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Additivity, Utility, and Subjective Probability1*3 

AMOS TVERSKY~ 

The University of Michigan, Ann Arbor, Michigan 

The additive conjoint measurement model is applied to the study of decision making 
under certainty and risk. A data matrix is called additive if it is possible to rescale its 
cell entries such that their order is preserved and that every resealed entry can be 
expressed as a sum of its row and column components. It is shown that the SEU model, 
according to which individuals attempt to maximize their subjectively expected utility, 
is equivalent to additivity for a specified class of risky choices. 

In the experimental study eleven prisoners bid for both risky and riskless offers. 
Additivity is confirmed by the data supporting the independence between utility and 
subjective probability. Two alternative variants of the SEU model are used to derive 
subjective probability and utility functions for each subject. In order to account for the 
data, one needs either (a) a positive utility for gambling or (b) subjective probability 
functions where complementary events do not sum to unity. Neither variant is com- 
patible with classical utility theory but both are successful in predicting an independent 
set of data. Relationships to existing data and implications for future research are 
discussed. 

I. THEORY 

Underlying most decision theories are two fundamental notions: the maximization 
principle and the decomposition hypothesis. The former asserts that people choose 
the alternative they consider best according to some criterion of worth; the latter 
states that the worth of an alternative can be decomposed into basic independent 
components. 

In order to develop a theory of choice from these general principles, specific assump- 
tions about the maximized function and the composition rule are made. In general, 
the maximized expression is a real-valued function termed utility which is assumed to 
reflect the observed choices and to preserve the hypothesized structure of the prefer- 
ence space. 

1 This work was supported by United States Public Health Service Grant MH-04236-05. 
2 This paper is based on a technical report MMPP 65-2 entitled “Additivity analysis of choice 

behavior: a test of utility theory,” Michigan Mathematical Psychology Program, 1965. 
3Present address: The Hebrew University of Jerusalem, Israel. 
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DECISIONS UNDER CERTAINTY 

In the context of riskless choice, people are assumed to rank the alternatives accord- 
ing to their utilities, where the utility of a commodity bundle or a multiattribute 
alternative equals the sum of the utilities of its components. Despite well-known 
counter-examples of interacting commodities such as left and right shoes, this additive 
model prevailed in the economic theory of consumer behavior and has generated 
extensive theoretical work (Lute and Suppes, 1965; Samuelson, 1953). 

In contrast to the theoretical and practical interest in the additive composition 
model, very little experimental work has been done to test it directly, although it has 
been assumed to hold in many models of scaling and data analysis. The earlier litera- 
ture has been critically reviewed by Edwards (1954). S’ mce then, Gulliksen (1955) has 
tested additivity among several other laws of utility combination, in a pair-comparisons 
study of food preferences. Thurstone and Jones (1957) scaled preferences for articles 
such as a table lamp or a brief case by having subjects choose between singles and/or 
pairs of items. The scale values were determined by setting the sum of the scale values 
of the single articles equal to the scale value of the pairs of articles. This additive 
assumption yielded a fairly close fit. 

Adams and Fagot (1959) reported a study in which subjects were instructed to 
choose among job applicants varying in intelligence and ability to handle people; 
each attribute had four levels. Only 6 out of the 24 subjects satisfied the additive 
model. All the violations, however, were due to intransitivity of the pair-comparisons. 

No attempt has been made to specify the psychological conditions under which 
additivity holds or fails to hold. Moreover, all choices in the above studies were 
hypothetical, i.e., no payoff was dependent on the subjects’ choices. Finally, no appro- 
priate statistics were developed to describe, test, or evaluate deviations from additivity. 

DECISIONS UNDER RISK 

Most models of risky choice are based on maximization of some form of expectation. 
Although this principle dates back to Bernoulli, it was not until it was reformulated 
by von Neumann and Morgenstern (1944) that it attracted psychologists’ attention. 
Savage (1954) constructed the subjective expected utility (SEU) model, according to 
which people act (or should act) to maximize their subjective expected utility which 
equals the sum of the utilities of the outcomes weighted by their subjective probability 
of occurrence. Formally, let G be a gamble with outcomes or ,..., o, obtained contingent 
upon events e, ,..., e,; and let G’ be a gamble with outcomes o; ,..., ok obtained con- 
tingent upon events e; ,..., ei . Then there exists a real-valued utility function u, 
defined on outcomes, and a subjective probability function s, defined on events, such 
that G’ is not preferred to G if and only if 
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The subjective expected value (SEV) and the expected utility (EU) models are 
defined by replacing subjective probabilities or utilities respectively by objective 
probabilities or monetary values. Thus, the models differ in whether probability and/or 
value are regarded as objective or subjective. 

Unlike the riskless case, the above theory has stimulated rather extensive experi- 
mental work aimed not only at testing the models but also at determining the form 
of the utility and subjective probability functions. For a review of this literature see 
Edwards (1954; 1961; 1962) and Lute and Suppes (1965). 

To bypass the serious difficulties involved in simultaneous measurement of utility 
and subjective probability for each subject, researchers have derived and tested some 
empirical consequences of the SEU model. The most recent attempts of this kind 
were by Becker, DeGroot, and Marschak (1964) and by Coombs, Bezembinder, and 
Goode (1967). However, any test of the model based on only some of its implications 
is incomplete because the model may be incorrect even when the tested implications 
are verified. Consequently, such implications may lead to the rejection of the model, 
but they cannot lead to its acceptance. Testing a model by using a necessary and 
sufficient condition for its existence avoids this problem and permits evaluation of the 
goodness of fit of the model. 

