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Abstract-A homogenization sampling procedure is introduced which allows computation of effective 
trabecular bone stiffness and individual trabecula level stress based on precise models of trabecular bone 
architecture. Three-dimensional digitized images of 53 trabecular bone specimens with a resolution of 50 F 
per voxel were directly converted into three-dimensional finite element meshes by making each voxel an 8- 
node isoparametric brick element. Owing to the large mesh of 8ooO elements, an element-by-element pre- 
conditioned conjugate gradient (EBEPCG) program was written to solve the local homogenization finite 
element equations. Predicted effective stiffness measures correlated well with experimental results 
(R2 z-0.73). The predicted effective stiffnesses tended to under estimate the experimental values. Average 
absolute errors in effective stiffness estimates ranged between 31 and 38% for the sampling procedure 
compared to a range 49-150% for a regression fit to volume fraction squared. Trabecula level streSs ranged 
between - 200 and + 300 times that predicted by analyzing trabecular bone as a continuum. Both tensile 
and compressive tissue stresses were engendered by a continuum compressive stress. Trabecula level strain 
energy density (SED) ranged between 0 and 100 times the continuum SED value for two trabecular 
specimens. In conclusion, the homogenization sampling procedure consistently predicted the influence of 
trabecular bone architecture on effective stiffness. It can also provide trabecular tissue stress and strain 
estimates for arbitrary global loading of whole bones. Tissue stresses and strains showed large variations 
compared to corresponding continuum level quantities. 
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NOMENCLATURE 

tissue stiffness, i.e. stiffness of an individual 
trabecula 
effective stiffness, i.e. stiffness of a trabecular 
bone cube 
quantities (stress, strain, stiffness) defined on a 
continuum level for trabecular bone, greater 
than 3-5 intertrabecular lengths (Harrigan 
et al., 1988) 
quantities (stress, strain, stiffness) defined on 
the trabecular tissue level 
ratio of the characteristic microstructure 
length to the characteristic continuum length 
effective strain 
tissue strain 
effective stress 
tissue stress. 

INTRODUCTION 

Trabecular bone is a porous material containing 
multiple, hierarchical structural levels. This hierarchi- 
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cal structural organization determines two important 
aspects of trabecular bone mechanics and adaptation. 
First, the structural organization determines the ef- 
fective stiffness of trabecular bone (Cowin, 1985; Gold- 
stein, 1987; Goulet et al., 1989; Snyder et al., 1989; 
Turner et al., 1988). Predicting the influence of bone 
architectural changes on effective stiffness and 
strength is important for understanding age related 
bone fragility (Kleerekoper et al., 1985). Second, the 
structural organization determines how load is trans- 
ferred to the osteocyte and bone lining cell level. 
Understanding bone adaptation mechanisms may ul- 
timately require relating stress and strain estimates at 
the cell level to bone cell activity. 

Determining effective stiffness and quantifying 
microstructural level stresses are two aspects of the 
same problem. If the stresses at each microstructural 
level are calculated correctly, then the effective stiff- 
ness is accurately predicted because it relates average 
microstructural stress to strain. Since it is impossible 
to model each microstructural component of large 
composite structures, effective stiffness and micro- 
structural stresses are generally approximated using a 
representative volume element (RVE) approach 
(Hashin, 1983). The RVE approach consists of ana- 
lyzing a small section of composite material under 
assumed boundary conditions, generally, uniform 
traction or displacement. This analysis provides the 
relationship between the effective or global strains, E,-,, 
and the microstructural or local strains E. It also 
provides the effective stiffness C,, which relates the 
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effective strain E,, to the effective stress Q,,. However, 
RVE analyses, can only provide upper or lower effect- 
ive stiffness bounds because the precise in situ RVE 
boundary conditions are not known and must be 
assumed (Hashin, 1983; Hill, 1963). The familiar 
Voight and Reuss models are the extreme bounds on 
RVE stiffness estimates (Hill, 1963). 

Trabecular bone microstructural analyses have pre- 
viously analyzed idealized models using the RVE 
concept (Beaupri and Hayes, 1985; Gibson, 1985; 
Pugh et al., 1973; Williams and Lewis, 1982). Although 
no statistical correlations between experimental and 
predicted results were reported, it was noted in many 
cases that the predicted stiffness was greater than the 
experimental. This overprediction may have resulted 
from a number of factors including assumptions about 
trabecular tissue stiffness, idealization of the complex 
trabecular architecture, and RVE boundary condition 
assumptions. Beaupre and Hayes (1985) noted that 
two different displacement RVE boundary conditions 
gave two different estimates of effective stiffness. These 
results are consistent with the upper and lower bound- 
ing principles of general composite mechanics (Ha- 
shin, 1983; Hill, 1963). 

