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Abstract - The constitutive equation for large elastic deformations is often used to model the mechanical 
response of soft tissue. This paper is concerned with the applications of the method of material identification 
to the determination of the strain energy density functions ( W) in such a mode, under the assumption that the 
tissue is incompressible and isotropic. It is shown that an identification experiment based on inflation by 
lateral pressure ofan initially flat circular membraneous specimen has a number of advantages. These are: 
the method of clamping the specimen, the ease of labelling material particles and measuring current 
coordinates, the easily determined domain of identification of I% and a means of systematically determining 
Wover a large deformation range. An example in the form of a hypothetical experiment is presented. 

1. lNTRODUCDON 

The constitutive equation for large elastic defor- 
mations is often used to model the mechanical re- 
sponse of soft biological tissues as well as rubbery 
materials. Its application depends on the knowledge of 
the strain energy density function (W) for the material 
under consideration. Forms for W for incompressible 
rubbery materials are reasonably well established. On 
the other hand, a significant amount of activity is 
concerned with the determination of strain energy 
density functions for soft tissues. 

The procedures which have been used to establish 
forms for W for rubber appear to be the guide for some 
current approaches for the determination of W for soft 
tissue. It will be useful, for present purposes, to briefly 
review the determination of W for rubber. The initial 
forms for W were developed from an experimental 
program based on subjecting specimens to unequal 
biaxial homogeneous deformattons. In order to assess 
the Mooney form of W in predicting non- 
homogeneous deformations, Adkins and Rivlin (1952) 
used it in the calculation of the deformed profiles of a 
clamped, initially flat, circular rubber membrane 
which had been pressurized on one side. These were 
then compared with actual profiles which had been 
previously measured by Treloar (1944). Agreement 
between the measured and calculated profiles was 
satisfactory at low inflation levels but less so at higher 
levels. Later, Klingbeil and Shield (1964), and then 
Hart-Smith and Crisp (1967) introduced improved 
forms for W for which the match between measured 
and calculated profiles was very good. 

Recently, a method has been suggested which 
combines these stages of construction from homo- 
geneous deformations, verification against non- 
homogeneous deformations and subsequent improve- 
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ment. Called material identification, it is discussed in 
detail by Iding et al. (1974). Material identification, as 
a method for determining the strain energy density 
function W, consists of four elements: (1) an experim- 
ental configuration, not necessarily producing homo- 
geneous deformations, which is convenient for speci- 
men support, load application and measurement of the 
motion ofspecimen particles during deformation ; (2) a 
representation for the strain energy density function in 
terms of undetermined parameters; (3) a method for 
calculating the coordinates of material particles for 
any reasonable choice of these parameters from a 
mathematical model of the experiment ; (4) a method 
for adjusting these parameters in order to minimize the 
error between measured and computed coordinates. 

Identification appears to be a very useful technique 
for determining the strain energy density function for 
soft tissues. Experiments are not limited to the impo- 
sition of homogeneous uniaxial or biaxial defor- 
mations in which the gripping of specimens and load 
application sometimes pose problems. Instead, in 
accordance with element (1) above, a specimen can be 
subjected to a convenient non-homogeneous defor- 
mation which avoids these problems. Such a specimen 
can be regarded as an assemblage of an infinite number 
of local homogeneous deformations. In effect, W is 

simultaneously fitted to data from these homo- 
geneous deformations and shown to lead to accurate 
predictions of the non-homogeneous deformations 
involved in the experiment. 

