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Abstract 

The random choice method is analyzed; appropriate boundary 

conditions are described, and applications to reacting gas flow 

in one dimension are carried out. These applications illustrate 

the advantages of the method. 
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Introduction 

The random choice method for solving hyperbolic systems was 

introduced as a numerical tool in (2]. It grew from a construct­

ive existence proof due to Glimm (5]. In this method, the solu-

tion of the equations is constructed as a superposition of 

locally exact elementary similarity solutions; the superposition 

is carried out through a sampling procedure. The computing 

effort per mesh point is relatively large, but the global 

efficiency is high when the solutions sought contain components 

of widely differing time scales. This efficiency is due to the 

fact that the appropriate interactions can be properly taken_into 

account when the elementary similarity solutions are computed. 

The aim of the present paper is to provide a further analysis of 

the method, and to illustrate its usefulness in the analysis of 

reacting gas flow. Examples are given of detonation and deflag-

ration waves, with infinite and finite reaction rates. 

We begin by describing the method briefly. Consider the 

hyperbolic system of equations 

vt = (f(~))x , ~(x,O) given (1) 

when v is the solution vector, and subscripts denote differen-

tiation. The time t is divided into intervals of length k . 

Let h be a spatial increment. The solution is to be evaluated 

at the points (ih,nk) and ((i+t)h,(n+~)k) , i = 0,~1,~2, ... 

n = 1,2, ... Let ur: 
-l. 

approximate y(ih,nk) , and n.+l/2 
~i+l/2 



approximate ~((i+~)h,(n+t)k) The algorithm is defined if 
n+l/2 n 

ui+l/ 2 can be found when ui n 
' ui+l are known. Consider the 

following Riemann problem: 

vt = (f(y))x , t > 0 , -~ < x < +~ , 

~ 

£~+l for I ~ 0 , 

y(x,O) = 
n u. for 1fl' < 0 • 

-~ ,. 

Let ~(x,t) denote the solution of this problem. Let e. be 
~ 

2 

a value of a variable e ' Let P. 
~ 

be the point 

k = w(S.h,-2) - ~ 

be the value of the solution w of the Riemann problem at 

We set 

n+l/2 
= Y.i+l/2 

-w . 

p. . 
~ 

In other words, at each time step, the solution is first approx-

imated by a piecewise constant function; it is then advanced in 

time exactly, and new values on the mesh are obtained by sampling. 

The usefulness of the method depends on the possibility of 

solving Riemann problems efficiently. 
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Simple examples and partial error estimates 

In order to explain the method further and analyze its 

limitations, we consider in this section simple examples of 

its use; the first one was already discussed in [ 7 ]. Consider 

the equation 

(2) 

1n -~ < x < +~ , t > 0 , with v(x,O) = g(x) given. One can 

readily see that if a single e is picked per half time step, 

Glimm's method reduces to 

n+l/2 
ui+l/2 = 

It follows that 

n if eh > ui+l -

n u. 
l 

if eh < 

u'f! = v(ih+n,t) , 
l 

-k/2 

-k/2 

where n = n(t) is a random variable which depends on t alone; 

i.e., the computed solution equals the exact solution with a 

shift independent of x . The magnitude of n depends on the 

choices of e . Consider the following strategies for picking e 



i) e . is picked at random from the uniform distribution 
1 1 on [- 2'2] . 

' 
ii) n is assumed known in advance; the interval 

is divided into n subintervals of equal lengths and 

picked in the middle of the .th 
~ subinterval; 

1 1 
[- 2'2] 

e. ~s 
~ 

iii) (A compromise between i) and ii)): 1 1 
~ 2,2J is divided 

into m subintervals, m << n , and el is picked at random in 

the first subinterval, e2 in the second subinterval, 9m+l in 

the first subinterval, etc. 

A fourth strategy which relies on the well-equipartitioned 

sequences studied by Richtmyer and OstroWski was suggested by Lax 

[6], but is not useful in the present context. 

where 

If strategy i) is used, we have 

x+n = displacement of the initial value 

= 
2n 
:t 

i=l 
n. ' ~ 

Tl· = 
~ 

h 
2 

h 
-2 

if h9. -k/2 < 
~ 

if h9. 
~ 

> -k/2 

The variance of n. 
~ 

is readily evaluated: 

var(n.) 
> ~ 

-
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the variance of n is thus 

nh2 k k -..-- (1--)(1+-) 
"'t . h . h ' 

and the standard deviation of n , which measures its magnitude, 

is lii
2

h { (1- ~) (1+~)} 112 = 0 (frih) o 

h h 

· If the second strategy is used, 

u~ = v(x+n,t) , lnl ~ 2~ , 

if n = If the third strategy is used, and 

n is a multiple of m , n = O(h/n/m) , since only in every mth 

half step is the outcome of the sampling in doubt. 

