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Running head: random choice methods

Abstract

The random choice method is analyzed; appropriate boundary
conditions are described, and applications to reacting gas flow
in one dimension are carried out. These applications illustrate:

the advantages of the method.



Introduction

The random choice method for solving hyperbolic systems was

~introduced as a numerical tool in [2]. It grew from a construct-

ive existence proof due to Glimm [5]. In this method, the solu-

tion of the equations is constructed as a superposition of

" locally exact elementary similarity solutions; the superposition

is carried out through a sampling procedure. The computing
effort per mesh point is relatively large, but the global
efficiency is high when the solutions sought contain components
of widely differing time scales. This effiéiency is due to the
fact that the appropriate interactions can be properly taken into
account when the elementary similarity solutions are computed.
The aim of  the presenf paper is to provide a further analysis of
the hethod, and to iliustrate its usefulness in the analysis of
reacting gas flow. Examples are given of detonation and deflag-
ration anes, with infinite and finite reaction rates.

We begin by describing the method-briefly. Consider the

hyperbolic system of equations

ve = (£, vix,0) given , _ (1)
when v ~is the solution vector, and subscripts denote differen-
tiation. The time t 1is divided into intervals of length k .
Let h be a spatial increment. The solution is to be evaluated
at the points (ih,nk) and ((i+%)h,(n+%)k) s 1= 0,41,42,...

, : ‘ N
n=1,2,... . Let 32 approximate = v(ih,nk) , and 52+i§§



approximate X((i+%)h,(n+%)k) . The algorithm is defined if

+
22+i;§ can be found when 92 s 32+1 are known. Consider the
following Riemann problem:
Ve = (F(W)), , £ >0, == < x < 4=
n x
Uiy, for A >0,
vix,0) =
n - o

Let w(x,t) denote the solution of this problem. Let 0. be

i
a value of a variable 8 , -4% <86 < % . Let P, be the point
Ky '
(eih’f) , and let
&= w(P,) = w(eh,5
- =17 " =t7it2

be the value of the solution w of the Riemann problem at P.

We set

n+l/2 _—
Bi+1/2 :

1=

In other words, at each time step, the solution is first approx-
imated by a piecewise constant function; it is then advanced in
time exactly, and new values on the mesh are obtained by sampling.
The usefulness of the method depends on the possibility of

solving Riemann problems efficiently.
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- Simple examples and partial error estimates

In order to explain the method further and analyze its

‘limitations, we consider in this section simple examples of

its use; the first one was already discussed in [ 7]. Consider

the equation
v, =V ' (2)

in  -w_< X < to , t > 0 , with v(x,0) = g(x) given. One can
readily see that if a single 6 is picked per half time step,

Glimm's method reduces to

ul',. if 6h > -k/2

un+l/2 -
i+1/2
o if 6h < =k/2 .

~

It follows that

']

u2,= v(ih+n,t)

where n = n(t) is a random variable which depends on t alone;
i.e., the computed solution equals the exact solution with a
shift independent of X . The magnitude of n depends on the

choices of 6 . Consider the following strategies for picking 6 :



i) 6 is picked at random from the uniform distribution
11 |
ii) n is assumed known in advance; the interval D-%,%]

is divided into n subintervals of equal lengths and _ei is
picked in the middle of the ith gsubinterval;

iii) (A compromise between i) and ii)): D-%,%] is divided
into m subintervals, m << n , and el’ is picked at random in
the first subinterval, eé_ in the second subinterval, Om+1 in
the first subinterval, etc.

A fourth étrategy which relies on the well-eqﬁipartitioned
sequencés studied by Richtmyer and Ostrowski was suggested by Lax
[6], but is not useful in the present context.

If strategy i) is used, we have

X+n = displacement of the initial value

© 2n
= Z n. ,
j=1 %

where

if hei < =k/2

N

N

The variance of n; is readily evaluated:

2
var(n,) 1;— (1-§)<1+§> :
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the variance of n 1is thus

1.2
nh . k
T (1- H)(:HH) N

and the standard deviation of n , which measures its magnitude,

.. Ynh oo kyei.ky 172
is == {(-P) A+ ° = 0 (/nh)

If the second strategy is used,
n 1l
ui = V(X"'ﬂ ,t) ’ Inl _<_ ?r-{ [

if n = O(h-l)', n = 0(h) . If the third strategy is uséd, and
n is a multiple of m , n = 0(hv/n/m) , since only in every mth
half step_is the outcome of the sampling in doubt.

Assume v 1is of compact support.  Following a suggestion by

Lax, we define the resolution of the scheme by

Q"1 = min ful-v(ih+q,t)ll
: i
q _ o
where | || denotes the maximum norm. The scheme has resolution

of order m if Q = 0(h™) . The displacement d of the scheme
is defined by

-1

Q ‘"ug-v(ih+d,t)ﬂ

mén lul-v(ih+q, t)l



The method applied to the present problem has almost first order
accurécy, almést first order displacement, but infinite reso-
lution. There is no sﬁoothing and no numerical diffusion or dis-
persion. For any k/h , the domain of dependence of a point is
always a single point. The answers are always bounded. If the
Courant céndition k/h i 1 'is violated, the equation being
approximéted is vy = (h/k)vx . Clearly, since these results
are independent of k/h ; they generalize to hyperbolic systems

with constant coefficients.