The present study is concerned with a simple class of gambles of the form (a, p) 
in which one wins a positive amount a if an event p occurs ‘and zero if p does not 
occur. Let n be a data matrix whose D(a,p) entry is a measure of the worth of the 
gamble (a, p) such as the subject’s minimal selling price or the proportion of times he 
prefers it to a standard gamble. In order to study the relationships between such data 
matrices and the SEU model the following definition is introduced. 

(1.2) A data matrix n = A x P is said to be additive if there exist real-valued 
functionsf, g, and 4 defined on A, P, and D, respectively, such that 

(9 +(a, P) =A4 + g(Ph 
(ii) d(a, p) > $(b, q) if and only if D(a, p) 2 D(b, q) for all a, b in A andp, q in P. 

If, in addition, one can choose 4 such that 4(a, p) = D(a, p) for all (a, p) in D then 11 
is called strictly additive. 

Clearly, any strictly additive matrix is additive but not conversely. An additive 
representation of D is simply any numerical assignment satisfying Conditions (i) 
and (ii). Thus a data matrix is said to be additive if it is possible to rescale its rows, 
columns, and cell entries such that the rank order of the cell entries is preserved, and 
every resealed entry equals the sum of its row and column components. Lute and 
Tukey (1964) refer to this measurement model as simultaneous conjoint measurement 
to emphasize the fact that the dependent and the independent variables are measured 
simultaneously. The relationships between additivity and the SEU model for the 
type of gambles considered are given by the following elementary result. 



178 TVERSKY 

(1.3) THEOREM. For gambles of the form (a, p) the SEU model is satisfied if and only 
if D is additive. 

Proof. First assume D is additive. Hence there exist functions f, g, and 4 such that 

W, P> 3 W, 4) if and only if 

4(a, P) =f (4 + g(P) af(4 + &d = 4(6 4). 

Let 

U(U) = efca) and s(p) = egip). 
Hence 

D(a, P> = W, q) if and only if 

44 s(P) 2 44 s(q), 

which satisfies the SEU model provided the utility of zero is set equal to zero. 
Conversely, assume the SEU model is satisfied and set u(O) = 0; hence there exist 

utility and subjective probability functions such that 

Let 

Hence 

D(a, P) 3 D(h 4) if and only if 

44 s(P) 3 48 s(q). 

f (4 = log 44 and API = log S(P)- 

D(a, P) 2 D(k q) if and only if 

f (4 + AP> = $(a, P> 3 M s> =f (4 + gkh 

which completes the proof of (1.3). 
The SEV and EU models are satisfied if and only if D has an additive representation 

subject to the constraint that u or s correspond to monetary values or objective prob- 
abilities respectively. 

The fundamental assumption of all psychological expectation models, which is 
independent of any particular measurement method, is that utility and subjective 
probability contribute independently to the overall “worth” of a gamble. That is, 
judgments of desirability of outcomes are independent of judgments of likelihoods of 
events. More specifically, utility and subjective probability are compensatory but 
noninteracting. Studies and discussions of this hypothesis can be found in Edwards 
(1962), Irwin (1953), and Slavic (1966). Thus, if the additivity of a data matrix can 
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be tested, Theorem (1.3) provides a measurement-free test of expectation models 

which does not depend on the measurement of utility or subjective probability. 
It should be pointed out that since the status quo is the zero point on the utility 

scale, u(a) should be interpreted as a utility for a more dollars rather than the utility 
of a dollars. For a discussion of this interpretation and some related problems see 
Krantz and Tversky (1965). 

The conditions under which additive representations exist have been studied exten- 

sively in recent years. Axiomizations which yield additive (or. closely related) repre- 
sentations have been established by Debreu (1959; 1960); Pfanzagl (1959) Suppes 
and Winet (1955), and more recently by Krantz (1964) and by Lute and Tukey (1964). 
Necessary and sufficient conditions for additivity, for finite data matrices, have been 
established by Scott (1964) and by Tversky (1964). In order to state the latter result, 

certain constructions are introduced. 
Let D = A x P be a data matrix with a, b, c in A and p, 4, r in P. Each cell is 

represented by an ordered pair of the form (a, p) called a data element. The set of all 
data elements D is enriched by introducing formal sums of data elements where 
addition is defined component-wise. For example, 

(a, p) + (b, 4) + (c, r> = (a + b -I. c, p i q + + 

Let d denote the set of all such formal sums, denoted by lower-case Greek letters. 
Thus, d is the free Abelian semigroup generated by D. 

Two binary relations on A are defined by: 

(1.4) Let 

and 

a’ = (u; , pi) + (a;, p;l) + ... t (4 3 PA) 

6) a ===la’ whenever D(a, , pi) = D(4 , P;) 

(ii) 01 >i 01’ whenever D(ai , pi) 2 D(4 , PI) 
and D(u<, pi) > D(ul , p;) for at least one i. 

i = 1, 2,..., n 

i = 1) 2 ,...) n, 

(Y >i a’ is defined as either 01 >i (Y’ or 01 =i 0~‘. Hence, >i may be regarded as 
the additive closure of >. But since different sets of data elements may have the 
same formal sum, the latter do not determine their summands uniquely. Consequently, 

one may obtain both oi >,i 01’ and a’ >i 01 for some cy and cy’ in d. The following 
asymmetry axiom is introduced in order to exclude this possibility. 

(1.5) ASYMMETRY AXIOM. There are no a, 01’ in A such that 01 >,I (Y’ and cy’ >i Q(. 
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The asymmetry axiom states, in effect, that the order of the formal sums is invariant 
with respect to different combinations. That is, if by applying (1.4) one obtains 
a: a1 a’, it is not possible to find a combination of data elements that yields a’ >1 a. 
Put differently, the axiom requires that for all a, a’ in A, one and only one of the follow- 
ing holds: a >1 a’, a =1 a’, 01’ >1 a, or a and a’ are incomparable. 