Iding et al. illustrated the identification procedure 
with a hypothetical experiment which utilized a flat 
tensile specimen with monotonically decreasing width. 
The experiment served to point out a difficulty with the 
procedure. The arguments of W, being strain in- 
variants, depend on the experiment and are not 
generally known u priori. It may be difficult to 
determine their domain’of values from experimental 
data. Thus, it is necessary to determine the domain on 
which W is defined as well as its values on that domain. 
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The purpose of this paper is twofold : (i) to show that thematical model is presented in Section 3. For 
the circular membrane inflation test used in the rubber convenience, it will be assumed that the materials 
experiments is especially suitable for the identification under consideration are incompressible and isotropic. 
procedure, and (ii) to point out the promise of the The former assumption is reasonable. In later work it 
procedure for the determination of the material pro- may be possible to extend the method discussed here to 
perties for many kinds of soft tissue. It will be shown allow for orthotropy. The determination of the domain 
that, in addition to meeting the requirements of of definition of W for each inflation level is discussed in 
element (1) in a simple and direct manner, this test Section 4. The details of elements (2), (3) and (4). 
enables the domain ofdefinition of W to be determined pertaining to the inflation test, are presented in 
at each inflation level. Furthermore, by considering Sections $6 and 7, respectively. Finally, the results of a 
increasing inflation levels, W can be systematically numerically simulated identification experiment are 
determined over as large a domain as desired. discussed in Section 8. 

Inflation techniques have been used to a limited 
extent in the determination of properties of some soft 
tissues. For example, the technique has been used as a 
basis for the measurement of material properties 
during equal biaxial extension, a state which exists at 
the center of the membrane, Melvin et al. (1975). 
Measurements have been made on samples of human 
and monkey blood vessel, aorta and diaphragm at the 
University of Michigan Highway Safety Research 
Institute. Recently, in a different approach, Miller et al. 

(1979), the circular sheet inflation test has been carried 
out using human fetal membrane. This tissue was 
modelled by nonlinear elasticity with a Mooney form of 
W The constants in this model were determined from 
the measurement of the deformed surface of the 
membrane. 

2. MEMBRANE INFLATION TEST 

A brief description of the experiment is presented 
here. More details will be given in a later paper. 

A schematic version of the test is shown in Fig. 1. 
The specimen is an initially plane membrane, assumed 
to be of uniform thickness h,. It is clamped with an O- 
ring seal, thereby creating the boundary of radius a,,. 

The membrane is inflated by controlled, continuously 
monitored air pressure applied to one side. This 
method avoids material failure at the clamping sup 
port and allows failure in the central region where the 
greatest distension and thickness reduction occurs. 

There are limitations to the use of the circular 
membrane inflation test as a basis for identification. 
Clearly, it can only be used to determine material 
properties for inplane biaxial stretching. A different 
test configuration would be necessary for other defor- 
mation states. Even with this limitation, the test should 
be appropriate to the material loading conditions for 
many soft tissues. This test also restricts consideration 
to membraneous tissue whose consistency is such that 
it can be clamped using a retaining ring. Many kinds of 
tissue samples, such as mentioned before, fall into this 
category. 

The scope of the present work is confined to the 
presentation of the theory and a numerical example. 
Experimental identification of the elastic properties of 
an actual material will be presented in a later paper. 

The experiment is described in Section 2. Its ma- 

Before deformation, the specimen is marked with a 
grid of concentric circular and radial lines. This can be 
done, for example, with an inked rubber stamp. The 
particles to be followed during deformation are the 
intersections of these lines. A mirror is mounted next to 
the specimen at an angle to the vertical. A movie 
camera mounted overhead photographs the top and 
side views of the specimen simultaneously during 
inflation. By determining the particle coordinates from 
a movie frame and then using a direct linear transfor- 
mation photogrammetry technique (Alem et al., 1978), 
the actual radial and height coordinates can be 
determined for a specified inflation state. This is done 
for several states of inflation. These coordinates, the 
corresponding inflating pressure and the geometrical 
properties of the undeformed membrane provide the 
data used in the identification procedure. 

I 

lfF43- 
3. MATHEMATICAL DESCRIPTION 

The conditions of the experiment are assumed to be 

0 

appropriate for axially symmetric deformation. At 

P each level of inflation, the membrane forms a surface of 
+ revolution. Let the polar axis of a cylindrical coor- 

dinate system coincide with the axes of symmetry of 
the deformed surfaces and let the origin lie in the 

1 midplane of the undeformed membrane. As shown in 

l-20 
,I=? 