Consider now the equation

Vf = a(x,t)vx s
in -® < x < 42 , t >0, v(x,0) = g(x) given, and a(x,t) a
Lipschitz continuous function of both x and t . The method is

. _ ®
not well suited to the solution of such an equation, both

because the solution of the Riemann ﬁroblem requires a possibly
laborious integration of a characteristic equation, and because
the rrors will turn out to be large compared with those incurred
in other available methods. The'analysis_isinevertheless illum-
inating.

Let Cx be the characteristic

0

== = -a(x,t) , x(0) -'-" Xg -

For each i , we have



v7
n . e _ k . | . '
| uy if P = (eh,y) lies to the right of C(lf%)h
un+1/_2._ o '
i+1/2 ~ o
n . . _
U4y if P }1¢s to the left of C(i+%)h

'As before,
u2~=-v(x+n,t) , x = ih , t = nk ;

wherev‘n is a random vafiable which now depends on both x and
"f _

If 6 is picked at random froﬁ the uniform distribution on
[-%,%]  (Strategy i)) we have as before n = O(B/ﬁ) . Strategy
ii) clearlyvyields an error 0(1) . Strategy iii) is more advan-
tégeous; fhe standard deviation of n is again bounded by |
0(h/37ﬁ) . However, the mean of n 1is no longer zero. Assume
k = 0(h) . Note that a(x,t) may vary by 0(mh) before this
change éffeéts the values of n . Thus, n = mean of n = d(mh) ,

and n = 0(mh) + 0(h/n/m) . If n=00Y and m = 0(n1/3) R

then n = 0(h2/3)v-

We have less than first ordervaccuracy and
more than first order displacement.

We now try to assess the relative displacement of two points.
Let us assume that the fifst sampling strategy is used, i.e., -é

1
57]

o =

is picked at each step from the uniform distribution on [-

Consider first the quantity



- An(h,k) = (n(x,t+k) - n(x+th,t+k))
- (n(x,t)-n(x+h,t)) ,

i.e., the difference between the numeriéally induced transla-

tions experienced by two neighboring points during one time

step. If An(h,k) > 0 , information is lost: oﬁe value of

v(x,0) disappears. If An(h,k) < 0 , a false constant state

is created. 4n(h,k) can take on the values 0,+h .

An(h,k) # 0 if P = (eh,E) falls to the ieff of the charac-

_teristic through one of the points (ih,nk),((i+l)h,nk) and

to the right of the other. This happens with probability |

0th) . I.e., thé variance of An(h,k) is O(hs) . Therefore,

the variance of An(h) = n(x,t) - n(x+h,t) is n0(n®) = 0(n?)

if n = o(h™d) , and the standard deviafion of Ant(h) is 0(h) ,

i.e., neighboring values in the range of v do not fly far

apart. The same estimate holds for the other sampling Strategies.
Consider noﬁ the relafive displacement AQ of two values

far apart. Let n = n(x,t) , n, = n{x+X,t) , and M= ny=ny >

and thus
ug = v(x+nl,t) = g(xl) , ih f x ,nk =t ,
n - - : -
where g(x) = v(x,0) . Let C, Dbe the characteristic through

1
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(xl,O) , and similarly for Cy J'-xz-xl' has increased by

‘ 2
+ h each time P = (Gh,E) fell between the two characteris-

tics. ASsume the first sampling strategy is used. There are

two soufces of error_which-make Aq# 0. Thefe is the stan-

dard deviation of the sum of the random variables which equal

+ h when P is_befween the characteristics, and are zero
otherwise, &higuis>clear1y 0(h/n)) , and there is the uncertainty
in the slope:ggithe characteristics due to the lateral.displace;
ment of the S§lution; this is again 0(hvn) and induces an
error 0(h3/253[g) = 0((h/n)3/2)v; if n = O(h;l) , this is

h3/l+

0( 0(hv/n) , and the resolution is not of

) . Thus An
higher order than the accuracy. . Similar results hold for the
other sampling strategies.

We now turn to the nonlinear problem

ve = ),
where f is a function of . v but not explicitly a function of
X and t . The method of analysis we have used here is not

applicable, since values of v are not merely propagated along

' characteristics. Furthermore, we have here no way of taking into

accéunt propefly the fact that rarefaction or loss of information
incurred in'tﬁ§ numerical pfocess corfespond to genuine proper-
ties of the differential equations. All Qe.can brovide here‘is
a heuristicAaﬁg;ysis._ Consider the thira sampling strategy.

Since the slbégfof the characteristic depends on the values of

v and not én-gx ; and values of v at neighboring points
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remain attached to neighboring points, we expect the term

0(mh) in n to disappear, and have n = 0(hvn/m) . Thus,

the resolution should be at least 0Chvn/m) . Note that if.
n = O(h-l) and m = 0(n) , the random element in the method

loses its significance.