Assume v is of compact support. Following a suggestion by 

Lax, we define the resolution of the scheme by 

Q-l = min llu~-v(ih+q,t)ll 
q 

where II II denotes the maximum norm. The scheme has resolution 

of order m if Q = O(h-m) • The displacement d of the scheme 

is defined by 

= min llui-v(ih+q,t)ll o 

q 
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The method applied to the present problem has almost first order 

accuracy, almost first order displacement, but infinite reso­

lution. There is no smoothing and no numerical diffusion or dis­

persion. For any k/h , the domain of dependence of a poini is 

always a single point. The answers are always bounded. If the 

Courant condition k/h < 1 is violated, the equation being 

approximated is vt = (h/k)vx • Clearly, since these results 

are independent of k/h , they generalize t6 hyperbolic systems 

with constant coefficients. 

Consider now the equation 

in -~ < x < +~ , t > 0 , v(x,O) = g(x) given, and a(x,t) a 

Lipschitz continuous function of both x and t . The method is 

not well suited to the solution of such an equation, both 

because the solution of the Riemann problem requires a possibly 

laborious integration of a characteristic equation, and because 

the rrors will turn out to be large compared with those incurred 

in other available methods. The analysis is nevertheless illum-

inating. 

Let be the characteristic 

dx 
dt = -a(x,t) , x(O) = x 0 • 

For each i , we have 



0 

n+l/2 
ui+l/2 = 

As before, 

(i\ i.,! b it ·.;:J i') ''',) 8 t,J v '"' .<,;;. ' 

ul7' 
l. 

if p = k 
( 6h '2) lies to the right of 

n if p lies to the left of c<i+!)h ui+l 
2 

n u. = v(x+n,t) , x = ih , t = nk 
l. 

7 

c(l+l)h 
2 

where n is a random variable which now depends on both x and 

t . 

If e is picked at random from the uniform distribu.tion on 

11 ~ [-~,I] (Strategy i)) we have as before n = O(h~n) . Strategy 

ii) clearly yields an error 0(1) . Strategy iii) is more advan-

tageous; the standard deviation of n is again bounded by 

0 (htn/m) However, the mean of n is no longer zero. Assume 

k = O(h) . Note that a(x,t) may vary by O(mh) before this 

change affects the values of n . Thus, n = mean of n = 0 (mh) ' 
and n = O(mh) + 0 (hrnTni) . .If n = 0 (h-1 ) and m = O(nl/3) 

' 
then n = 0(h2/3) . We have less than first order accuracy and 

more than first order displacement. 

We now try to assess the relative displacement of t~o points. 

Let us assume that -:the first sampling strategy is used, i.e., e 

is picked at each step from the uniform distribution on 

Consider first the quantity 



An(h,k) = CnCx,t+k) - n(x+th,t+k)) 

- (n(x,t)-n(x+h,t)) , 

i.e., the difference between the numerically induced transla-

tions experienced by two neighboring points during one time 

step. If An(h,k) > 0 , information is lost~ one value of 

v(x,O) disappears. If An(h,k) < 0 , a false constant state 

is created. An(h,k) can take on the values O,+h . 

An(h,k) # o if falls to the left of the charac-

teristic through one of the points (ih,nk),((i+lJh,nk) and 

to the right of the other. This happens with probability 

8 

O(h) . I.e., the variance of An(h,k) is O(h3 ) • Therefore, 

the variance of An(h) = n<x,t) - n<x+h,t) is n0Ch3
) = 0Ch2 > 

if -1 n = O(h ) , and the standard deviation of An(h) is O(h) , 

i.e., neighboring values in the range of v do not fly far 

apart. · The same estimate holds for the other sampling strategies. 

Consider now the relative displacement A1 of two values 

far apart. Let n1 = n(x,t) , n2 = n<x+X,t) , and N'J= n2-n1 , 

and thus 

where g(x) = v(x,O) . Let Cx be the characteristic through 
1 
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Cx
1

,o> , and similarly for 

k + h each time P = (8h,2) 

ex . x2-xl has increased by 
2 

fell between the two characteris-

tics. Assume the first sampling strategy is used. There are 

two sources of error which make ~~ 0 . There is the stan­

dard deviation of the sum of the random variables which equal 

9 

+ h when P is. between the characteristics, and are zero 

otherwise, (this is clearly 0 (h/n)) , and there is the uncertainty 

in the slope o{ the characteristics due to the lateral displace­

ment of the solution; this is again O(h/n) and induces an 

error O(h312 n 314 > = O((h/n) 312 > ; if n = O(h-l) , this is 

O(h 314 ) . Th~~- :b.n = O(h/n) , and the resolution is not of 

higher order than the accuracy. Similar results hold for the 

other sampling strategies. 

We now turn to the nonlinear problem 

v = (f(v)) , 
-t - X 

where f ~s a function of v but not explicitly a function of 

x and t . The method of analysis we have used here is not 

applicable, since values of v are not merely propagated along 

characteristics. Furthermore,.we have here no way of taking into 

account properly the fact that rarefaction or loss of information 

incurred in the numerical process correspond to genuine proper-

ties of the differential equations. All we can provide here ~s 

a heuristic analysis. Consider the third sampling strategy. 