Fig. 1, a particle of the membrane midsurface at (r, 0,O) 

in the undeformed state moves to [p(r),O,z(r)] in the 
(0) (b) deformed state. In view of the axisymmetry, the 

Fig. 1. Schematic version of the inflation test. (a) Undeformed principal directions of stress and stretch at each 

specimen. (b) Inflated specimen and grid system. particle are known a priori. These are in the meridional 
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(1) and circumferential (2) directions tangent to the 
membrane and also normal to the surface. The prin- 
cipal stretch ratios in these directions are given by, 
respectively, 

+!$[~t)‘+[!?i’li’, 

(3.1) 

1, =p, 
1 

A,=,., 
r Al/.2 

where dr is the length of a radial line element in the 
initial state and d< is the length of the corresponding 
meridional element in the deformed state. The equa- 
tion for I, is determined by the incompressibility 
condition. 

Let ~,(a = 1,2) denote a principal stress. Its stress 
resultant per unit length of a circumferential or 
meridional line in the membrane surface is 
T, = I&a,. The force balance equations relative to 
the principal directions, transformed to the initial 
configuration, are 

d7, 
dr+ 

0, - T2) () 

rl2 

= 7 

K,T, + ~2q = P, 

(3.2) 

(3.3) 

where p is the inflating pressure, q is an associated 
kinematic variable defined by 

dp 
‘l=Tr 

and K~, ~2 are principal curvatures given by 

(3.4) 

K1 = j_:[n: _  ~‘I”2 ’ 

(3.5) 

Kz .= 
[#I: - T+]j 2 

r&l, 

The invariants of the deformation tensor, in terms of 

the principal stretch ratios, are 

I, = i: + JI; + A: ; I, = ,I;= + A;= + #I;=. 
(3.6) 

Let the strain energy density function for an isotropic, 
incompressible, elastic solid be denoted by. W(I,, I,). 
The constitutive equation is 

0, = (nf - Ai)(w, + E.: w,), (3.7) 

where W, = aWjal,, and /? = 2 when a = 1, and jl = 1 
when a = 2. The method of solving the-se equations for 
p(r) and z(r) will be presented in Section 6. 

Let the radii of the material particles at the grid 
intersection points on the undeformed specimen be 
denoted by ri. i = 1,2,. . ., N, where N is the number of 
intersection points. The measured coordinates of a 
particle initially at radius ri will bedenoted by (~7, G). 
The circumferential principal stretch ratio at this 
particle can be computed using the definition in 

equation (3.1). An approximation to the meridional 
principal stretch can be obtained from the relation 

L,(ri) = A</Ar, (3.5) 

where A< and Ar are the distances between material 
particles in the deformed and undeformed states, 
respectively. Finally, the invariants at this particle can 
be calculated from equations (3.1) and (3.6). 

From the solution of the boundary value problem 
representing this experiment for an assumed ex- 
pression for W the coordinates [p(r), z(r)] of the 
material coordinates at the grid intersection points ri 

are denoted by pi = p(ri), $ = z(ri). The error between 
the calculated and measured points is defined to be 

E = i [(pi - pY)2 + (6 - z:,‘]. (3.9) 
i=l 

4. DOMAIN OF DEFINITION OF W 

The second element of the identification procedure 
is a general representation for the strain energy 
function in terms of arbitrary parameters. Actually, in 
view of equation (3.7), it is more direct to construct 
representations for the derivatives W,(I,, I=). This 
requires some knowledgt of the range of values taken 
by I, and I,. Iding et al. pointed out that, owing to 
their definition in equation (3.6), the domain of 
possible values of I, and I, lies between curves 
determined by a pair of inequalities. Subsequently, 
Sawyers (1977) and Carroll (in press) independently 
proved that this domain is bounded by curves A and C 
shown in Fig. 2(a). Curve A represents equal biaxial 
extension (.I, = 1,) and curve C represents uniaxial 
extension (A2 = 1, = ,I; I’*). Thg straight line B repre- 
&nts the condition I, = I, which arises when a 
principal stretch ratio equals one. This is often referred 
to as a state of pure shear. Values for I, and I2 lying 
between curves B and C arise when two principal 
stretch ratios are less than one. Values lying between 
curves A and B arise when two principal stretch ratios 
are greater than one, i.e. unequal biaxial extension. 
This would seem to represent the conditions gppro- 
priate to the deformation of most soft membraneous 
tissue. 