In the case of a shock Separating two constant states,
one can readily see that d = 0(h/n/m) but the resolution is
infinite. One can trivially defiﬁe resolution in a neighborhood.
Thus, what we have is a rather awkward first order method, which
resolves shocks very sharply. We also know that it keeps fluid
interfaces perfectly sharp [ 2]. It is useful for the analysis
of problems in cartesian coordinates in which the dynamics of
the discontinuities are of paramdunt significance. We shall
provide'examples of such problems in later sections. Recent
results (éee, e.g., [8]) show that in such problems substan-

tially higher accuracy cannot be achieved. .

Boundary conditions

The correct imposition of boundary conditions in our method
requires careful thought, and was not adequately discussed in
[2). It is clear that even in the case of equation (2) the pre-
sence of‘a boundary can detract from both accuracy and resolution.
The lateral displacement of the solution may make some function

values disappear across the boundary and care must be taken to



ensure the possibility of their retrieval. Additional storage
'across'thé'bouhdary and careful accounting of the lateral dis-
placement provide a remedy.

Thelfollowing procedure has been‘introduced in [2] to
reduce the lateral displacement of the solution (and thus
reduce the loss of information'atvwalls),lwhen the third samp-
lihg strategy is uséd;_ The goal is to obtain as fast as possible
solutibn values on both sides of whatever wave pattern emerges
-in the solgtion of the Riehann problem, and thus rapidly offset
a displacement to right by a displacement to the left (or vice
versa). We pick an iﬁteger m' <m ,- m and m' mufually
prime, and ng integer, Ng <m , and construct the sequence of
integers |

ng . i‘(nifm')(mod_m) : W

The subintervals of .[-%,%J are them sampled in‘the order
NgsNqysNyse . rather thah in the natural succession. vOne can
further modify the sampling so that of two successive'vélues of
9 , one lies in _[-%,0] .andzone in [0,% . These §rocedures
‘do not increase the error far from the wall, and are’quite
éffective, althéugh no analytical assessment of their efficiency
is available.
Suppose we‘are solving the equations of gas dynamics

(equations‘( 4 ) below), and using the third sampling strategy,

modified by (3) or not. Assume the velocity v 1is given at the
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boundary. One can find a state (i.e., a set of values for the
gas variables) which has the given velocity and which can be
connected to the state one mesh point into the fluid by a simpie
wave (see, e.g., [4]). This is equivalent to solving half a
Riemann problem, ahd provides an appropriate solution field
which can be sampled. The same result can be obtained by
symmetry‘considérations. Consider a boundary point to the
right on fhe‘region of flow; let the boundary conditions be
imposed at a péint igh . A fake right state at (i0+%)h is
created, with

Pig¢1/2 = Pig-1/2 »

= 2V - v

V. . .
1O+l/2 _10—1/2

Pio+l/2 = Pi0—1/2 ’

where p,v,p are respectively the gas density, velocity and
pressure, and V . is the veiocity of the wall. The constant
state in the middle of the Riemann solution is the wall state,
and it is sampled to the left of the slip line %% =V
This procédure contains a pitfail, not noticed in [2];

let 6 be chosen in accordance with our usual sampling
strategy; let 91,62 be the values of 8 at two successive

1

time steps ( 6, and 6, are not independent). 8'1,62 » the

values used at the wall, differ from 61 and 6, since only
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part of the interval [f%,%l is sampled (or else one does not

remain to the left of the wall line %% =V ). ei and 6;

can presumably be obtained by a linear change ofrvariables.
Consider a specific part of the wave pattern at the wall. Since
1 1

1,62 are not indepéndent, the possibility exists that when-

ever 'ei picks up the specific part we are considering, ©

8

2
such that this information is lost to the wall. This possibility

is:

was not noticed in [2], and its removal by the methods whose
descfiption follows contribﬁtes to the sharpening of the results
obtained in [2]. |
It is always consistent to pick ei,e; by a linear change
of variables from two values picked independently from tﬁe
uniform distribution on -%3%] . On the average no informafioﬁ
will Ee lost fo the wall, but the vafiance of the solution will
be increased. Better strategies éan be devised, but require
thought in each speciél casé, If the walls are at rest, V =0 ,
one can proceed as follows: impose the boundary“condition on
the right at time nk and a poiﬁt ilh , and on the left at
time (n+%)k at-a.point (i2+%)h 5 il,i2 integers. One can
158, are so chosen that ei < 0 at time nk ,

and 62 > 0 at time (n+%)k , then 91 and 6, can be used at

the boundary as well as in interior without loss of resolution.

see that if 8

Detonations and deflagrations in a one dimensional ideal gas

Our goal in this section is to present a quick summary of
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the elementary theory of one dimensional detonation and deflag-
ration waves, (for more detail, see, e.g., [4] and [1d), and
then derive‘some relations between the hydrodynamical variables
on the two sideé dfvsuch waves for later use.

The equations of gas dynamics are

Py + (pv)x =0 |, o (4a)
(pv)t + (pv2+p)x =0 |, ’ | (4b)
e, + <<e+p)v)x =0, (4e)

where the subscripts denote differentiation, p is the density
of the gas, v 1is the velocity, pv 1is the momentum, e is
the energy per unit volume and p is the pressure. We have

e:p€+%pvz, ('-&d)

where € = g€, + q , €; is the internal energy per unit mass,

=_1_P ,

Ei—?‘_—rpv ‘ _ (4e)
where Yy 4is a constant, y > 1 , and q is the energy of form-
ation which can be released through chemical reaction (see [4]).
" In the present section it will be assumed that part of q 1is
released instantaneously in an infinitely thin reaction zone.