Alternatively, (1.5) may be formulated as an irreflexivity condition stating that there 
is no 01 in A such that a >1 a. The equivalence of the above three forms is easily 
established and their essence is to assure that the additive closure of the observed order 
is a proper order relation. It has been shown (Tversky, 1964) that a data matrix of the 
type considered is additive if and only if it satisfies the asymmetry axiom (1.5). Further- 
more, the above result can be generalized to infinite matrices and to partially-ordered 
data. See Tversky (1967) for a detailed discussion of this result in the context of a 
general theory of conjoint measurement. For some related developments see Fishburn 
(1967). 

In the investigation of decision making and measurement theory, some consequences 
of the asymmetry axiom have been explored. Coombs, Bezembinder and Goode 
(1967) derived the following triple cancellation condition from the SEU model: 
Let D = A x P be a data matrix with outcomes a, b, c in A and events p, q, r in P. 
The SEU model implies that: 

(1.6) If 
D(a, q) 3 W, P), 

D(4 P> 3 W, a), 
W, y> Z W, 4, 

then 
D(4 ~1 3 D(c, 4. 

S 

r 

a b C d 

FIG. 1. A graphical illustration of triple cancellation (1.6). 
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This condition is illustrated in Fig. 1, where arrows indicate preference. The conclu- 
sion of the argument is denoted by a double arrow. Triple cancellation is an immediate 
consequence of the asymmetry axiom (1.5). For suppose (1.6) does not hold, hence 
D(c, s) > D(d, r) and by applying definition (1.4) we obtain 

a = (a, 4) + (4 P) + (4 r) + cc, 4 

=(a+b+c+4p+q+r+4 

>1(4p) + (c, 4) + (a, 4 + (4 y) 

or (Y >1 (Y. But since 01 =1 01 for all 01, by part (i) of (1.4), the asymmetry axiom is 
violated which completes the derivation of (1.6). T wo other testable consequences of 
additivity are double cancellation and monotonicity (or independence) which were 
investigated by Adams and Fagot (1959), Debreu (1959) and Lute and Tukey (1964). 

A data matrix is said to satisfy double cancellution whenever 

(1.7) D(a, q) 2 W, p) and D(b, r> >, D(c, s> imply o(a, r) 2 D(c, P). 

A data matrix is called monotone (or independent) whenever 

(1.8) o(u, p) 3 D(a, q) if and only if D(b, p) > D(b, q) and D(a, p) 3 D(b, p) if 
and only if D(a, q) > D(b, q). 

To derive monotonicity from triple cancellation, assume D(u, p) > D(a, q), but 
since D(u,p) = D(a,p) and D(b,p) = D(b,p) we obtain, by (1.6), D(b, p) > D(b, q) 
as required. A symmetric argument applied to the second component completes the 
proof. The relationships between the various models and conditions are summarized 
by the following theorem. That implication does not hold unless indicated in the 
theorem can be shown by simple counterexamples. 

(1.9) THEOREM: 

Strict Additivity (1.2) 

The SEU model t) Asymmetry (1.5) c) Additivity (1.2) 
(for the type of 1 1 
gambles considered) Triple cancellation (1.6) Double cancellation ( 1.7) 

Monotonicity (1.8) 

Although for the type of gambles considered, additivity is both necessary and 
sufficient for the SEU model, it does not determine utilities and subjective ptobabili- 
ties uniquely. The set of all additive representations of a given finite data matrix is 
the set of all solutions of the corresponding system of linear inequalities. Thus, each 
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additive solution may be regarded as a point in some n-space, where the set of all 
solutions forms a polyhedral convex cone, denoted C(D). The resultant scale may be 
viewed as a multidimensional, ordered metric scale. In order to obtain a (unique) 
numerical assignment, additional constraints are imposed. 

A solution 4’ is said to be a least-squares solution if it is closest to the data point D 
in the Euclidean-distance sense. Formally, $’ is a least-squares solution if it minimizes 

(1.10) V+, D) = cc (4@, P) - WY p>)” 
where the summation ranges over all a in A and p in P. 

The least-squares solution is an additive representation of the data that distorts it 
minimally in the least-squares sense. If  the data is strictly additive then D must be in 
C(D) and the data coincide with its least-squares solution. To establish the uniqueness 
of the least-squares solution, assume $’ is not unique; hence there exists a solution 

4” # 4’ such that 

(i) a(+‘, D) = a(#“, D) and 

(ii) there is no solution #J such that 6(r$, D) < S($‘, D). 

Otherwise, 4’ is either unique or not a least-squares solution. Since 4’ and 4” are 
equidistant from D, by(i), they lie on the boundary of a hypersphere whose center is D. 
Let 4 be any point on the open line segment (4’, (6”). Since the solution space, C(D), 
is convex, + must also be in C(D); but, since 4 is clearly inside the hypersphere, 

W’, Di > +A 9 contrary to (ii) above, which establishes the uniqueness of the 
least-squares solution. Note that although 4’ is unique, the corresponding scales for the 
two factors (f and g) are determined only up to a common additive constant. 

THE UTILITY OF GAMBLING 

Related to the problem of measuring utility of outcomes in a risky situation is the 
puzzling problem of measuring the utility of gambling. Royden, Suppes, and Walsh 
(1959) constructed the only available model for experimental measurement of the 
utility of gambling based on the assumption that people maximize the sum of the 
expected monetary value and the utility of gambling for the particular lottery. Although 
the model allows for individual parameters, its predictive power did not exceed 

that of the simple expected value model. The classical formulation of von Neumann 
and Morgenstern does not allow a specific utility for gambling. 