Consider an arbitrary-candidate test specimen in a 
state of non-homogeneous deformation. A point in the 
II-I2 plane is associated with each material particle. 
The points associated with the entire specimen form a 
domain contained between curves A and C. As dis- 
cussed by Iding ef al., this domain and its variation 
with a change in specimen deformation is generally 
unknown (I priori. Estimates of.the extent of this 
domain could be made by solving the appropriate 
boundary value problem using assumed forms for W 
Alternatively, an attempt could be made to measure 
local homogeneous deformations and compute the 
corresponding values of I, and I,. In general, either 
method is tedious and leads to uncertain knowledge of 
the 1,-I, domain on which W is to be identified. 
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Fig. 2. Relation of inflated states to paths in the I,-Iz plane. 
(a) 1,-I, plane showing curves of limiting values. (b) Inflated 
state corresponding to path l-l in the 1,-I? plane. (c) 

Inflated state corresponding to path 2-2. 

When identification is based on the membrane 
inflation test, the domain of identification can be 
determined. Consider a fixed state of inflation. Because 
of the plane stress state at each material particle and 
the axial symmetry of deformation, I, and IZ vary only 
in the meridional direction along the membrane mid- 
surface. It follows that I, = g(f,), a curve in the X,-I, 
plane. Furthermore, from the (I priori knowledge of the 
principal directions, each material particle is known to 
be in a state of unequal biaxial local homogeneous 
extension along the circumferential and meridional 
directions, as shown in Fig. 2(b). At the membrane 
center, 1, = 1, > 1, an equal biaxial state. The cor- 
responding point (I,,1,) lies on curve A. At the 
clamped support, 1, > 1,1, = 1, a state of pure shear. 
The corresponding point (I,, 1J lies on curve B. The 
result is that each inflated state corresponds to an 
I,-1 I path connecting curves A and B. 

This path can be estimated from experimental data. 
The stretch ratios are essentially uniformly distributed 
over the central region of the membrane. Let rl = 0 
and rZ be the smallest non-zero grid radius. Then, 
using equation (3.1), and the notation introduced in 
Section 3, 

J,(O) = J.,(O) = L&z) = p’;lrz. (4.1) 

Computing the invariants from equations (3.1) and 
(3.6) gives the point of intersection of the !,-I, path 
with curve A. Next, using equation (3.8), 1, at the 
support can be estimated. Since A2 = 1, the value of 

11 = I, can be computed and the point on curve B is 
known. Finally, according to the discussion at the end 

of Section 3, II( 12(ri) can be estimated at the 
interior grid points. 

The change of the 1,-I, path with increasing levels 
of inflation can be discussed also. Let curve l-l of Fig. 

2(a) represent the 1,-I, curve corresponding to the 
inflated state shown in Fig. 2(b). Now suppose that the 
membrane is further inflated as shown in Fig. 2(c). The 
stretch ratios I L = ,I2 = I increase at the center and 
i., = 1 increases at the support. The corresponding 
invariants are 

center : I, = 212 + 1-4; I, = 2L-2 + P; 

(4.2) 
support : I, = I, = 1 + 12 + l-2. 

The invariants corresponding to the center and sup 
port increase in value. The end points and thus the 
entire new 1,-I, curve move to a region of larger 
values. This is indicated by curve 2-2 of Fig. 2(a). 
According to equation (4.2), at the center I, increases 
as 1’ and I, increases as 14, while at the support 
1; = I, increases as x2. Assuming that iI is appro- 
ximately constant over the membrane surface, the 
point on curve A moves much more than the point on 
curve B. Consequently, the 1,-I, curve becomes 
approximately parall’el to the I, axis, as shown in Fig. 

2(a). 

5. REPRESENTATION FOR W, 

Three items are needed in order to specify a 
representation for W, : a set of basic functions of I, and 
I,, a set of parameters and the manner in which they 
are to be combined. In the case of rubber elasticity, 
choices for these elements were deduced by inspection 
from the results of a large number of experiments 
involving homogeneous deformations. An important 
characteristic of each of the suggested representations 
is that it is defined by a single analytical expression 
over the entire 1,-I, plane. 