Recently, homogenization theory has been applied 
to analyze both trabecular and cortical bone mech- 
anics (Crolet et al., 1988; Hollister et al., 1991). 
Although homogenization theory calculates the same 
quantities as traditional RVE approaches, its formula- 
tion is quite different leading to different results (Hol- 
lister and Kikuchi, 1992). The periodic boundary 
displacement assumptions of homogenization theory 
will give effective stiffness estimates between the upper 
and lower bounds given by assumed boundary dis- 
placements and tractions, respectively (Suquet, 1987). 
Microstructural stress error bounds for homogeniz- 
ation analysis of periodic structures have been derived 
(Bakhvalov and Panasenko, 1989). However, Hollister 
et al. (1991) found that trabecular bone effective 
stiffness measures calculated by homogenization ana- 
lysis of idealized models were inconsistent with experi- 
mental results. The paper presents and provides initial 
validation of a homogenization procedure for calcu- 
lating effective stiffness and tissue level stress directly 
from precise models of trabecular bone architecture. 

METHODS 

The homogenization sampling procedure entails 
homogenization analysis of selected trabecular bone 
architecture samples from a large region of trabecular 
bone. Each sample is one precise microstructural 
model of trabecular bone architecture based on a 
three-dimensional digitized image. The key compo- 
nents of the procedure are (1) the homogenization 
theory formulation, (2) the construction of finite ele- 
ment models from three-dimensional digitized image 
of trabecular bone based on samples throughout the 
specimen volume, and (3) the finite element EBEPCG 
program used to solve the homogenization equations. 

The governing equations of homogenization theory 
used in the sampling procedure are presented briefly. 
Formulation of homogenization theory and its initial 
use for trabecular bone analysis may be found in 
Hollister et al. (1991). More mathematical descriptions 
of homogenization theory may be found in Bakhvalov 
and Panasenko (1989), Lions (1981), Sanchez-Palencia 
(1980), and Suquet (1987). 

Homogenization theory is based on three funda- 
mental premises. First, the total displacement of a 
microstructured material is represented by an asymp- 
totic expansion: 

u,i(Xi,Yi)=uoi(Xi)+~Uli(XirYi) 

+112u2i(xi,Yi)+’ ., (1) 

where u,,~ is the total displacement, ugi is the effective 
or continuum level displacement, uni are perturbations 
in the displacement due to the microstructure, xi are 
continuum level coordinates, yi are microstructural 
level coordinates, and n is the ratio of the micro- 
structural scale to the continuum scale. Second, it is 
assumed that quantities on the microstructural level 
vary l/q times faster than continuum or effective level 
quantities. Since q is always less than one, quantities 
like stress and strain fluctuate more rapidly on the 
microstructural scale. In the formulation, rl does not 
appear in the 0th order approximation (see the appen- 
dix of Hollister et al., 1991) and it is not assigned 
an explicit value. However, it is known that for peri- 
odic materials the error decreases as n decreases 
(Bakhvalov and Panasenko, 1989; Hollister and 
Kikuchi, 1992). Third, it is assumed that the displace- 
ment and strain fields are periodic functions in yi. 

Based on the three premises, substitution of the 
asymptotic expansion into the standard weak form of 
the linear elastic equilibrium equation yields one set of 
microstructural equilibrium equations and one con- 
tinuum or effective level equilibrium equation. The 
microstructural equilibrium equations are 

= s *, {G4JT {C”> df&, 

~7’ periodic, k = 1-6, (2) 

where {Q(U)} is the virtual strain vector, [C] is the 
trabecular tissue stiffness, (~7~) is denoted as the 
microstructural fluctuating strain vector, and { Ck} is 
the kth column of the tissue stiffness matrix. Equation 
2 is solved six times for three-dimensional problems, 
once for each column of [Cl. Physically this amounts 
to loading the microstructure with a volume stress 
{Ck} which results when the kth unit strain vector is 
multiplied by the stiffness matrix and calculating the 
displacements under periodic boundary constraints. 
The solution to equation (2) yields the local structure 
matrix (Hollister et al., 1991) which relates micro- 
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structural to continuum level strains: 

where {E} is the microstructural or tissue level strain, 
[M] is fhe local structure matrix, and 
continuum level strain. The continuum 
stiffness may then be calculated by 

where [Co] is the effective stiffness, [Cj is the trabecu- 
lar tissue stiffness, [M] is the local structure matrix, 
and VY is the total volume of the microstructure. The 
macroscopic equilibrium equations can then be writ- 
ten as 

(5) 

where v is the virtual displacement and t is an applied 
traction to the global body. A chart illustrating the 
microstructural to continuum analysis flow is shown 
in Fig. 1. Homogenization theory can be used to 
determine both the dependence of effective stiffness on 
microstructure [equation (4)] and the transfer of load 
from the whole bone level to the bone microstructure 
[equation (3)]. 