Since the slop~ .of the ciharacteristic depends on the values of 

v and not on;.:::./~x , and values of v at neighboring points 
; ·;~ .. )" .. ;' 

'·:;·:. 



remain attached to neighboring points, we expect the term 

O(mh) in n to disappear, and have n = O(hrr\Tni) . Thus, 

the resolution should be at least O(hl:nlffi) . Note that if. 

n = O(h-l) and m = O(n) , the random element in the method 

loses its significance. 

In the case of a shock separating two constant states, 

10 

one can readily see that d = O(hln/m) but the resolution is 

infinite. One can trivially define resolution in a neighborhood. 

Thus, what we have is a rather awkward first order method, which 

resolves shocks very sharply. We also know that it keeps fluid 

interfaces· perfectly sharp [ 2 ] . It is useful for the analysis 

of problems in cartesian coordinates in which the dynamics of 

the discontinuities are of paramount significance. We shall 

provide examples of such problems in later sections. Recent 

results (see, e.g., [8]) show that in such problems substan­

tially higher accuracy cannot be achieved. 

Boundary conditions 

The correct imposition of boundary conditions in our method 

requires careful thought, and was not adequately discussed in 

[2]. It is clear that even in the case of equation (2) the pre­

sence of a boundary can detract from both accuracy and resolution. 

The lateral displacement of the solution may make some function 

values disappear across the boundary and care must be taken to 
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ensure the possibility of their retrieval. Additional storage 

across the boundary and careful accounting of the lateral dis-

placement provide a remedy. 

The following procedure has been introduced in (2] to 

reduce the lateral displacement of the solution (and thus 

reduce the loss of information at walls), when the third samp-

ling strategy is used. The goal is to obtain as fast as possible 

solution values on both sides of whatever wave pattern emerges 

in the solution of the Riemann problem, and thus rapidly offset 

a displacement to right by a displacement to the left (or vice 

versa). We pick an integer m' < m , m and m' mutually 

prime, and n 0 integer, n 0 < m , and construct the sequence of 

integers 

( 3 ) 

The subintervals of are them sampled in the order 

rather than in the natural succession. One can 

further modify the sampling so that of two successive values of 

1 1 e , one lies in [- 2 ,oJ and one in [o,2J These procedures 

do not increase the error far from the wall, and are<quite 

effective, although no analytical assessment of their efficiency 

is available. 

Suppose we are solving the equations of gas dynamics 

(equations ( 4 ) below), and using the third sampling strategy, 

modified by (3) or not. Assume the velocity v is given at the 
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boundary. One can find a state (i.e., a set of values for the 

gas variables) which has the given velocity and which can be 

connected to the state one mesh point into the fluid by a simple 

wave (see, e.g., [4]). This is equivalent to solving half a 

Riemann problem, and provides an appropriate solution field 

which can be sampled. The same result can be obtained by 

symmetry considerations. Consider a boundary point to the 

right on the region of flow; let the boundary conditions be 

imposed at a point i 0h . A fake right state at (i 0+f)h is 

created, with 

= 2V - vi -1/2 ' 
0 

where p,v,p are respectively the gas density, velocity and 

pressure, and V is the velocity of the wall. The constant 

state in the middle of the Riemann solution is the wall state, 

and it is sampled to the left of the slip line ~~ = V 

This procedure contains a pitfall, not noticed in [2]; 

let e be chosen in accordance with our usual sampling 

strategy; let e
1

,e
2 

be the values of e at two successive 

time steps ( e
1 

and e2 are not independent). 

values used at the wall, differ from e1 and e2 since only 
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part of the interval is sampled (or else one does not 

remain to the left of the wall line dx _ V ) dt - . e I 
1 and e I 

2 

can presumably be obtained by a linear change of variables. 

Consider a specific part of the wave pattern at the wall. Since 
I .I 

e1 ,e 2 are not independent, the possibility exists that when-

ever e~ picks up the specific part we are considering, e, 
2 

lS 

such that this information is lost to the wall. This possibility 

was not noticed in [2], and its removal by the methods whose 

description follows contributes to the sharpening of the results 

obtained in [2]. 

It is always consistent to pick by a linear change 

of variables from two values picked independently from the 

1 1 uniform distribution on ~ 2 , 21 . On the average no information 

will be lost to the wall, but the variance of the solution will 

be increased. Better strategies can be devised, but require 

thought 1n each special case. If the walls are at rest, V = 0 , 

one can proceed as follows: impose the boundary condition on 

the right at time nk and a point i
1

h , and on the left at 

time (n+~)k at a point (i 2+~)h i
1
,i 2 integers. One can 

see that if e
1

,e 2 are so chosen that e
1 

< 0 at time nk , 

and e2 ~ 0 at time (n+~)k , then e
1 

and e2 can be used at 

the boundary as well as 1n interior without loss of resolution. 