Let the subscript 0 refer to unburned gas-(i.e., gas which has
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not yet undergone the chemical reaction) and let the subscript

1 refer to burned gas. The unburned gas is on the right. We have

& T Tt q

e " Y.-Tp, " %

For the sake of simplicity, we shall make here the unrealistic
assumption Y] F Y T Y .  (The case Yy # Yo is more difficult

only because of addifional'algebra.) When Y1 % Yg T Y the

Q
reaction can be exothermic (i.e., release energy) only if

ql>q0.

Let U be the velocity of the reaction zone. Let

Yo
Conservation of mass and momentum is expressed by

PyWy. = PgWy = =M S (5)
2.2 |
PgWg * Pg = PyWy * Py (6

(see [4]). From these relations one readily deduces

: Pg-P
w2 o T0-11
071

, Where 1 = 1/p
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Define the function H by

(10—11)
H=ey-eg * —35— (py*py)

Conservation of energy is expressed by'
H = H(Tl,pl,ro,po) = 0

Define A = 99793 , (A <0 for an exothermic process), and

u2 = %}l ; we find

2

2u°H = 0 (l—uz)‘rop0 - (l-uz)plrl - 2u

(10—11)

+ — (pl+p0) | | | (7)

2

= po(ro—uzfl) - pl(11~u210) - 2y
In the (Tl,pl) plane ‘the locus of points thch can be con-
Anected to (To,po) by an infinitély thin combustion wave is
a curve which reduces to a hyperbola when A 1is independent of
p and 7T . (See Figure 1.) The lines through' (To,po) tangent
to H = 0 are called the Rayleigh lines. Their points of
tangency, Sl and s2 , are called the Chapman-Jouguet.(CJ)
points. A portion of the curve is omitted because it corresponds

2

to unphysical events in which M® < 0 . The upper portion of the

curve corresponds to detonations; the portion above S1 to strong



o3
iy
-3
o
A
D
<
oo
L
Lo
Ld
Ty
Ead

17

detonations and the portion below to weak detbnations,_ The
lower part of the curve corresponds to deflagrations. 

| The velocity and strength of a strohg detonation are
entirely determined by the state of the unburned gas in front of
the detonation and one quantity'behind the detonafion; just as

in the case with shocks. Let py » Py » Ty » €q and v, be

0

given, as well as Py , and assume the unburned gas lies to the

- right of the detonation. We have from (7)

2
T, = T p0+u "1 + ZUZA (8)
1 0 2 2
W Pytpy W PgtPy '
and'thué
m2 = Pp~Py _ Py=P;
R ‘ 2 ’
0 "1 p0+u Pq 2u2A
‘ T + = 1
: 0 Y 2_ .
Pi*u'py  upy*tpy
Let [p]l =.pi—p0 ; some algebra yields
2 . y-1, y+1,21 e ,
M® = pyepl==+ (po))/(l (Yyl)poA[[p]) . . (9)

If A :.O,vthis formula reduces to the_expréssion‘for M‘ in a
shock, as given in [2] or [91]. ‘M is real if ‘[p]—(y;l)pOA 3'Q 5
this can be readily seen to hold in a strong détonation;' | |
The states on the curve H = 0 . located between the CJ
point. S and the line 71 = g correspond fo‘weak detonations.

1
As described in [4], the state behind a weak detonation is
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entirely détermined by the velocity U of the detonation and
the state in front of it. In fact, a weak detonation cannot
occur and what does happen is a CJ detonation followed‘by a
rarefaction wave. Our next objective is to derive an explicit
criterion for determining whether a detonation will be a stfong
- detonation or a CJ detonation. |
l|.= ¢, where

cy = /?51733 is the sound speed, i.e., a CJ detonation moves

It is shown in [u4 ] that at s, , lw

with respedt to the burned gas with a velocity equal to the
velocity of sound in the burned gas. We now use this fact to

determine the‘density Peg ° veloc;ty Vog and pressure Peg

behind a CJ detonation.

From equations (4) and (5) one finds

and thus in a CJ detonation

Py=Pg o YP3
— = ~p] — = -yp,/1, 4y T, = 1/p )
T,-Tg 1l Py 11 1 1
or
Tl(pl(l+Y)-p0) = YTyPy - ‘ (10)

Equating Ty obtained from (8) to -Tl in (10), we find
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Vu2§ + 2 T
. 1Po), _2ufa _ _YToPy
0 - -
py+u’py/  (pytulpyy  P1l1*Y)-Rg
Some algebra reduces this equation to
)
Py + 2plb +c¢c=0 ,
where
b = -py - 28(y-1)p, ' (11a)
_ L2 2 :
c = py * 2uTpgegd 3 , (11b)

a trivial calculation shows that b2—c >0 if vy > 1 and

A < 0 . Thus
~b + /bl-c . (Qle)

where the + sign is mandatory since a detonation is compressive.
. . - - - hand l ) (3 .
Given Pog =Py 5 Pog = P17 T can be thalned from equation

(10). Since M = -pqw; » and wy°= -c; , we find

M= 'Yplpl = VYPCJDCJ

The velocity U,y ©f the detonation is found from

po(vo—UCJ) = -M
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which yields UCJ =‘(p0v0 + YpCJch)/pCJ ,. and then

= U

Vg cJ - Scg - (12)

Veg depends'only on the state of the unburned gas.