Precise finite element models of trabecular bone 
architecture were created from three-dimensional digi- 
tized images produced by a microcomputed tomogra- 
phy (micro-CT) scanner (Feldkamp et al., 1989; Kuhn 
et al., 1990). Goulet et al. (1989) have compiled three- 
dimensional digitized image files for 104 8 mm cube 
specimens of trabecular bone with a resolution of 
50 pm per voxel. A pre-processing program was writ- 
ten to convert directly each voxel into a three-dimen- 
sional I-noded isoparametric brick element from the 

image files created by Goulet and co-workers. Each 
element was assigned either trabecular tissue proper- 
ties (isotropic; E = 5 GPa, v = 0.3; see Choi et al., 1990; 
Mente and Lewis, 1989) or compliant marrow proper- 
ties (isotropic, E = 0.0005 GPa, v = 0.0). The trabecular 
tissue and marrow were assumed to be perfectly 
bonded to each other. The pre-processing program 
allows the user to select any region of the three- 
dimensional digitized image and convert this into a 
three-dimensional finite element mesh for the sam- 
pling analysis (Fig. 2). An advantage of making each 
voxel an element is that all elements have the same 
geometry and element stiffness matrices are only de- 
veloped for each separate material. For the homogen- 
ization sampling analysis, one element stiffness matrix 
each is developed for trabecular tissue and marrow. 

A unique requirement of homogenization analysis is 
that displacements at one microstructural model 
boundary must equal displacements at the corres- 
ponding location on the opposite boundary. This was 
previously accomplished (Hollister et al., 1991) using a 
penalty method. The topology of the digitized image 
model allows for another method of enforcing period- 
icity. In this case, corresponding nodes on opposite 
boundaries are numbered the same to ensure that 
displacements will be equal (Zienkiewicz and Scott, 
1972). A special algorithm was written in the pre- 
processing routine to define the element connectivity 
with equivalent node numbering on opposite bound- 
aries. In summary, the pre-processing program devel- 
ops the element connectivity, assigns either trabecular 
tissue or bone marrow properties to each element 
based on the image voxel density, calculates the bone 
and marrow element stiffness matrices, and calculates 
element load vectors corresponding to the right-hand 
side of equation (2). 

The regular element structuring of the digitized 
image mesh is well suited for the use of an iterative 

Homogenization Pruaxture 

Analyze RVE to calculate 
Local Sauctun Matrix M 

Use Effective Stiffness CO 
. in analysis of macroscopic 

bcdy to calculate average 
strain F.0 

Estimate local snain 
using M and ee by: 

k?=MQ 

Fig. 1. Schematic of the homogenization RVE analysis procedure. The RVE or trabecular bone micro- 
structure model is first analyzed to calculate the local structure matrix M from which the effective stiffness 
matrix CO is then calculated. This effective stiffness matrix is then input into a global model (i.e. of a whole 
joint) to calculate the effective strain distribution, q,. The effective strain sO is then post-processed with the 
local structure matrix M in a given continuum region to calculate the tissue or local strain distribution, E, 

within that region. 
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Fig. 2. Three-dimensional finite element mesh from a 1 mm3 volume of lumbar spine trabecular bone (bone 
elements only are shown). The mesh was constructed by converting each voxel from a three-dimensional 
digitized image of trabecular bone into an 8-node isoparametric brick element. Each element was then 
assigned either bone or marrow mechanical properties (marrow elements are shown). The pre-processing 
program allows the user to select the size and location of regions from the digitized image to convert into a 

finite element mesh. 

equation solver called the element-by-element pre- 
conditioned conjugate gradient (EBEPCG) method. 
Since only matrix vector multiplies are necessary for 
solving the finite element equations (Ferencz, 1990; 
Hughes et al., 1983), the global stiffness matrix is never 
assembled. In the EBEPCG method, a residual is 
defined as the stiffness matrix displacement vector 
product minus the load vector. Only the product of 
the stiffness matrix and the displacement vector is 
assembled into a global vector (Carey and Jiang, 
1986). The iteration continues until the ratio of the 
current residual vector norm to the initial residual 
vector norm is less than a user defined tolerance, taken 
here to be 1.0 x 10-4. The initial use of the EBEPCG 
technique for biomechanics were presented by Fyhrie 
(1986). Fyhrie and co-workers (1992) also applied the 
digitized image meshing technique with EBEPCG to 
perform standard finite element analysis of trabecular 
bone microstructure using the finite element code 
NIKE3D. 