The additive model offers a new approach to this problem. Let D(a,p) be the 
subject’s minimal selling price of the gamble (a, p) in which he wins a positive amount 
of money a with probability p. I f  the subject’s prices are compatible with the SEU 
model, then, by (1.3) there exist functions 4, f and g defined on prices, outcomes and 
events such that: 

W%P)> =fM +&> 
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where 4 preserves the order of the cell entries. Both + andf, however, are defined on 
the same domain, i.e., money. Hence we have two utility functions for money, one 
for selling prices (I#) and one for risky outcomes (f). The normalized difference 
between them, denoted w(a), is proposed as a measure of the utility of gambling: 

(1.11) 

This measure is obtained by comparing the utility of a sure-thing, e.g., a price, to the 
utility of a risky outcome. In the classical formulation of the SEU model these func- 
tions are identical, that is, 4(a) =f(a) for all a, and hence W(U) = 0. 

An alternative measure, denoted O(u), is based on the difference between utilities 
derived from risky and riskless choices. Letf(a) be the utility of a derived via the 
additive model from risky choices, and let h(a) be the utility of a derived via the 
additive model from riskless choices. Define 

Since the former measure (w) requires interpolation between utilities whereas the 
latter measure (8) can be obtained directly, the latter is used in the present study. 

The additive model allows the utility for gambling to be positive, zero, or negative. 
Thus it permits study of problems concerned with the utility for gambling as well as 
the utility for different types of risk, which cannot be studied within the classical 
framework. In general, 0 may assume different values for different values of a. 
Whenever 8 is fairly uniform over the range considered, the average e(u), denoted 8, 
may be regarded as an index of the utility of gambling. Note that both measures of the 
utility of gambling are independent of subjective probability. They are based on the 
fact that it is possible to obtain two different scales of value form the additive model. One 
cannot obtain a similar measure based on subjective probability since it is not possible 
to obtain two different scales of subjective probability under two utility levels without 
violating additivity. 

In the following experimental study, the additive model is employed to test some 
of the basic assumptions of utility theory and to construct utility and subjective prob- 
ability scales from choices under certainty and risk. 

II. METHOD 

Subjects. Eleven male inmates from the State Prison of Southern Michigan in Jackson, 
Michigan, whose ages ranged from 23 to 50 served as subjects in the experiment. They were 
selected, on the basis of their cooperativeness, from volunteers who had I.Q.‘s above 100 and 
who had participated in an earlier gambling experiment. In the previous experiment, the subjects 
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spent approximately 20 hours choosing between two-outcome gambles using the display 
described below. Prisoners were chosen as subjects since nonmonetary commodities such as 
cigarettes and candy are used as currency in the prison and thus are effective payoffs. Also, the 
expected payoff for a two-hour session provided a strong incentive for the inmates because it 
constituted a significant amount relative to their usual income. 
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function x = y is plotted as a dotted line in all figures. Inspection of the graphs 
reveals that the bids were above expected value in the risky sets (I, II, and IV) and 
below expected value in the riskless set (III). The bids for cigarettes (I) and candy (II) 
were nearly equal, with the latter slightly higher. 

I-. I. I.,. I. I.,., ., 

'0" 12 24 36 48 60 72 84 96 
EXPECTED MONETARY VALUE 

FIG. 4. Average bids for Set I. 

0 I../. , . , . , . , . , . , . , , , 

0 12 24 36 48 60 72 84 36 
EXPECTED MONETARY VALUE 

FIG. 5. Average bids for Set II. 
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They were given no money to start with but were told that they were entitled to play or sell 
three options at the end of each session. They were further told that the experimenter would try 
to take advantage of them by letting them play the option if their price were high or by buying 
their right to play if their price were low. 

Three options were selected in advance to be played at the end of each session. For each sub- 
ject, the experimenter determined a buying price chosen randomly within one standard deviation 
of the expected value of the option. If the subject’s selling price exceeded this predetermined 
value, the subject played the gamble or received the riskless option. On the other hand, if the 
buying price exceeded the subject’s bid, the subject sold the option at the experimenter’s buying 
price. It was pointed out to the subjects that under these conditions they could do no better than 
write down their “true” lowest selling price, or their indifference point. For a discussion of this 
point, see Becker et al. (1964, p. 228). 

The gambling device was a wheel of fortune with a rotating spinner which stopped on one 
out of ten spots (see Fig. 2). The gambles were played by having each subject spin the spinner 
and win the amount indicated if the spinner stopped on a black spot, and nothing otherwise. 

The total winnings per session ranged from $0-$2.40, with an expected value of approximately 
$1. Because of prison regulations, money had to be deposited in the subjects’ accounts. Cigarettes 
and candies, however, were distributed at the end of each session. Since a pack of cigarettes and a 
bag of candy have the same price (30c) at the prison store, Sets I and II were matched in expected 
value. In general, the study was designed to maximize the number of different options having 
the same expected value in order to provide the most rigorous test of the theory. 

PROBABILITY 
PACKS OF CIGARETTES 

FIG. 3. A geometrical representation of the experimental design. 

III. RESULTS 

A gross depiction of the data is presented in Figs. 4-7 where the average selling 
prices, or bids, are plotted against the monetary expected value of the gambles. The 
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function x =y is plotted as a dotted line in all figures. Inspection of the graphs 
reveals that the bids were above expected value in the risky sets (I, II, and IV) and 
below expected value in the riskless set (III). The bids for cigarettes (I) and candy (II) 
were nearly equal, with the latter slightly higher. 

EXPECTED MONETARY VALUE 

FIG. 4. Average bids for Set I. 