Detonations and deflagrations in a one dimensional ideal gas 

Our goal 1n this section is to present a quick summary of 
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the elementary theory of one dimensional detonation and deflag­

ration waves, (for more detail, see, e.g., [4] and [10]), and 

then derive some relations between the hydrodynamical variables 

on the two sides of such waves for later use. 

The equations of gas dynamics are 

(4a) 

(4b) 

et + ((e+p)v)x = 0 (4c) 

where the subscripts denote differentiation, p is the density 

of the gas, v is the velocity, pv is the momentum, e is 

the energy per unit volume and p is the pressure. We have 

e = 1 2 
PE + 2 pv (4d) 

where E = E· + q , E· is the internal energy per unit mass, 
1 1 

E· : 1 E. 
1 y-1 p 

(4e) 

where y is a constant, y > 1 , and q is the energy of form-

ation which can be released through chemical reaction (see [4]). 

In the present section it will be assumed that part of q is 

released instantaneously in an infinitely thin reaction zone. 

Let the subscript 0 refer to unburned gas (i.e., gas which has 
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not yet undergone the chemical reaction) and let the subscript 

1 refer to burned gas. The unburned gas is on the right. We have 

1 pl 
£1 = ---+ ql yl-l pl 

£0 = 
1 Po 

---+ 'lQ r0 -l Po 

For the sake of simplicity, we shall make here the unrealistic 

assumption y 1 = Ya = y . (The case y 1 '# y0 is more difficu:;.t 

only because of additional algebra.) When 

reaction can be exothermic (i.e., release energy) only if 

ql > qo · 

Let U be the velocity of the reaction zone. Let 

= v - u 1 

Conservation of mass and momentum is expressed by 

(see [4]). From these relations one readily deduces 

the 

(5) 

( 6) 



Define the function H by 

Conservation of energy is expressed by 

Define ~ = q 0-q1 , ( ~ < 0 for an exothermic process), and 

2 Y-1 . , 
~ = Y+l ; we f1nd 

In the C-r 1 ,p1 ) plane the locus of points which can be con­

nected to (T
0

,p0 ) by an infinitely thin combustion wave is 

16 

( 7) 

a curve which reduces to a hyperbola when ~ is independent of 

p and T . (See Figure 1.) The lines through C-r 0 ,p0 ) tangent 

to H = 0 are called the Rayleigh lines. Their points of 

tangency, s
1 

and s
2 

, are called the Chapman-Jouguet (CJ) 

points. A portion of the curve is omitted becau~e it corresponds 

to unphysical events in which M2 
< 0 . The upper portion of the 

curve corresponds to detonations; the portion above s
1 

to strong 
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detonations and the portion below to weak detonations. The 

lower part of the curve corresponds to deflagrations. 

The velocity and strength of a strong detonation are 

entirely determined by the state of the unburned gas i~ front of 

the detonation and one quantity behind the detonation, just as 

in the case with shocks. Let and be 

given, as well as p 1 , and assume the unburned gas lies to the 

right of the detonation. We have from (7) 

(8) 

and thus 

some algebra yields 

( 9) 

If ~ = 0 . this formula reduces to the express1on for M 1n a 

shock, as g1ven in [2] or [9]. M is real if [~]-(y-l)p 0 ~ > 0 

this cah be readily seen to .hold in a strong detonation: 

The states on the curve H = 0 located between the CJ 

point s
1 

and the line T = TO correspond to weak detonations. 

As described in [4], the state behind a weak detonation is 
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entirely determined by the velocity U of the detonation and 

the state in front of it. In fact, a weak detonation cannot 

occur and what does happen is a CJ detonation followed by a 

rarefaction wave. Our next objective is to derive an explicit 

criterion for determining whether a detonation will be a strong 

. detonation or a CJ detonation. 

It is shown in [4 ] that at = c 1 
where 

c 1 = /yp1 / p1 is the sound speed, L e. , a CJ detonation moves 

with respect to the burned gas with a velocity equal to the 

velocity of sound in the burned gas. We now use this fact to 

determine the density PcJ , velocity vCJ and pressure PcJ 

behind a CJ detonation. 

From equations (4) and (5) one finds 

and thus in a CJ detonation 

' 

or 

Equating t
1 

obtained from (8) to t 1 in (10), we find 

(10) 
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So~e algebra reduces this equation to 

where 

(lla) 

c = (llb) 

a trivial calculation shows that b 2-c > 0 if y > 1 and 

/1 < 0 . Thus 

(llc) 

where the + sign l..S mandatory since a detonation is compressive. 