A special processing program based on the EBE- 
PCG technique was written to solve the homogeniz- 
ation microstructural equilibrium equation [equation 
(2)]. This program uses the stiffness matrix diagonal 

for pre-conditioning, commonly known as Jacobi pre- 
conditioning (Carey and Jiang, 1986). The finite ele- 
ment processing program reads in the element connec- 
tivity, material property identification numbers (ids), 
element stiffness matrices, and element load vectors 
output by the pre-processing program. It then solves 
equation (2) six times, once for each column {CL} of 
the tissue stiffness matrix. For this study, each 1 mm3 
sample contained 8000 solid elements which generally 
required 2-4 h to solve all six cases on a Sun Spare 2 
(Sun Microsystems) workstation. In summary, the 
homogenization EBEPCG processing program solves 
equation (2), recovers the local structure matrix at the 
element centroids, and calculates the effective trabecu- 
lar stiffness matrix [equation (4)]. 

Although the digitized image based mesh offers 
substantial computational advantages and makes it 
possible to solve large problems (z-8000 solid ele- 
ments) relatively quickly, it introduces sharp corner 
boundaries between bone and marrow into the dis- 
cretixation. These comers may introduce numerical 
artifacts into both the effective stiffness and tissue level 
stress calculations. To estimate the size of these arti- 
facts, two smooth meshes containing a compliant 
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Fig. 3. Smoothed (left) and digitized (right) meshes of bone tissue material with marrow material in the 
center. The struts are 200 w thick. These meshes were used to assess the affect of the digit&d mesh on the 
calculated effective stiffness The two meshes have equivalent volume fractions of bone (light grey) and 
marrow (black). The digitized mesh has a pixel resolution of 50 m the same resolution of the three- 

dimensional digitized images of trabecular bone. 

Fig. 4. Smoothed (left) and digitized (right) meshes of bone tissue material with marrow material in the 
center. The struts in this case am 50 mn thick. These meshes were used to assess the affect of the digitized 
mesh on the calculated effective stiffness. The two meshes have equivalent volume fractions of bone (light 
grey) and marrow (black). The digitized mesh has a pixel resolution of 50 pm, the same resolution of the 

three-dimensional digitized images of trabecular bone. 

material center and outer struts similar in thickness to 
one trabeculae (200 p, Fig. 3; 50 pm, Fig. 4) were 
analyzed using a two-dimensional homogenization 
code (Hollister and Kikuchi, 1992). The same struc- 
tures were also analyzed using digital image based 
meshes (200 pm, Fig. 3; 50 pm, Fig. 4). The digital 
image based mesh was analyzed using a two-dimen- 
sional version of the homogenization EBEPCG pro- 
gram. The effective stiffness calculated using each 
approach were then compared. 

Fifty-three 8 x 8 x 8 mm cube trabecular bone spe- 
cimens experimentally tested by Ciarelli et al. (1991) 
and imaged by Goulet et al. (1994) were analyzed 
using the sampling procedure to verify the stiffness 

estimates. These specimens were from the lumbar 
spine, proximal femur, proximal tibia, iliac crest, distal 
femur, proximal humerus, and distal radius of four 
cadavers. Twenty-seven 1 mm3 equally spaced 
samples were analyzed for each specimen, giving a 
total of 1431 analyses with 8000 solid elements each. 
The effective stiffness matrices from each of the 27 
samples were then averaged to give one complete 
anisotropic stiffness matrix for the whole specimen. 
Ciarelli et al. reported three stiffness values in the 
Anterior-Posterior (AP), Medial-Lateral (ML), and 
Inferior-Superior (IS) anatomic orientations. These 
stiffness values were the ratio of the average stress in 
the testing direction to the average strain. As discussed 



438 S. J. HOLLISTER et al. 

in the introduction, estimates of effective stiffness for 
composite media are highly dependent on assumed 
boundary conditions. To ensure that the comparisons 
between predicted and experimental measures of stiff- 
ness were consistent, an 8 mm block with the anisotro- 
pit stiffness matrix calculated from the sampling pro- 
cedure was analyzed under displacement conditions 
similar to those applied experimentally by Ciarelli 
et al. (1991). The ratio of average stress to average 
strain in the AP, ML, and IS directions was then 
calculated. Linear regressions were used to compare 
predicted to experimental values. In addition, the 
average absolute percentage differences between the 
sampling procedure predictions and experimental res- 
ults were calculated to determine how closely the 
procedure estimated the actual stiffness. 