96- II 
u" 
i; 04 - 
(z . 

- 
z 72 . 
5 60- 
z 
- 4e- 

:' 

' 6" I-* I. I. I. I. 1. I. I *, 

12 24 36 46 60 72 84 96 
EXPECTED MONETARY VALUE 

FIG. 5. Average bids for Set II. 

' d' I’-1 1 11 1 11 I 
30 60 90 120 150 160 2lO 240 

MONETARY VALUE 

FIG. 6. Average bids for Set III. 

1 ., . I .,,,.,.I., 

24 36 40 60 72 64 96 108 
EXPECTED MONETARY VALUE 

FIG. 7. Average bids for Set IV. 
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The analysis is divided into three parts. First, additivity and strict additivity of the 
obtained bidding matrices were tested and the expectation models were compared. 
Next, two variants of the additive model were applied to derive subjective probability 
and utility scales for each subject. Finally, the derived scales were used to predict an 
independent set of data (Set IV) and to compare some alternative choice models. 

ADDITIVITY ANALYSIS 

The test for additivity was based on the median selling prices of each of the eleven 
subjects, for all options from Sets I, II, and III. I f  we let D(a,p) be the median bid 
for the option (a, p) then the SEU model is equivalent, by (1.3), to the additivity of D. 
Hence, under utility theory there exist numbersf(a),f(b), g(p) and g(q) such that 

(3.1) &a> P) 2 W, 4 ifi f(a) + g(P) am + g(q) 

for all a, b in A and p, q in P. 

The above equation defines a system of linear inequalities for each data matrix of each 
subject. An IBM 7090 was programmed to solve the inequalities, if possible, or to find 

a numerical assignment which minimizes the number of inversions if no perfect 
solution could be found. A pair of cells (a, p), (b, q) is said to form an inversion with 
respect to a given numerical assignment whenever: 

(3.2) D(a, P) 3 D(b, q) but f(4 + g(P) <.f(~) + g(q). 

The algorithm was based on systematic eliminations of inequalities from the system 
(3.1) until a solvable subset, yielding the smallest number of inversions, was found. 
To obtain a unique numerical assignment, the least-squares solution (1.10) was 
approximated using a linear programming method developed in Tversky and Zivian 

(1966). 
The other expectation models EU, SEV, and EV were tested by solving (3.1) in the 

manner described, subject to the constraint thatf(a) or g(p) or both are known con- 
stants corresponding to the logarithms of value (u) and probability (p) respectively. 

The riskless bidding matrices were solved under two models: 

(a) The riskless utility, or the RU model, where the utilities were considered 
unknowns. 

(b) The riskless value or the RV model, where the utilities were considered as 
known constants corresponding to the monetary values of cigarettes and candy. 

Kendall’s rank-order correlation (T) between each data matrix and its solution 
provided a measure of the degree of additivity. 7 is the difference between the propor- 
tion of pairs of cell entries which are ordered like their additive scale values and the 
proportion of pairs of cell entries which are ordered differently from their additive 

scale values. Thus, if p denotes the proportion or the probability of an inversion, then 
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7 =(l -p) -9, and p =+(l -T). Th e values of 7 for each subject under the 
various models for Sets I, II, and III are presented in Table 1. 

TABLE 1 

RANK-ORDER CORRELATION (7) BETWEEN THE DATA AND 

THE ADDITIVE SOLUTION OBTAINED UNDER EACH MODEL 

Models SEU SEV EU EV RU RV 

Sets I II I II I II I II III III 

Subjects 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 1 .949 .916 
1 1 .966 .966 
1 .983 .966 .966 
1 .983 ,949 .949 

.950 1 .950 ,966 
1 1 .966 .983 

.950 .983 .950 .966 
1 1 .966 .966 

.966 1 .950 .966 
1 1 .966 .966 
1 1 .918 .950 

.916 
.966 
.950 
.916 
.949 
.966 
.950 

.966 

.966 
,949 

.916 .812 .776 1 1 

.966 .966 .966 1 1 
.999 ,932 .888 .983 .949 
.949 .854 ,854 1 1 
.966 .949 .966 1 I 
.949 .966 .940 1 .949 
.966 .932 .966 1 .888 
.966 .966 .966 1 1 
,966 .949 .966 .966 .880 
.966 .966 .966 1 .897 
.949 .854 .949 1 1 

Av. .988 .995 .959 .960 .951 .955 .922 .928 .995 .960 

Out of the 33 data matrices analyzed for additivity without additional constraints 
(that is, under the SEU and the RU models), 25 were perfectly additive and the 
average probability of an inversion for all these data was less than .005. Naturally, 
this probability increases as additional constraints are imposed on the solutions by the 
stronger models. Although the SEV and the EU models are equally constrained, the 
former was slightly better than the latter. 

STRICT ADDITIVITY 

According to the theory, utilities combine additively, whereas utility and subjective 

probability combine multiplicatively. Hence, in order to test strict additivity (1.2), a 
logarithmic transformation was first applied to all the risky bids from Sets I and II. 
The transformed risky bids as well as the riskless ones (from Set III) were then 
submitted to a series of individual two-factor analyses of variance. This analysis 
provides. a statistical model for the test of the hypothesis that the two factors of each 



ADDITIVITY, UTILITY, AND SUBJECTIVE PROBABILITY 189 

data matrix are strictly additive in the sense that there is no significant interaction 
between them. Unlike the previous analysis which employed only median bids, the 

present analysis was baaed on all the data. Since all main effects were highly significant 
for all subjects, only the F-ratios for the interaction terms are reported. Table 2 pre- 

sents the F-ratios for all subjects and sets, where a star denotes statistical significance 
beyone the p = .I level. 