Given -1 be obtained from equation PcJ = pl ' PcJ = pl = Tl can 

{10). Since M = -plwl ' and wl - -cl ' we find 

The velocity UCJ of the detonation l.S found from 
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(12) 

vCJ depends only on the state of the unburned gas. 

vl ~ 

tion 

and 

Suppose-- vl 

VCJ a- CJ 

wave. If 

if vl > VCJ 

, the velocity of the burned gas, is given. If 

detonation will appear, followed by a ra~efac­

v1 = vCJ a CJ detonation will appear alone, 

a strong detonation will take place. 

If the unburned gas lies to the left of the burned gas 

analogous relations are found; the only difference lies in the 

signs of v , in particular, 

The velocity of a possible deflagration cannot be determined 

within the context of a theory which assumes the gas to be non­

conducting; this point will be further discussed below. It will 

turn out that for a nonconducting gas the only possible deflagra­

tion is a constant pressure deflagration, p1 = p 0 , which moves 

with zero velocity with respect to the gas; i.e., it is indis­

tinguishable from a slip line. 
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ApPlication of the method to reacting gas now. 

One interesting feature of our method is its applicability to the . 

analysis of gas now in which exothermic chemical reactions are taking 

place and producing substantial dynamical effects. A Riemann problem is 

solved at each time step and at each point in time; this solution is then 

sampled. The advantage of this procedure is that the interaction of the 

now and the chemical reaction can be taken into account when the Riemann 

problem is solved, even when the time scales of the chemistry and the fluid 

flow are very different. As a result, the'basic conservation laws are 

satisfied at the end of each time step. It can be readily seen that if the 

chemical reactions and the gas flow were to be taken into account in separate 

fractional steps, the basic conservation laws may be violated at the end of 

each hydrodynamical step, thus either inducing unwanted oscillations and 

waves, or requiring time steps small enough for all changes to be very 

gradual--usually a costly remedy. It is interesting to note that the Riemann 

solutions with energy deposition in the flow field are equivalent to the 

exothermic centers introduced by Oppenheim [3] and serve the same purpose 

of accounting for the dynamical effects of the exothermic reactions. These 

discrete exothermic centers correspond to a physical reality whose origin 

can be ascribed to the fluctuations in the levels of chemical species [1]. 

We consider here the simplest possible description of a reacting gas 

(see e.g. [9]): 

p + (pv) = 0 
t X 

2 
(pv)t + (pv + p)x = 0 

(13a) 

(13b) 
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et + ((e + p)v)x- xrxx = 0 (13c) 

where, as before, p is the density, v is the velocity, e the energy 

per unit volme, 

1 2 e = pe: + 2Pv , 

E is the internal energy. In this section, 

e: = .l:_ ~ + Zq 
'Y-1 p 

(13d) 

(13e) 

where y is a constant, y > 1, q is the total available bonding energy 

(q < 0), and Z is a progress parameter for the reaction. T = p/p is the 

temperature, and A is the coefficient of heat conduction. Z is assmed to 

satisfy the rate equation 

dZ 
dt = -KZ (13f) 

where 

K = 0 if T = p/p ~ T0 

(13g) 

T0 is the ignition temperature and K0 is the reaction rate. The equations 

of the preceding section are recovered if we set A = O, q = 6 , and K = 00 • 



Equation (l3f) is a reasonable prototype of the vastly more complex 

equations which describe real chemical kinetics. Viscous effects have been 
( 

omitted here; their inclusion in the present context has little effect and 

presents little difficulty. {Thus, we assume here a zero Prandtl number.) 

The approximation of the dissipation term will be relegated to a 

separate fractional step, where it is to be handled by straightforward finite 

differences~ In view of (13e), and the perfect gas law T a:: p/p (in appropriate 

units), this fractional step requires merely the approximation of 

(14) 

The differencing of a heat conduction term alone introduces negligible 

nUm.erical dissipation. Several more sophisticated approximation methods 

were tried, but did not seem to be worth pursuing. 

All that remains to be done is to describe the solution of the Riemann 

problem for equations (13) with A = 0. This will be done with the following 

simplifying assumption: whatever energy may be released during the time k/2 

in a portion of the fluid is released instantaneously. This approximation 

is well in the spirit of our method (since it approximates Z by a piecewise 

constant function); it also has some physical justification [1]. 
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Solution of a Riemann problem with chemistry. 