Supposex vy the vélocity of the burned'gas; is given. If
Vi 2 Veg a CJ detonation will appear, fpllowed'by a rarefac-
tion wave. If Vi T Voy @ CJ detonation will-gppear-alohe,
and ifv vy > Vo3 .a strong detonation will take place.

If the unburned‘gas lies to the left of the burned gas
analogous relations are found; the only difference'lies in the

signs of v , in particular,
M= +pl(y1—U) = +QO(VO—U)

The velocity of a possible deflagration cannot be determined
within the éontext of a theory which assumes the gas to be non-
conducting; this point will be further discussed below. It will
turn out that for a nonconducting gas the only possible deflagra-
tion is avconstantbpressure deflagration, pi = Pg > which moves
with zero'velécity with respect to the gas; i.e., it is indis-

tinguishable from a slip line.
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Application of the method to reacting gas flow.

One interesting féature éf our method is ite applicability to the
analysis of gas flow in which exothermic chemical reactions ;re teking
plece and producing substantial dynemical effects. A Riemann prob}gm is
solved at each time step and at each point in fime; thié solution is then
sampled. The advantage.of this procedure is that the interaction of the
flow and the chemical reaction can be taken into account when thé Riemann
éroblem is solved, even when the time scales of the chemistry and the fluid
flow are very different.  As.a result; the basic conservation laws are
satisfied at the end of each time step. It can bé readily seen that if the
Achemical reactions and the gas flow were to be taken into account in separate
fractional steps, the basic conservation iaws may be violated at the end of
each hydrodynamical step, thus either inducing unwanted oscillatioﬁs and
wvaves, or requiring tihe stéps small enough for all changes to be very
gradual--usually a costly remedy. It is inﬁerestihg to note that the Riemann
solutions with eﬁergy depoéition in the flow field are eQuivalent to the
exothermic centers introduced ﬁy Oppenheim [3] and serve the same purpose
of accounting for the dynamiéal effects of the exothermic reactioﬁs. These
discrete.exothermic centers correspond to a physica; reality whose origin
can be aséribed to ;he fluctuations in the levels of chemical species [1].

We consider here the simplest possible descriptign of & reacting gas

(see e.g.‘[9]):

byt (DV)x =0 (13a)

(pv), + (ovF + p), =0 | (13v)
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e

. * ((e + p)v)xv—. )‘Tx.xg 0 | : ' (13c)

where, as before, p 1is the density, v 1is the velocity, e thevenergy

per unit volume,
l .
e=pe+ 3oV, _ ' (13a)
. € is the internal energy. In this section,

1.»p
€ = =<4+ 7 . 13e
v _ (13e)
wvhere Y is a constant, Y > 1, q 1is the total available bonding energy

(g €0), and Z is a progress parameter for the reaction. T = p/p is the
temperature, and A is the coefficient of heat conduction. Z 1is assumed to

satisfy the rate equation

= Xz S o (13f)
where ) !
K=0 if T=p/p<To ,
(13g)
K=K, if T=p/p>T

-0 0

TO is the ignition tempersture and KO is the reaction rate. The equations

of the preceding section are recovered if we set X =0, gq=4 , and K=o,



Equation (13f) is & reasondﬁle prototype of the vastly mofe complex
. equations which déscribe real cheﬁical kinetics. Viscous effects(have been
onitted here; their inclusion in the present context has little.effectvand
presents little difficulty. (Thus, we agsume here a zero Prandtl number.)
The approximation of the dissipation term will be relegated to a |
separate frﬁctional step, where it iﬁ.to be.handled by’straighiforward finite
differences; In view of (13e), and the perfect.gas lew T = p/p (in appropriate

units), this fractional step requires merely the approximstion of
9,1 = (y-1) T, . (14)

The differencing of a heat conduction term alone introduces negligible
numerical dissipation. Several more sophisticated approximation methods
were tried, bﬁt did not seem to be worth pursuing.

| All.that remains to be done is to describe the solution of the Riemann
problem for equations (13) with A = O. ‘This will be done with the following
simplifying assumption: whatever energy may be released during the time /2
in o portion of the fluid is;reléased instantaneously. This approximation
is well in the spirit of our method (since it approximates Z by a piecewise

constant function); it also has some physical justification [1].
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Solution of & Riemann problem with chemisf;x.