TABLE 2 

F-RATIOS FOR THE INTERACTION TERMS~ 

Subjects 
Sets 

I II III 

1 ,545 .899 .762 
2 1.231 .979 1.087 
3 .I30 .221 ,722 
4 .180 1.245 1.592 
5 1.755 3.391* 1.168 
6 ,624 .706 .774 
7 3.91 1.271 1.424 
8 .335 1.366 ,690 
9 .591 ,983 .790 

10 .032 .678 1.020 
II 1.241 ,337 ,542 

a Statistical significance beyond the .l level is indicated by a single star. All F-ratios are based 
on 9 and 32 degrees of freedom except for Subjects 2 and 10 whose F-ratios are based on 9 and 
16 degrees of freedom. 

Out of the 33 bidding matrices, only a single one revealed a significant interaction. 
Hence the data show that, to the accuracy allowed by the variability of the bids, the 
subjects’ bids for the risky options are expressable as multiplicative combinations of 
their probability and value components, and that the subjects’ bids for the riskless 
options are expressible as additive combinations of their two value components. 

UTILITY AND SUBJECTIVE PROBABILITY 

Since, in general, strict additivity is preserved only by linear transformations, the 
strict additivity of the riskless data implies that the utility function for money is 
practically identical to the actual money value. [Indeed, the obtained approximate 
least-square solution (1.10) was almost indistinguishable from the actual bids.] Strict 
additivity, however, imposes no constraints on the utilities for cigarettes and candy. 
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Although the solution is uniquely determined, the scale values of the rows and the 
columns are determined only up to a common additive constant. Two methods based 
on two different variants of the classical SEU model, called Models 1 and 2, were 
used to determine the additive constant. According to Model 1, subjective probabilities 
of complementary events sum to one. Model 2, on the other hand, requires the same 
utilities for risky and riskless choices; that is, utility is assumed to be risk-invariant and 
no utility for gambling is allowed. Utilities are denoted risky or riskless depending on 
whether they were derived from risky or riskless bids. Subjective probabilities are 
denoted type 1 or type 2 depending on whether they were derived from Model 1 or 
from Model 2. 

The construction of the riskless utilities was based on the observation that the two 
commodities were equal in monetary value, and that the observed riskless bidding 
matrices were indeed symmetric. Consequently, the additive constant was chosen 
so as to equate the means of the two scales. It is important to realize that once the 
additive constant has been chosen for a pair of scales, the scales are uniquely deter- 
mined. 

The problem of identifying events in choice experiments is subtle because every 
event is, in a sense, unique. Since no biases associated with the color or the position 
of the winning spots were found, events were identified in terms of the number of 
winning spots on the wheel. Model 1 regards events having complementary ratios of 
winning to losing spots as complementary events. Since in the present study there is a 
unique objective probability associated with each of the experimentally identified 
events, subjective probability may be viewed as a function of objective probability. 

The scales based on Model 1 were constructed as follows: 
From strict additivity and (1.3) we obtain 

Hence 
w, PI =m + g(P) = 44 S(P)* 

and 

; D&P) = 44 [s(2) + s(.4) + ~(6) + 441 = 44 (1 + 1) 

since the expression inside the brackets is the sum of the subjective probabilities of 
two pairs of complementary events. Once the utility scale for each subject had been 
constructed, we solved for the subjective probabilities. 

Since 

WY P) = 44 S(P), 
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and 

The subjective probabilities for Model 2 were derived from the same equation, 
except that the riskless utilities replaced the risky ones in the denominator of the above 
equation. Note that according to Model 2 the subjective probabilities of two comple- 
mentary events need not sum to unity. 

“O 10. 
150 

‘to ,* 

I.- 

so I’ 

/ 

/ 
60 ,’ 

,/ 
30 ;./’ 

,... e=.o71 

Od JO 60 so 120 

2. 

,.‘. 

/ 

,2 

/ 

,L 
:’ 

e.017 
,.: 

5. 

,/ 

I 
/ 

,c' e-023 
. ..' 

8. 

L. 
/ 8~403 

..j 

ll. 

,* 
,' 

I.- 

/ 

/ 

,/.' 
.*' :' ea.123 

(_.I 
0 so so so 120 

CIGARETTES 

3. 

:’ I.- .;;’ 

/ 
Y 4 , 

,’ .C e=.i39 ,:’ 

I 6. 

_:’ ..;‘, 

ii” 
,I’ ,= 

8z.026 
_:” 

9. 

. IL /’ 
.d .’ 

,/ 
I’ . ..- e-m ..: 

0 30 60 So I20 

FIG. 8. Risky (solid line) and riskless (dashed line) utility functions and 8’s for cigarettes for 
each subject. 

480/4/z-2 



192 TVERSKY 

Both risky and riskless utilities for each subject, together with his average utility 
for gambling (1.12), are presented in Figs. 8 (for cigarettes) and 9 (for candy). The 
derived utilities may be described as follows: 
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FIG. 9. Risky (solid line) and riskless (dashed line) utility functions and O’s for candy for 
each subject. 

(a) The utility functions for cigarettes and candy were nearly identical for both 
risky and riskless bids. 

&> The,riskless.utilitieswere very similar for all subjects:.bqear, and shghtly below 
the x =y line. 
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(c) The risky utilities exceeded the x =y line almost everywhere, yielding a 
positive index of utility for gambling for 10 out of 11 subjects. 

(d) The product-moment correlation between the two indices of utility for gam- 
bling obtained from Sets I and II was -95, indicating invariance of the index with 
respect to commodity. 