Previous analytical models of trabecular bone have 
predicted trabecular bone effective stiffness based on 
assumptions that trabeculae undergo bending or axial 
deformation (Gibson, 1985). These analytical models 
predict that trabecular bone effective stiffness will be 
related to the solid volume fraction squared for open 
cell cubic models and to the solid volume fraction for 
hexagonal open celled models. Specifically, the effect- 
ive modulus should be equal to the trabecular tissue 
modulus multiplied by a constant and the volume 
fraction raised to a given power as E, = C*E * kf’, 
where E, is the effective modulus, C is a constant, E is 
the tissue modulus, Vr is the volume fraction, and n is 
an integer power. To compare the sampling procedure 
with these analytical models, the assumed tissue 
modulus of 5 GPa was multiplied by the volume 
fraction squared and the volume fraction for each of 
the 53 specimens. The proportionality constant was 
taken to be 1 in each case. A linear regression was used 
to compare predictions of the analytical models to the 
experimental results. The average absolute percentage 
differences between the analytical predictions and 
experimental results were also calculated. 

To illustrate variations in trabecular tissue level 
quantities, tissue level stress and strain energy density 
were calculated for two samples from two different 
specimens, one from the lumbar spine and one from 
the proximal tibia. For each specimen, the average 
strain corresponding to the experimentally deter- 
mined continuum failure stress (Ciarelli et al., 1991) 
was used to calculate the tissue level strain distribu- 
tion using equation (3). The tissue level stress and 
strain energy density @ED) distribution were then 
calculated from the tissue strain. The ratio of the tissue 
SED to the continuum SED was also calculated. 

RESULTS 

The mesh singularities resulting from the digitized 
mesh had a small effect on the effective stiffness results 
for the structure with 2OOpm thick struts. Effective 
elastic constants calculated using the smooth mesh 
were E = 2576.4 MPa, G = 640.4, v = 0.235. Effective 
elastic constants calculated using the digitized mesh 
were E =2524.2 MPa, G=610.9, v=O.234. The per- 
centage differences between effective elastic constants 
calculated using the two meshes were 2% for Young’s 
modulus, 4.6% for the shear modulus, and 0.4% for 
Poisson’s ratio. For the structure with 50pm thick 
struts, the effective constants resulting from the 
smooth mesh analysis were E=913.1 MPa, G 
= 54.1 GPa, and v=O.O86. Results from the digitized 
mesh were E = 844.5 MPa, G= 39.2 GPa, and v 
=0.090. Percentage differences between the two me- 
shes were 7.5% for Young’s modulus, 27.5% for the 
shear modulus, and 4.7% for Poisson’s ratio. 

Predicted stiffness values showed consistent agree- 
ment with experimental results for the 53 specimens 
analyzed (Table 1). Coefficients of determination (R2) 
values were all greater than 0.73. The average absolute 
percentage differences between predicted and experi- 
mental results were between 31 and 38% (Table 2). 

Table 1. Linear regression between experimental and predicted stiffness values for the sampling procedure. 
Coefficients of the regression equation Experimental=A+B* Predicted are presented along with 
adjusted R2,p values, and standard error of estimate. AP =anterior-posterior, ML =medial-lateral, 

IS = inferior-superior 

Stiffness 
direction 

Standard error Modulus 
A B Adjusted R2 p n of estimate range (MPa) 

AP -46.5 1.58 0.76 <O.Ol 53 115.5 6-1524 
ML 8.6 1.35 0.76 <O.Ol 53 62.3 12-654 
IS - 62.6 1.75 0.73 10.01 53 154.1 42-1113 

Table 2. Mean abolute error (disregarding sign) for the three methods of calculating effective 
stiffness. The homogenization sampling procedure gave much smaller errors than the other 

two methods 

Method AP average error ML average error IS average error 

Homogenization sampling 37.8 31.0 36.6 
Volume fraction squared 117.0 150.1 49.0 
Volume fraction 1105.7 1268.0 522.9 
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Table 3. Linear regression between experimental and predicted stiffness values for the volume fraction 
squared and volume fraction models. Coeflkients of the regression equation Experimental= A + B* 
Predicted are presented along with adjusted R2,p values, and standard error of estimate. AP 
= anterior-posterior, ML = medial-lateral, IS =inferior-superior. The coefficients of determination (R’) 

for the analytical models are less than those for the sampling procedure 

Stiffness 
direction A B Adjusted R2 p 

Standard error 
n of estimate 

Volume fraction squared model 
AP - 104.5 1.23 
ML 25.2 0.70 
IS -111.1 1.68 

Volume fraction model 
AP - 348.0 0.51 
ML - 171.7 0.30 
IS -447.5 0.70 

0.55 <O.Ol 53 157.9 6-1524 
0.59 <O.Ol 53 82.1 12-654 
0.65 <O.Ol 53 172.8 42-1113 

0.49 <O.Ol 53 167.8 6-1524 
0.56 <O.Ol 53 85.2 12-654 
0.59 10.01 53 187.5 42-1113 

Modulus 
range (MPa) 

The regression equation coefficients indicated that the 
predicted stiffness values tended to underestimate the 
experimental values. 