Our goal is to solve equations (13) and the following date:

[
]

0 'ZR.) for x <0

§
<

Sg(o = Pps P =Dy, V=

and

Z=12) for x>0
r

L]
kel
H
<

s.(p = Pus P » V

with.k = 0. We begin by a partial review of the case Ky=0 (no

chemistry; see [2], [6], [9]). The solution consists of & right state Sr’
a left state S/, a middle state Se(P = Pys v = v,), separated by waves
whichfare eithef rareféctions or shocks. S, 1s divided by the slip line
i into two parts with possibly differing values of p, Py to the
right of the slip line and Pug to its left. To determine v, and p, we

proceed as follows: define the quantity

P "pq.
M = wf— (15)
r VvV -V,
r

If the right wave is a shock,
M= -p (v -U) = —py (vy-U ) v (16)

where Ur is the velocity of the right shock. From the Rankine-Hugoniot

conditions one obtains

.
M. =7pp o (p/p), Pe/P,. 2 1, (17a)



26
where

0, (a) = [BLy + EL o am)

If the right wave is a rarefaction, ve find

My - Prfr ¢2(p,/pr)', p,/pr <1, ' (18a)
where
. - 1-0 '
¢.(a) = 1-1 . (18b)
2 2/7 12 Y/Y-1 ‘

(18b) is derived through the use of the isentropic law po~ = constant and
the constancy of the right Riemann invariant rr»= 2/yp/o/(Y-1) - v. The

function

o),  a>1,
| (19)

¢2(or.), a<1,‘
is céntinuous et a =1, with ¢(1) = ¢l(l) = ¢2(1) = /Y. - Similarly, we
define '

P ) 'P‘*
L Vo =Va

; : (20}
if the left wave is_a shock,

Ml = pz(vg-Ul) = p*g(vq"ug)’ ) (21)



where Ug is the velocity of the left shock. As on the right,

Ml = /plpl ¢(p“/p£) , where ¢(a) is defined as in equgtioné (17) end

(18). From (15) ana (20),

Py = (ug-u +p /M +p /M) )/ ({1/M )+(1/M,))

These considerations lead to the following iteration procedure: Pick &

starting value PS (or values MS, Mg), and then compute p,

v
M5L+l , @20 using

(ug=u_+p_/Mo+py Mg )/ (11 )4(1/M)))

e,
L]

AV ~V

p*+l = max(€,p )

V4] y— V+1 - -
Mr = prpr ¢(P* /pr)

AY —

v+l
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(22)

(23=)
(23v)
(23c).

(233) -

Equation (23b) is needed because there is no guarantee that in the course

-5

of iteration ; remeins >=0: We usually set €. = 10 .. The iteration

1
is stopped when

max( |M\:_+1-M\) |, Mty
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(ve usually picked e, = 10'6); one then sets M = M:+l. M, c'M:+1,

‘V+1
and p, = P, .
To start this procedure one needs initial values of either Mr and
ML (or py) The starting procedure Suggested by Godunov appears to be

ineffective, and better results were obtained by setting
0

We also ensured that the'iteration vas carried out at least twice, to
avoid spurious convergence when P, =Py
As noted by Gudunov, the iteration may fail to converge in the
presence of a strong rarefaction. This problem can be overcome by the
following variant of Godupév's procedure: If the iteration has not converged
after L iterations (we usually set L = 20), equation (12b) is replaced by
v+l

P =amex(e,,p) + (1<a)p. | (23b)"
. * R

with a=a = . If a further L iteration'occur without convergence,

1
12
a

we reset a2

l/2. More generally, the program was written in such a
way that if the iteration fails to converge after L iterations (2 integer),

a 1is reset to
a=a,= a£_1/2.

In practice, the cases £ > 2 were never encountered. The number of

iterations required oscillated between 2 and 10, except at a very few points.



Once D, Mr’ M, are known, ve have

Ve = (pg-p MU MUY}/ (M 4M, ) B

from the definitions of Mr and MQ.

Consider nov the cese K, # 0, (A =0); the right and left waves
may now be CJ or strong detonations as well as shocks and rarefactions.
The task at hand is to incorporgxe these possibilities into the solution
of the Riemann problem.

The étate Sr will remain a constant state; vr and pr are fixed.
The energy in Sr must change at constant volume (and thus can‘do no work).
The change GZr in 2 can be found by integrating equations (l3f),‘(13g),

with 2(0) = Z, end 2(k/2) = Z,+ 6Zr, GZr < 0. The new pressure is
p, * Gpr =p. + (vy-1)82 Qo \ (25)

(see equation (7). We write p:ew =p.* Gpr, and drop the superscript
new. (We shall need the old Zr again and thus refrain. from renaming

Z, + GZr.) Similarly, 2, changes to 2, + 62 and & nev p, is found

2 L L?
using the obvious analogue of equation (25).

In S, the values of T differ from the values Z.+ 6Z_, Z, + GZQ.

"Let Z,, be the value of Z to the left of the slip line and let Zy,

g
be the velue of Z to the right of the slip line. The difference in energy

of formation across the right wave is Ar = (Z*r - (Zr + GZr))q, and across

the left weve it is A, = (Z,, - (2, + 6Z)))q. We shall iterate on the values

4
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Z‘l’ Z‘r'-Ar’ Az. In the first iteration, we set ch = Zr + GZr.
Zyy = 2, +62,, and thus A, =4, =0, and carry out the iterations
(23). When (23) has converged, & new pressure p* is given, and new
densities Py, Py, can be found from equation'(IS), (21) or the isentrovic
‘ }aw. Nev temperatures T, = Py/Py.> Tug = Pu/Py; 8re evaluated, equations
(13r), (13g) ere solved, and new values 'Z.r, Z“i, Ay 8, are fownd. ir
Ar € 0 the right wave is either a shock or a rarefaction, and if Ar >0
the right wave is either a CJ ' detonation followed by a rarefaction or a
strong detonation.