The subjective probabilities derived from Sets I and II were nearly identical for 

both models. Hence, the average subjective probabilities for each subject under the 
two models are presented in Fig. 10. The value of s at the lower right of each graph 
is the average sum of the subjective probabilities of two complementary events under 
Model 2. The derived subjective probabilities may be described as follows: 
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(a) Under- Model 1, most subjects overestimated the low probability (.2) and 
underestimated the high probability (.8). Th e subjective probabilities of the rest of 
the subjects coincides with the objective probabilities. 

(b) Subjective probabilities derived from Model 2 exceeded the objective prob- 
abilities everywhere for all but one subject. 

(c) The two subjective probability scales appeared to be constant multiples of 
each other. 

INDEPENDENT PREDICTIONS 

Models 1 and 2, along with the classical SEU and the simple EV models, were 
compared in predicting the median bids of Set IV for each subject. This set contains 
gambles of the form (p; a, b) in which one can win a packs of cigarettes and b bags 
of candy with probability p, or win nothing with probability 1 - p. The expected 
utility of such gambles is, therefore, @)[~(a) + u(b)]. The predictions from Model 1 
were obtained by multiplying the sum of the risky utilities by a type 1 subjective 
probability. The predictions from Model 2 were obtained by multiplying the sum 
of the riskless utilities by a type 2 subjective probability. The predictions from the 
classical SEU model were obtained by multiplying the sum of the riskless utilities by a 
type 1 subjective probability. The expected values were computed directly. Although 
the models differ in the number of free parameters, no parameters were estimated from 
the predicted data. The average absolute deviations (in cents) for each subject under 
each one of the models are given in Table .3 

The hypothesis that there is no significant difference between models (in their 
average absolute deviations) was tested for the following three pairs of models: 
(i) 2 vs. 1. (ii) 1 vs. SEU. (iii) SEU vs. EV. The variances of the absolute deviations 
(from all 27 data points) were computed under each model and three two-tailed t-tests 
for each subject were performed. The results are summarized in Table 3 where a 
single star between a pair of models indicates that the difference between them was 
significant beyond the .05 level and a pair of stars indicates that the difference was 
significant beyond the .005 level. Despite the usual difficulties in interpreting the 
results of multiple t-tests, the overall picture may be described as follows: 

(a) The behavior of three subjects (7, 8, and 10) was in almost perfect agreement 
with the EV model. Consequently, the prediction of their data could hardly be im- 
proved by any of the other models. 

(b) The SEU model was better than the EV model for six out of the remaining 
eight subjects, although the difference was statistically significant for only two sub- 
jects. 

(c) Model 2 was better than iX$odel 1 for eight subjects, although only for onewas 
the difference statistically significant. 
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TABLE 3 

AVERAGE ABSOLUTE DEVIATION (IN CENTS) FOR SET IV 
UNDER EACH OF FOUR MODELS& 

Subjects Model 2 Model 1 SEU EV 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

5.97 8.42 ** 
1.73 2.52 
4.06 6.21 ** 
4.82 4.64 ** 
7.00 6.37 * 
3.80 1.20 
1.10 1.15 * 
0.07 0.40 
2.00 3.70 ** 
1.10 1.20 ** 
3.90 4.20 ** 

35.87 40.55 
2.06 ** 8.31 

22.37 20.71 
23.27 27.35 
12.52 11.93 
2.20 * 5.70 
2.93 0.80 
0.07 0.30 

15.06 15.30 
7.69 ** 0.40 

21.29 25.50 

AV. 3.23 3.64 13.21 14.26 

a Statistical significance beyond the .05 and the .005 levels are indicated by one and two stars. 
respectively. 

(d) The major finding of the present analysis was the large difference between 
Model 1 and the SEU model which was statistically significant for eight out of the 

I1 subjects. 

(e) Both Model 1 and Model 2 provided a very good fit to the data. The average 
deviations (over all subjects) for the models were 3.2e and 3.6$, as compared with 
values of 13.2~ and 14.31 for the SEU and the EV models, respectively. 

For a more detailed view of the data, the median bids were averaged over all subjects 
and the observed averages, along with the predicted averages under all four models, 
are presented in Table 4. 

IV. DISCUSSION 

In this section the empirical findings of the study are .discussed in relation to pre- 
vious work and some critical comments are offered. 

The additivity analysis of the bidding matrices supported the SEU model. Out of 
the 22 matrices analyzed under the SEU model, 16 were perfectly additive and the 
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overall proportion of inversions was less than -005. Strict additivity was also confirmed 

by the data as only one out of the 33 data matrices revealed a significant interaction. 
Hence, the subjects’ bids can be expressed as simple additive (or multiplicative) 
combinations of the options’ components. Furthermore, since strict additivity is 
preserved only by linear transformations, it implies the linearity of the utility for 

money. 
Strict additivity was not drrectly tested in the past. The majority of the experimen- 

tally-derived utility functions, however, were not incompatible with the linearity 
hypothesis. See Edwards (1955) and T versky (in press) for examples. 

In studies that found interaction between utility and subjective probability, (Irwin, 
1953; Slavic, 1966) the latter was directly estimated by the subject rather than inferred 
from his choices. Moreover, payoffs were typically independent of the subject’s 
estimates. It remains to be seen whether a systematic interaction effect can be demon- 
strated in studies where payoffs are contingent upon the subjective probabilities. 