Analytical volume fraction square and volume frac- 
tion models showed relatively good correlations with 
experimental results (Table 3), although these correl- 
ations were not as good as those from the sampling 
procedure. Both these analytical models tended to 
overestimate the experimental stiffness values. The 
average absolute errors for the volume fraction 
squared model were much higher than the sampling 
procedure (Table 2), ranging between 49 and 150%. 
The simple volume fraction model greatly overestima- 
ted the effective stiffness (Table 2), with average abso- 
lute errors greater than 500%. 

Tissue level stresses ranged between -200 and 
+300 times that predicted by analyzing trabecular 
bone as a continuum. Under a continuum AP com- 
pressive stress of - 1.03 MPa the lumbar spine tra- 
becular tissue stresses ranged from 94 MPa in tension 
to -350 MPa in compression (Fig. 5). Under a con- 
tinuum AP compressive stress of -0.62 MPa the 
proximal tibia trabecular tissue stresses ranged from 
144 MPa in tension to -40 MPa in compression (Fig. 
4). In each case, trabeculae perpendicular to the 
continuum load experienced tension and compres- 
sion, probably due to bending, while trabeculae para- 
llel to the continuum load experienced primarily com- 
pression, probably due to axial deformation. 

Trabecular tissue to continuum SED ratios ranged 
between 0 and 100 over large regions of both the 
lumbar spine and proximal tibia specimen. The com- 
plete SED ratio for the lumbar spine sample ranged 
from 0 to 350 (Fig. 5). The complete SED ratio for the 
proximal tibia sample ranged from 0 to 320 (Fig. 6). 
Ratios less than one indicated trabeculae which were 
relatively unloaded for the applied continuum stress. 
A current technique used to estimate tissue level 
stresses for remodeling analyses (Beauprk et al., 1990; 
Carter et al., 1987; Huiskes et al., 1987) is to divide the 
continuum SED by the volume fraction raised to the 
first or second power. Dividing the continuum SED by 
the volume fraction gave a ratio of 6.9 (volume 

fraction = 0.145) and 9.2 (volume fraction = 0.109) for 
the lumbar spine and proximal tibia sample, respect- 
ively. Dividing the continuum SED by the volume 
fraction squared gave a ratio of 47.6 and 85.8 for the 
lumbar spine and proximal tibia sample, respectively. 
SED ratios for these magnitudes occurred in limited 
areas of the trabecular tissue. 

DISCUSSION 

Calculating trabecular tissue level stress and effect- 
ive stiffness with known accuracy is a critical step 
towards understanding how bone cells sense mechan- 
ical stimuli and adapt trabecular bone tissue in re- 
sponse. RVE based microstructural analysis is the 
most feasible approach for analyzing bone micro- 
mechanics. RVE based methods, including standard 
mechanics models, self-consistent methods (Hashin, 
1983), and homogenization theory, all provide estim- 
ates of effective stiffness and tissue or microstructural 
level stress. The difference between these approaches 
results from their intrinsic assumptions, primarily 
concerning RVE boundary conditions. It is difficult to 
assess the accuracy of tissue level stress estimates 
made by RVE methods because there is no gold 
standard to which the estimates can be compared. 
However, the effective stiffness measures, can be vali- 
dated with experimental results. Since the effective 
stiffness relates average tissue stress and strain, valid- 
ation of effective stiffness is the first step towards more 
rigorous validation of tissue stress and strain estim- 
ates. 

A variant of homogenization theory, denoted as the 
homogenization sampling procedure, has been de- 
veloped for analyzing trabecular bone micromechan- 
its. This method, as with all RVE based approaches, 
makes assumptions concerning the RVE boundary 
conditions, in this case periodic boundary displace- 
ments. Boundary condition assumptions along with 
trabecular tissue stiffness assumptions based on early 
experimental results contribute the most to uncer- 
tainty in trabecular tissue stress estimates. At this 



440 S. J. HOLLISTER et al. 

point, the uncertainty locally in trabecular tissue 

Tissue 2 Normal Stress (MPa) Tissue 2 Normal Stress (MPa) 

Fig. 5. Distribution of tissue level stress or= for a 1 mm3 volume of lumbar spine trabecular bone (left) and 
proximal tibia1 trabecular bone (right). Continuum level compressive u,, stresses in the AP direction of 
- 1.03 and -0.62 MPa were applied to the lumbar spine and proximal tibia specimens, respectively. The 
lumbar spine tissue level stresses ranged from compressive stresses of -350 MPa to tensile stresses of 
94 MPa. The proximal tibia tissue level stresses ranged from -40 MPa in compression to 144 MPa in 
tension. These results demonstrate the wide variation in tissue level stresses engendered by continuum level 
stresses. Given the small difference in volume fraction of the two specimens, these results suggest that the 
distribution of tissue level stresses is as much a function of the trabecular architecture as the bone volume 

fraction. 

stresses has not been quantified. However, correl- 
ations with experimental effective stiffness show that 
mean tissue level stresses can be consistently estim- 
ated. A technical limitation of the method is the 
extensive computational requirements. However, the 
implementation of EBEPCG allows the method to be 
run on standard engineering workstations. If tissue 
level stress and effective stiffness estimates are needed 
for specific trabecular structures, perhaps for ana- 
lyzing bone remodeling experimentals, the added 
computational expenses are appropriate. 

