system with

fluid is significantly lower than those of the individual shells. (4) The

manner of accounting for the effect of the fluid coupling via the added

mass concept is described explicitly. (5) The distribution of stretching

energy and bending energy of the shells within the coupled system is

different from those of the corresponding empty shells. With the suggested

method, the frequency characteristics of thermal shield can be analyzed

and design parameters can be explicitly related to frequency.

The results presented in this report are useful in design and evaluation

of systems containing circular cylindrical shells, such as thermal liners.

In practice, Eq. (23) can be used to find the frequency of a coupled shell

system containing fluid. Since a closed form solution is given, parametric

study can be made easily.

The coefficient f., f_, f.,, f,, and f_ are added mass coefficients,

which depend on circumferential wave number n, axial wave number a., and

radius ratio R?/R1• These coefficients will be used in the development

of sets of design curves to be included in a future design guide.
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