Let v, be the velocity in S,. Given Ar’.AQ’ we can find the
velocities v v behind possible CJ detonations on the right and

CJr, CJ%

left (equation (12)). If v, < Voyy the right wave is a CJ detonation
followed by rarefaction, and if Ve >erJr the right wave is a stroné
detonation. The CJ state is unaffected by S5, (since it depends only
on Sr) and as far as the Riemann solution is concerned it is a fixed

state. If the right wave is & CJ detonation, we redefine Mr’

PCJ “Pu

’
r VCJ-V*

(pCJ from equation (1le)).: Then

M- ""CJPC_J ¢,(Pua/Ppy)s Pu/Poy <1, | (26)

- If the right wave is a strong detonation, we find from (9)

Moo= o 65(p B P p)s



where

Y=l , Yt _3

2 2 o

(. (0 »a.,a.))2 = 2
3'71°7273 (y=-1) N
1 - —

Q3=%,

Similar expressions occur on the left. The iteration starts with Mr’ MR,

from the previous ite'rat.ion, and written out in ﬁill, appea.fs as follows:
-~V . o~ “~ oV o~ .V Y Y
P = (vz- V.4 pr/Mr + pl/Ml)/(I/Mr + 1/M2) . v 20,
v+ &V
P 1. max(e,p ),
* -
~ ~ ~ ~ v
RO AT SAC R
where

(chr, pCJrvaJr) ‘.if right wave = CJ detonation,

(5,5 %)
roror (pr, pr,vz) otherwise ,

‘ (chl: pCJl"vCJl) if vlef‘t wave = CJ detonation,
(6 s-i) s; ) = v .
1270k (oz, Py > vl) otherwise,



32

+
/prpr ¢3(prAr.Pr.P.v l) if right wave = gtrong detonation,

v+l
M= v+l ~
Vb o, ¢(p, "/p) othervise,
‘ #pzpz‘¢3(pzAz,pz,px+l) if left wave = strong detonation,

V+1 ~
PPy ¢(p, ~/py) othervise.

The coﬁplexity of this'itgration is more apparent than real. It is stopped
when it h#s conierged, as before. New values of ‘Z*r’ Z.Q,A¥, Az are
evaluated; and the iterationAis repeated; this process is stopped when
Ar’ Al change by less than some predetermined e3 over two successive iterations.
It can be readily seen that with the present expression for the energy of
forma"tion, at most four iterations on Ar, .ASL are ever needed.
Once S, has been determined, the solution must be sampled. Let
P = (6h, k/?) be the semple point, and p = D(P), p = p(P), ete. Four basic
cases are to be considered:
A) P 1lies to the rightvof the slip line and the right wave is either
- a shock or a strong detonation;
B) P 1lies to the right of the slip line and the right wave is either
a raréfaétion of a CJ detonation followed by a rarefaction;
c) P lies to the left of the slip line and the left wave is either a
shock or a strong detonation, and
D).'P lies to the left of the slip line and the left wave is either a

rarefaction or a CJ detonation followed by a rarefaction.
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Case A. The velocity Ur of the shock or the strong detonation can be

found from the relationship

M = -pr(vr.Ur);

if P 1lies to the right of X = U. ve have the sampled velues p = p_,

at - ’ r
p = v = ~= g.x_.- '
P=p., V=1V, Z Zr + 6Zr. If P lies to the left of Frolie Ur’ ve

have = Opps D =Dys V=V, 2= Zup:

Cese B. Consider first the case of a rarefaction wave. The rarefaction s

bounded on the right by the line %% = V& + Cp» €. VYpr7pr, and on the

dat

the Riemann invariant

left by . Ve Copyes where c, can be found by using the constancy of

. a1 -1
- » - - = - -
Fr 2e*(Yv-1) v, 2cr(Y l)‘ V.

If P lies to the right of the rarefaction, p = PL.s p = P, v = Vs

Z=7_ +82. If P lies to the left of the rarefaction, p = p

. » D = Py»

r
= Vs E = Zr + er. If P lies inside the rarefaction, we equate the

R

slope of the characteristic- %%'= V 4 ¢ to the slope of the line through

the origin and P, obtaining
v + ¢ = 26h/k;

the constancy of Fr, the isentropiclaw pp_Y = constant and the definition
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c = Jyp7p yield 5, v, and 5. Z = Zr + GZr.' If the wave is a CJ
detonation, .(pr,pr.vr) are replaced everyvhere by (chr’ch "o ),
end 2 inside the fan and to the left of it equals 2, .

The cases C and D are mirror images of A énd B, and will not be

described in fuil.
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Numerical results.

We begin by presenting some results foftdetonation waves with very
large K, (K0 = 1000). These results verify the accuracy of the program-
ming rather than the general velidity of the method, since the solutions
of the corresponding problems are an intrinsic pért of the Riemann problem
solution routine. | |

To obtain table I, I started with a gas et rest, p =1, v = 1,p=1,
and at t =0 iﬁposed impulsively on thelleft the boundary condition v = V = 1.