The use of homogenization theory for trabecular 
bone analysis has been deemed inappropriate by some 
because of the argument that bone is not periodic. 
However, the periodicity assumption should be 
viewed in the context that any RVE based method 
must make assumptions about in situ boundary condi- 
tions. Previous RVE analyses of trabecular bone have 
generally assumed uniform traction or displacement 

boundary conditions. These assumptions can be 
shown to give upper and lower bounds on the effective 
stiffness. The difference between these bounds is sub- 
stantial for porous materials with low volume fraction 
like trabecular bone. Both Suquet (1985) and Hollister 
and Kikuchi (1992) have shown that the periodic&y 
boundary conditions used in homogenization theory 
are a compromise between applied traction and dis- 
placement RVE boundary condition assumptions. 
Because of this compromise, the periodicity assump- 
tion will give an estimate between the upper and lower 
bounds produced by traditional RVE methods. The 
homogenization based sampling method produced 
more accurate trabecular bone effective stiffness estim- 
ates than previous RVE based methods. 

The use of a digitized mesh presents a trade-off 
between the ability to construct and analyze numer- 
ous complicated three-dimensional meshes containing 
tens of thousands of elements and the numerical 
artifacts introduced by the jagged mesh. The results of 
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Tissue/Continuum SED Ratio Tissue/Continuum SED Ratio 

Fig. 6. Tissue/continuum strain energy density @ED) ratios for a 1 mm3 volume of lumbar spine trabecular 
bone (left) and proximal tibia1 trabccular bone (right). The majority of the tissue from each specimen shows a 
ratio between 0 and 100. Isolated regions show ratios up to 320. Some of the tissue (areas covered by light 
dots) has SED ratios less than one indicating that these portions of the trabeculae may be relatively 
unloaded. These results suggest that dividing the continuum SED by the bone volume fraction is a better 
reference for predicting bone adaptation than the unmodified continuum SED. However, scaling the 
continuum SED by the inverse of the bone volume fraction will not predict which portions of the trabeculae 

are unloaded. 

this study would suggest that numerical artifacts may 
introduce about a 5-10% error in the effective 
Young’s modulus calculations, even when only one 
element is present through the thickness. Errors for 
shear moduli may be. higher especially if only one 
element is present through the thickness of the strut. 
Although significant, this error is probably much less 
than errors which could be attributed to the use of an 
RVE approach and uncertainties in the assumed 
material properties for individual trabeculae. The 
errors in local stress calculations introduced by the 
jagged mesh may be more substantial requiring some 
numerical smoothing techniques to reduce the artifact. 
However, Keyak et al. (1992) found a good correlation 
(regression slope 0.85) between cortical bone strains 
predicted by a CT generated digital image mesh and 
experimental results. Furthermore, Hollister and 
Riemer (1993) found that digital image and smooth 
finite element meshes with the same mesh density 
produced very similar SED distributions except in a 

very localized boundary region between dissimilar 
materials. 

Sampling procedure predictions of effective stiffness 
correlated well with experimental results and had 
average absolute errors ranging between 31 and 38%. 
In contrast, average absolute errors for idealized 
models based on bone volume fraction squared 
ranged between 49 and 150% while errors ranged 
between 522 and 1268% for linear volume fraction 
models. Hollister et al. (1991) also found that idealized 
trabecular bone models did not consistently predict 
experimental results. The wide variation in trabecular 
bone architecture may preclude accurate prediction of 
effective stiffness for specitic specimens using idealized 
models based on assumptions about trabecular defor- 
mation. This study suggests that the widely varying 
architecture and trabecular orientation within even a 
1 mm volume will induce complex trabecular defor- 
mations under uniform continuum loads. While ideal- 
ixed microstructural models provide reasonably good 
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generalized and qualitative predictions of effective 
stiffness, computational analysis based on precise tra- 
becular bone architecture models may be necessary to 
quantitate effective stiffness for specific trabecular 
bone specimens. 