Our goal is to solve equations (13) and the following data: 

and 

z = z ) 
r 

for x c;; 0 

for X > 0 

with .A = 0. We begin by a partial review of the case K0 = 0 (no 

chemistry; see [2], [6], [9]). The solution consists of a right state 

25 

s ' r 

a left state Si' a middle state s.(p = p*' v = v.), separated by waves 
f 

which are either rarefactions or shocks. S* is divided by the slip line 

into two parts with possibly differing values of 

right of the slip line and to its left. 

proceed as follows: define the quantity 

M = r 

If the right wave is a shock, 

M = -P (v -u ) = -p* (v.-U ) r r r r r r 

To determine 

p, to the 

and p* we 

(15) 

(16) 

where U is the velocity of the right shock. From the Rankine-Hugoniot 
r 

conditions one obtains 

(lTa) 



where 

(l'Tb) 

If the right we.ve is a rarefaction, we find 

(18e.) 

where 

· ( ) X-1 1-a 
cll2 a • 2y/y-l 

2/Y 1-a 
(18b) 

(l&:l) ,_is derived through the use of the isentropic le.w pp-Y • constant e.nd 

the consta.ncy of the right Riemann invaria.nt r = 2./yp/p/(y-1) - v. The 
r 

:f'unction 

ell = l cjll (a)' 

cjl2(a), 

a:>l 
(19) 

is continuous at a = 1, with cjl(l) = cll
1 

(1) = cll2 (1) = /f. ·Similarly, we 

define 

(20) 

if the lett wave is e. shock, 

( 21) 
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where Ui is the velocity of the left shock. As on the right, 

Mi = /pipi ~(p*/pi) , where ~(a) is defined as in equations (17) and 

(18). From (15) and (20), 

These considerations lead to the following iteration procedure: Pick a 

starting value p~ (or values M~, M~), and then compute p~+l , M~+l , 

V+l 
Mi , , q ;;, 0 using 

(23a) 

V+l -\! 
p* = max(£ ,p ) ( 23b) 

(23c) 

(23d) 

Equation (23b) is needed because there is no guarantee that in the course 

of iteration p remains > 0. We usually set 

is stopped when 

-6 
£ = 10 .. The iteration 

1 



(we usually picked -6) e:2 = 10 ; one then sets M • MV+l 
r r • 

and 

To start this procedure one needs initial values of either M and 
r 

MR, (or p*). The starting procedure suggested by Godunov appears to be 

ineffective, and better results were obtained by setting 

We also ensured that the iteration was carried out at least twice, to 

avoid spurious convergence when pr = Pt• 

As noted by Gudunov, the iteration may fail to converge in the 

presence of a strong rarefaction. This problem can be overcome by the 

following variant of Godunov's procedure: If the iteration has not converged 

after L iterations (we usually set L = 20) • equation (12b) is replaced by 

V+l .. V V 
p =a max(e:1 ,p ) + (1-a)p 
* * 

(23b) I 

with 1 
= 2. If a f'urther L iteration occur without convergence, 

we reset a 2 = a1 /2. More generally, the program was written in such a 

way that if the iteration fails to converge af'ter. R,L iterations (R, integer), 

a is reset to 

In practice. the eases R, > 2 were never encountered. The number of 

iterations required oscillated between 2 and 10, except at a very few points. 
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Once p•, Mr, MR. are known, we have 

( 24) 

from the definitions of Mr and MR.. 

Consider now the case K
0 

; 0, (A = 0) ; the right and let't waves 

may now be CJ or strong detonations as well as shocks and rarefactions. 

The task at hand is to incorporate these possibilities into the solution 

of the Riemann problem. 

The state s will remain a constant state; v and Pr are fixed. r r 

The energy in s must change at constant volume (and thus can do no work). r 

The change oz in z can be found by integrating equations (13f), (13g), r r 

with Z(O) = z and Z(k/2) = Z + oz , oz .;;; 0. The new pressure is r r r r 

(see equation (7). We write new 
Pr = P + op , r r 

and drop the superscript 

new. (We shall need the old Z again and thus refrain from renaming 
r 

(25) 

Zr + ozr.) Similarly, ZR. changes to ZR. + oZR.' and a new pR. is found 

using the obvious analogue of equation (25). 

Let 

In s • the values of z differ from the values 

Z*R. be the value of Z to the let't of the slip line and let z. r 
be the value of Z to the right of the slip line. The difference in energy 

of formation across the right wave is 6 = (z. - (z + oz ))q, r r r r and across 

the left wave it is 6R. = (Z*R.- (Zt + oZt))q. We shall iterate on the values 
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In the first iteration, we set z. , = Z + cSZ • r r r 

Z*i • Zi + cSz1 , and thus l::.r = t::.1 • 0, and carry out the iterations 

(23). When (23} has converged, a new pressure p* is given, and new 

densities p*r' p*i can be found from equation (16}, (21} or the isentronic 

law. New temperatures T•r = p•/p•r• T*i = p•/p*i are evaluated\ equations 

(13f}, (13g} are solved, and new values Z*r' z.1 , l::.r' 1::.1 are found. If 

!::. ~ 0 the right wave is either a shock or a rarefaction, and if !::. > 0 
r r 

the right wave is either a CJ · detonation followed by a rarefaction or a 

strong detonation. 