I used h

1/7, k/h = 2, KO = 1000, T

result is a perfect strong detonation.

0=1l,a=1end y-= 1.4, The

In table II a Chapman Jouguet detonation is exhibited. h = 1/9,

k/h =2, K, =1000, T, =1.1, q =12 and Yy =1.hb. m =11. The solution is

0 0

exhibited at t =2, n=t/k =9, i.e. n 1is not a multiple of m and the

solution is not at its most éccurate. This can be seen from the presence of a
» fake coﬁstant state (for x = 6/9 and 7/9), vﬁich was discussed in the sectién
abéut errors, and which is most likely to appear when h is not e multiplé

of m. The last column presents the right Riemannvinvariant‘ Fr which is of
‘course consfant behind the CJ front. The chemical time scale is not
resolved on the grid, and one should notice the small number of mesh points

required to display sharp veriations in all guantities.



h=1/7, k/h=.2, t=nk= .3k, n=11, K

q=1, v =1l.k,

X v
0 1
1/7 ‘ | 1.
2/1 1.
3/7 | 1.
L/7 ~o.
5/7 0.
}6/7 ‘ 0.
1 0

Strong Detonation

1.814

1.816
1.816
1.816
1.000
1.000
1.000

1.000

0

3.228
3.228
3.228
3,228
1.000
1.000
1.000

1.000

= 1000, T

0

1.779
1.779
1.779
1.779
1.000
1.000
1.000

1.000
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= 1,1, V=1,

.000
.000
.000
.000
1;000
1.000

1.000

1.000



h=1/9, k/h
Y= 1.k
x
0 1
/9 1
2/9 1
. 3/9 1
L9 - 1.
5/9 1.
6/9 1.
7/9 1.
8/9 1
1 | 0.

.000
.000
.000

.000

186
251
52k
524

.623

Table II

Chapman Jouguet Detonation

1.179

179
179
179
257

.287

10
410
5T

.000

6.965
6.965
' 6.965
6.965

T.621

7.862

8.952;

8.952
9.373

1.000

.2, n =9, K, = 1000, T

5.907
5.907

5.907

5.907

. 6.061

6.115

6.346

6.346
6.430

1.000

1.000
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qQ =12,

13.379
13:379
13.379
13.379
13.379
13.379
13.379
13.379
13.379

5.916
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We now present some results for a probleﬁ whose solution is not program-

med into the solution algorithm-—a deflagration wave with finite reaction
rate. For t <0 a gas at rest lies in x20, with p=1,p=1, (v=0),
and Z = 1; the left boundary is maintained at zero velocity, V = 0. At

t = 0 the gas in the first cell to'the left is raised to a temperature T = 2,
| (i.e. the pressure is increased to p = 2). The resulting deflagration wave

is observed. It is known that the velocity of the wave is asymftotically
proportionel to JTE; (see e.g. [10] p. 99); thus, the wave does not propa-
gate unless A # O, as one can readily verify on the computer. This last
Justifies an garlier assertion to the effect that when A = 0 the wave is
'indistinguishable from A slip line. The results in Table III were obtained
with h=1/11, k/h = .35, T.= 1.6, K

0 0= 1, a=10, y=1.h'and m=11.
They afe'presented at t =nk= .273, (n = q). One can clearly see the
precursor shock, and the defiagration zone (characterized by 2 < 1) in which
the density and pressure decrease. The small nuﬁber of mesh points shouid

again be noticed.
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Teble III

‘A deflagration with finite conduction and reaction rate.

h=1/11, k/h = .35, t=nk= .273, n = 9, K0.= 1, To =1,6, V=0, q =10,
Yy = 1.b, |
b 4 v p P T Z
0 0. 56T 1.667 2.937 | .334
1/11  0.139 650 1781 - 2.739 .61k
2/11 0.261 .SLT 1.315 - 2.h02 .61k
3/11 | .385 . 1.07k 1.726 '1.607 ' 1.000
L/11 ~.575 - 1.550 1.998 1.088 1.
5/11 .5bk 1.519 1.800 | 1.185 1.
6/11 | .023 11.016 1.058 1.0k 1.
T/11 .002 1.001 1.003 1.002 | 1.
8/11 .000 1,000 1.000 1.000 1.
9/11 o. Y 1. | 1. Y

10/11 0. 1. 1. 1. 1.
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Conclusions.

We have presented a numerical method capable of describiﬁg a cozhplex '
gas flow with chemical reactions. 'I‘he. relative complexity of the method
is balanced by economy in the representation of the solution. Generalization
of the method to problexhs in more space dimensions is a straightforward
epplication of the fractional step method presented in [2], and the inclusion
of a more realistic chemical process presents no difficulties -other than the
- standard difficulties of finding & ple.usible kinetic scheme and accepteable
numerical values for the corresponding coefficients. The interesting and
major difficulties in multidimensional problems arise when one attempts to take
into account boundary layers and turbulence effects. Inba forthcoming paper .
we shall show that boundary layer effects at least can be incorporated into
our method. in a natural and efficient way; once this has been expleained,

multidimensional results will be presented.
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Fig. 1. The Hugoniot curve for exothermic gas flow.
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