The ability to precisely estimate the effective stiff- 
ness of specific trabecular bone architectures is parti- 
cularly relevant for studies of age related bone fragil- 
ity. Pa&t and co-workers (Kleerekoper et al., 1985; 
Parfitt, 1987; Parfitt et al., 1983) have both shown that 
increased fracture risk with aging is related more to 
loss of structural elements than uniform thinning of 
trabeculae in trabecular bone. Mosekilde and co- 
workers (Mosekilde, 1988, 1990b; Mosekilde and 
Mosekilde, 1988) have shown loss of trabecular 
continuity and a preferential loss of horizontal 
trabeculae in vertebral bodies with age. These specific 
changes in trabecular bone architecture can be readily 
incorporated into the homogenization sampling pro- 
cedure to predict the resulting changes in effective 
stiffness and strength. Furthermore, it would be pos- 
sible to predict tissue level stress alterations in remain- 
ing trabeculae after loss of trabeculae continuity and 
structural elements. Tissue level stress estimates could 
be used to elucidate the relationship between in- 
creased stress in vertical trabeculae resulting from 
horizontal trabecular dropout which has been hypo- 
thesized to cause trabecular fracture with microcallus 
formation (Mosekilde, 1990b). 

A striking feature of this study is the large variation 
in tissue level stresses based on one continuum level 
stress. The results are consistent with those of Hollis- 
ter et al. (1991) who found maximum tissue/contin- 
uum SED ratios ranging between 60 and 100 for 
idealized trabecular bone models with volume frac- 
tions of 0.10. The volume fractions of the lumbar spine 
and proximal tibia specimens were 0.109 and 0.145, 
respectively. Despite the small difference in volume 
fraction, the ratio between the tissue and continuum 
level a,, stress varied from -91 to 340 for the lumbar 
spine sample and from -232 to 65 for the proximal 
tibia sample. The difference between continuum and 
tissue level stresses may thus depend as much on the 
specific trabecular architecture as on the bone volume 
fraction. 

Large variations in trabecular tissue stress within a 
continuum volume may have important ramifications 
for studies of trabecular bone remodeling. Many 
previous investigators have recognized that con- 
tinuum stress measures cannot reflect the wide varia- 
tion in tissue stresses. Carter et al. (1987) stated “the 
continuum model for trabecular bone misrepresents 
the true stress and energy values of the mineralized 
bone tissue”. They proposed dividing the continuum 
SED by the bone volume fraction to estimate the 
tissue level SED. Huiskes et al. (1987) also stated that 
it would be better to use the continuum SED divided 
by bone volume fraction as an estimate of a tissue level 
remodeling stimulus than the continuum SED. Wein- 

ans (1991) utilized this tissue level estimate in later 
remodeling simulations. Beaupre et al. (1990) pro- 
posed a tissue level remodeling stimulus equal to a 
continuum remodeling stimulus divided by the bone 
volume fraction squared. 

Two observations about tissue level remodeling 
stimuli and continuum analyses may be made based 
on tissue level stress estimates from this study. First, it 
is clear that dividing a continuum level quantity by the 
bone volume fraction squared or to the first power 
gives a better estimate of tissue stress states than 
continuum quantities alone. Second, it is also clear, 
however, that dividing the continuum stress state by a 
scalar does not adequately represent the complete 
range of tissue level stresses. Under the same con- 
tinuum stress, some trabeculae may be heavily stres- 
sed while others may be nearly unloaded, even within 
a 1 mm3 volume. This tissue level stress pattern may 
lead to different adaptations of trabeculae. For ex- 
ample, Mosekilde (1990b) noted that unloaded trabe- 
culae were subject to aggressive osteoclastic resorp- 
tion, while still connected and loaded trabeculae 
underwent the normal activation-resorption- 
formation remodeling sequence. Modified continuum 
level remodeling stimuli would not differentiate be- 
tween unloaded and loaded trabeculae within small 
volumes of trabecular bone. Furthermore, tissue level 
stress estimates showed that trabaculae within a vol- 
ume subject to a continuum compressive stress experi- 
enced both tension and compressive stresses at the 
tissue level. Some investigators have postulated that 
bone may remodel differently under tension and com- 
pression (Frost, 1986; Fyhrie and Hollister, 1991a,b). 
Scalar modified continuum stress measures would not 
be able to predict which trabeculae may be subject to 
tension or compression. 

In conclusion, the homogenization sampling pro- 
cedure presented here has given estimates of trabecu- 
lar bone effective stiffness consistent with experi- 
mental results. The procedure also can be used to 
calculate tissue level stresses. Tissue stresses so calcu- 
lated ranged between -200 and +300 times con- 
tinuum stresses for two samples of trabecular bone. 
The current application of the method is to selectively 
sample a microstructure. However, completely sam- 
pling the entire microstructure may yield more accur- 
ate results with the trade off being a substantial 
increase in computing time. Future work should ad- 
dress the accuracy of tissue level stresses and investig- 
ate numerical techniques which can estimate and 
decrease errors in tissue level stresses introduced by 
the digitized image based mesh. 
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