Let v• be the velocity in s.. Given l::.r• 1::.1 , we can find the 

velocities v CJr, v CJi behind possible CJ detonations on the right and 

left (equation (12)). If v• < vCJr the right wave is a CJ detonation 

followed by rarefaction, and if v• > vCJr the right wave is a strong 

detonation. The CJ state is unaffected by s. (since it depends only 

on S } and as far as the Riemann solution is concerned it is a fixed 
r 

state. If the right wave is a CJ 

M • 
r 

detonation, we redefine 

(pCJ from equation (llc}) •. Then 

If the right wave is a strong detonation, we find from (9) 

M = IPO""P A-. (p !::. P P ) r r r ~3 r r' r' * ' 

M ' r 

(26) 
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where 

Y-1 + l.!l_ a3 
2 2 a2 = (y-1) a1 1----:::.. 

Similar expressions occur on the left. The iteration starts with Mr, Mi 

from the previous iteration, and written out in full, appears as follows: 

where 

-V c -p = v- v 
t r 

'I) 
(pi -v. = - p r 

(p ,p ,v ) = 
r r r 

+ - /M'IJ 
Pr r + pi/M~)/(1/M~ + 1/M~) , \) ;> o, 

'IJ+l = max( c ,pv) , p 
• 

+ M'l)v :v- :v :v 
+ Mi vt)/(Mr + Mt), r r 

j 
(p P v ) if right wave • CJ 

CJr' CJr' CJr 

(p , p ,vn) otherwise , 
r r A> 

detonation, 

= l (pCJi' PCJt'VCJi) 

(pi' Pt' vi) otherwise, 

if left wave = C.J detonation, 



Mv+l = 
i 

if right wave • strong detonation, 

if left wave • strong detonation, 

The complexity of this iteration is more apparent ·than real. It is stopped 

when it has converged, as before. New values of Z*r' z.1 ,6r' 61 are 

evaluated, and the iteration is repeated; this process is stopped when 

6r' 61 change by less than some predetermined £
3 

over two successive iterations. 

It can be readily seen that with the present expression for the energy of 

formation, at most four iterations on 6r' 61 are ever needed. 

Once s. has been determined, the solution must be sampled. Let 

P = (8h, k/2) be the sample point, and p = p(P), p = p(P), etc. Four basic 

cases are to be considered: 

A) P lies to the right of the slip line and the right wave is either 

a shock or a strong detonation; 

B) P lies to the right of the slip line and the right wave is either 

a rarefaction or a CJ detonation followed by a rarefaction; 

C) P lies to the left of the slip line and the left wave is either a 

shock or a strong detonation, and 

D) P lies to the left of the slip line and the left wave is either a 

rarefaction or a CJ detonation followed by a rarefaction. 



0 6 u 0 
. . 

Case A. The velocity u 
r of the shock or the strong detonation can be 

found from the relationship 

M = -p (v -u ) • r r r r ' 

if p lies to the right of dx u we have the sam:oled values ... -= p = pr, dt r - d.x p = Pr' v = v , z = z + oz . If p lies to the left of -= u r' we r r r dt 
... z = have p = P*r' p = p., v = v., z. . r 

Case B. Consider first the case of a rarefaction wave. The rarefaction s 

bounded on the right by the line dx 
dt = v + c , c = fYp /p ' r r r r r and on the 

le:rt by dx 
- = v. + c. , dt r 

where can be found by using the constancy of 

the Riemann invariant 

r = 2c*(Y-l)-l - v* 
r 

= 2c (Y-1)-l -
r 

v . 
r 

If P lies to the right of the rarefaction, 

- -z = z + oz 
r r If P lies to the le:rt of the rarefaction, p = p*r' p = p*, 

Z=Z +dZ. 
r r 

If P lies inside the rarefaction, we equate the 

slope of the characteristic 

the origin and P, obtaining 

dx=V+c 
dt 

-v + c = 28h/k; 

the constancy of r , 
r 

the isentropiclaw 

to the slope of the line through 

pp-Y = constant and the definition 



c = {yp/p yield - - -p, v, and p. -Z = Z + 6Z • r r It the wave is a CJ 

detonation, (pr,pr,vr) are replaced everywhere by (pCJr'PCJ ,vCJ ) , 

-and Z inside the :tan and to the lett of it equals Z•r· 

The cases C and D are mirror images o:t A and B, and will not be 

described in :tull. 
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Numerical results. 

We begin by presenting some results for detonation waves with very 

large K0 (K0 = 1000). These results verify the accuracy of the program­

ming rather than the general validity of the method, since the solutions 

of the corresponding problems are an intrinsic part of the Riemann problem 

solution routine. 

To obtain table I, I started with a gas at rest, p = 1, v = 1, p = 1, 

and at t = 0 imposed impulsively. on the left the boundary condition v = V = 1. 

I used h = 1/7, k/h = 2, K0 = 1000~ T0 = 1.1, q = 1 and y = 1.4. The 

result is a perfect strong detonation. 