In the absence of additional constraints on the data, additivity exhausts the empirical 
content of the SEU model. However, once the riskless utilities are introduced and 
assumptions concerning complementary events are made, the invariance of the 
utilities and the complementarity of the subjective probabilities can be tested. Two 
variants of SEU model were employed to derive the scales. Model 1 is essentially 
equivalent to Davidson, Suppes and Siegel’s (1957) “Weak finitistic rational choice 
structure” in which the subjective probabilities of two complementary events sum to 
one Since their axiomatization is limited to choices between risky options, utilities 

need not be risk-invariant. 
Model 2 is practically identical to Edwards’ (1962) “weighted SEU model,” in 

which utilities are risk-invariant, but subjective probabilities of complementary 
events need not sum to one. An implication of this reasoning is that the total amount 
of subjective probability depends on the events from which it is composed, e.g., 
the total amount of pie depends on the way it is cut. Using both models, two subjective 
probability and utility functions were obtained for each subject. These are unique up 

to an identity rather than a linear transformation. 
Subjective probability type 1 coincided with objective probability for some of the 

subjects; others overestimated the low probability and underestimated the high one. 
The latter effect was found in numerous studies, some of which are summarized in 
Lute and Suppes (1965). Subjective probability type 2 exceeded objective probability 
everywhere for all but one subject. Similar functions were obtained by Edwards (1955). 
It is interesting to note that the two most commonly found subjective probability 
functions correspond to those derived from Models 1 and 2. 

The risky and the riskless utilities differed markedly with the former exceeding 
the latter everywhere for all but one subject. The existence of discrepancies between 
the scales derived from the two models show that the data may be accounted for by 
two alternative models. I f  subjective probabilities of complementary events add to 
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unity, then the risky utility function exceeds the riskless one. This is inadmissible 
under classical utility theory. Alternatively, if utility is risk-invariant, then the sub- 
jective probabilities of complementary events do not sum to unity which is incompati- 
ble with any expectation model. 

The basic finding of overbidding for risky offers and underbidding for riskless 
ones may be explained by either: (i) a positive utility for gambling, or by (ii) a general 
overestimation of the objective probabilities. Thus, the data are explicable by either 
one of two incompatible additive models, each of which contradicts the classical SEU 
model. This conclusion does not depend on any particular numerical solution because 
if utility is risk-invariant, subjective probabilities have to exceed objective probabilities 
everywhere and hence they cannot sum to one. Conversely, if subjective probabilities 
sum to one, risky utilities have to exceed riskless utilities everywhere and hence 
utility cannot be risk-invariant. 

The SEU model encompasses three fundamental assumptions: 

(a) The independence principle: utility and subjective probability contribute 
independently to overall worth of a gamble. 

(b) The invariance assumption: utility or subjective value are risk-invariant and 
no utility for gambling is allowed. 

(c) The complementarity notion: subjective probabilities of complementary events 
add to unity. 

Additivity was employed to test Assumption (a). Assumptions (b) and (c) were 
tested indirectly by comparing Models 1 and 2. The data showed that although 
Assumption (a) was confirmed, the acceptance of(b) led to the rejection of(c) and the 
acceptance of(c) led to the rejection of(b). Hence the failure to satisfy simultaneously 
the complementarity and the invariance principles led us to reject the classical SEU 
model in spite of the fact that the independence principle was satisfied. This conclusion 
emphasizes the need for comparisons between risky and riskless offers in order to test 
the above assumptions. 

One way to interpret the utility for gambling within the classical framework is to 
redefine the consequences so that winning a certain amount in a gamble is regarded as a 
different consequence from receiving the same amount as a sure-thing. In spite of its 
apparent plausibility, this approach does not yield testable predictions because con- 
sequences cannot be identified independently of gambles. Furthermore, according 
to this,approach utility has to be-defined not on monetary outcomes but on abstract 
consequences which depend. on subjective probabilities as well. This renders the 
experimental identification of consequences practically unfeasible and the SEU model 
virtually invulnerable. Thus;..although it is possible to argue that the experimental 
identification, ,rather than the SEU model, is in error, the fruitfulness of such an 
approach is questionable. 
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The discrepancy between the bids for the risky and the riskless offers may be 
explained in terms of the availability of the offers. The riskless offers were readily 
available for the subjects at the prison store and consequently their selling prices were 
essentially linearly related to monetary value. The risky offers, however, were not 
easily available and consequently had relatively higher selling prices. The availability 
argument can be used to explain the obtained utilities or to provide an alternative 
explanation which is independent of utility theory. 

Both Models 1 and 2 predicted the data of Set IV quite well. Model 2 tended 
to surpass Model 1 in accuracy, indicating that the data could be fit better when the 
utility rather than subjective probability was constrained. This finding is reminiscent 
of the slight superiority of the SEV model over the EU model. These results agree 

with Edwards’ (1955) finding that the SEV model predicted choices between two- 
outcome bets significantly better than the EU model. Thus, in spite of the formal 
symmetry between the models, the data seem to be better accounted for by subjective 
probabilities and objective values than by objective probabilities and subjective values. 

After more than 15 years of experimental investigation of decisions under risk, the 
evidence on the descriptive validity of the SEU model is still inconclusive. In view 
of the extreme generality of the model on the one hand and the experimental limita- 
tions on the other, it seems that the basic question is not whether the model can be 
accepted or rejected as a whole. Instead, the problem is to discover which of the 
assumptions of the model hold or fail to hold under various experimental conditions. 

The present study showed that the SEU model was satisfied by each set separately 
but was violated when the risky and the riskless options were combined. Thus, 
although utilities and subjective probabilities were additive and subjective prob- 
abilities were commodity-invariant, utilities were not risk-invariant. Hence, the 
subjects’ general preference structure could not be described by classical utility 

theory, although each separate data matrix is consistent with it. The usefulness of 
utility theory for the psychology of choice, however, depends not only on the accuracy 
of its predictions but also on its potential value as a general framework for the study 
of individual choice behavior. 
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