In table II a Chapman Jouguet detonation is exhibited. h = 1/9, 

k/h = 2, K
0 

= 1000, T
0 

= 1.1, q = 12 and y = 1.4. m = 11. The solution is 

exhibited at t = 2, n = t/k = 9, i.e. n is not a multiple of m and the 

solution is not at its most accurate. This can be seen from the presence of a 

fake constant state (for x = 6/9 and 7/9), which was discussed in the section 

about errors, and which is most likely to appear when n is not a multiple 

of m. The last column presents the right Riemann invariant r which is of 
r 

course constant behind the CJ front. The chemical time scale is not 

resolved on the grid, and one should notice the small number of mesh points 

required to display sharp variations in all quantities. 
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Table I 

Strong Detonation 

h ~ 1/7, k/h • .2, t = nk = .314, n = 11, K0 • 1000, T0 • 1.1, v • 1, 

q=1, y=l.4. 

X v p p T z 

0 l. 1.814 3.228 1.779 .000 

1/7 1. 1.816 3.228 1.779 .coo 

2/7 l. 1.816 3.228 1.779 .000 

3/7 1. 1.816 3.228 1.779 .000 

4!7 0. 1.000 1.000 1.000 1.000 

517 o. 1.000 1.000 1.000 1.000 

617 0~ 1.000 1.000 1.000 1.000 

1 o. 1.000 1.000 1.000 1.000 
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Table II 

Chapman Jouguet Detonation 

h = 1/9, k/h = .2, t = nk = .2, n = 9, K0 = 1000, T0 = 1.1, V = 1, q = 12, 

y = 1.4 

X v p p T z 

0 1.000 1.179 6.965 5.907 o.ooo 13.379 

1/9 1.000 1.179 6.965 5.907 0. 13.379 

2/9 1.000 1.179 6.965 5.907 0. 13.379 

. 3/9 1.000 1.179 6.965 5.907 o. 13.379 

4/9 1.186 1.257 7.621 6.061 o. 13.379 

5/9 1.251 1.287 7.862 6.115 o. 13.379 

6/9 1.524 1.410 8.952 6.346 o. 13.379 

7/9 1.524 1.410 8.952 6.346 o. 13.379 

8/9 1.623 1.457 9.373 6.430 o. 13.379 

1 0. 1.000 1.000 1.000 1.000 '5 ~916 
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We now present some results for a problem whose solution is not program-

med into the solution algorithm-a defiagration wave with finite reaction 

rate. For t < 0 a gas at rest lies in x > o, with p = 1, p = 1, (v = 0), 

and Z = 1; the le:f't boundary is maintained at zero velocity, V = 0. At 

t = 0 the gas in the first cell to the le:f't is raised to a temperature T = 2. 

(i.e. the pressure is increased to p = 2). The resulting defiagration wave 

is observed. It is known that the velocity of the wave is asymptotically 

proportional to ~ (see e.g. [10] p. 99); thus, the wave does not propa­

gate unless ). ; 0, as one can readily verify on the computer. This last 

justifies an earlier assertion to the effect that when ). = 0 the wave is 

indistingmshable from a slip line. The results in Table III were. obtained 

with h = 1/11, k/h = .35, T~ = 1.6, K0 = 1, q = 10, y = 1.4 and ~ = 11. 

They are presented at t = nk = .273, (n = q). One can clearly see the 

precursor shock, and the deflagration zone (characterized by Z < l) in which 

the density and pressure decrease. The small number of mesh points should 

again be noticed. 
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Table III 

A deflagration with finite conduction and reaction rate. 

h = 1/11, k/h = .35, t = nk = .273, n = 9, K0 = 1, T0 = 1.6, v = o, q = 10, 

y = 1.4. 

X v p p T z 

0 0. .567 1.667 2.937 .334 

1/11 0.139 .650 1.781 2.739 .614 

2/11 0.261 .547 1.315 2.402 .614 

3/11 .385 1.074 1.726 1.607 1.000 

4/11 .575 1.550 1.998 1.288 1. 

5/11 .544 1. 519 1.800 1.185 1. 

6/11 .023 1.016 1.058 1.041 1. 

7/11 .002 1.001 1.003 1.002 1. 

8/ll .000 . 1.000 1.000 1.000 ·L 

9/11 o. 1. 1. 1. 1. 

10/11 0. 1. 1. 1. 1. 

1 o. 1. 1. 1. 1. 
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Conclusions. 

We have presented a numerical method capable of describing a complex 

gas flow with chemical reactions. The relative complexity of the method 

is balanced by economy in the representation of the solution. Generalization 

of the method to problems in more space dimensions is a straightforward 

application of the fractional step method presented in [2]' and the inclusion 

of a more realistic chemical process presents no difficulties other than the 

standard difficulties of finding a plausible kinetic scheme and acceptable 

numerical values for the corresponding coefficients. The interesting and 

major difficulties in multidimensional problems arise when one attempts to take 

into account boundary layers and turbulence effects. In a forthcoming paper 

we shall show that boundary layer effects at least ·can be incorporated into 

our method in a natural and efficient way; once this has been explained, 

multidimensional results will be presented. 
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