Suppose W, is to be found for some material other 
than rubber using the identification method based on 
the membrane inflation experiment. It is useful to 
regard W,(I,, I,) as a surface over the domain between 
curves A and C, with that between A and B of interest 
here. 

Now, each inflation state corresponds to a path in 
the I,-!, plane, and a section of the surface which 
projects onto this path (see Fig. 3). By considering a 
finite number of inflation states, enough sections are 
introduced so as to give sufficient definition to the 
shape of the W, surface. As the inflation level is 
increased, knowledge of this surface is extended to a 
larger domain. 

The above suggests two approaches that can be used 
to constict the W, surface, i.e. identify W, from the 
experimental data : (1) a general representation can be 
constructed which holds over the entire I,-I2 domain 
of interest. Data from all of the inflation levels are used 
simultaneously to determine the parameters; (2) a 
separate representation is constructed for each section 
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Fig. 3. Projection of I,-!, paths onto the W, surface. 

of the W, surface. The parameters are determined from 
each level individually. 

There are several factors favoring the second ap 
preach, which is used here. First, the individual 
representations can be incorporated into a more 
general one which interpolates W, between the 1,-I, 
paths. Second, new segments of the W, surface can be 
determined as needed. Third, only a few parameters 
need be introduced at each step. This latter point is an 
advantage as far as the error minimization of element 
(4) is concerned. 

Since results from an extensive program of homo- 
geneous deformations will not be available to suggest 
the form of its dependence on I, and 12, the repre- 
sentation for W, must be quite general. Following 
Iding et al. (1974), a finite element representation is 
used for this purpose. Then, along the curve I, = g( I, ), 

W, = ; A~‘c#+(I,,I,), (5.1) 
i=l 

where 4i are a set of basis functions and A?’ are the 
unknown constants. Let [I’:‘, I$‘], IiL) = g[f’j’], de- 
note a set of nodal points along the It-I, path and at 
its intersections with curves A and B. The basis 
functions pi are chosen as interpolation functions 
between the nodes. If these are linear interpolation 
functions, A?’ represent the values at the nodes. Figure 
4 shows this case. 

During the process of determining the constants 
A?), a set of values is selected and the boundary value 
problem is solved. The error in equation (3.9) is used to 
modify this set, and then the boundary value problem 
is solved again. Each set of values and solution results 
in a different I,-!, path. It is expected, however, that 
these paths are close to the experimentally determined 
one. In fact, as will be seen in the next section, all paths 
will share the same point on curve A. Thus, the method 
of determining the constants Ai” requires that the 
domain of definition of equation (5.1) be extended to a 
neighborhood of the experimental 1,-I, path. The 
simplest means of doing this consists of (a) extrapolat- 
ing the basis functions at A and B, and (b) assuming 
that the basis functions are independent of I, in some 

Fig. 4. Approximation of W, along an 1,-I, path by linear 
elements, extrapolation of the path. 

neighborhood about the experimental It-I, curve. 
This is illustrated in Fig. 4. 

It is possible to select the inflation levels so that the 
dependence of W, on I, can be estimated. Recall from 
Section 4 that, as the inflation level increases, the 1,-I, 
paths become increasingly parallel to the I,-axis, with 
the point on curve A moving out faster than the point 
on curve 8. As discussed in Section 3, the experimental 
data can be. used to estimate the A-point quite 
accurately and the B-point adequately. Thus, suc- 
cessive inflation levels can be selected so that the 
projections of their paths along the I,-axis overlap. 
Suppose nodes are selected on the two curves at the 
same values of I,. Then when the constants A{” have 
been found for the two curves, it will be possible to 
determine the variation of W, with It. 

If W, can be assumed to be independent of I,, then 
W, is independent of I,. Identification is then greatly 
simplified. Suppose paths l-l and 2-2 correspond to 
two successive inflation levels, as shown in Fig. 5, and 
W, has been identified for the former. Because a finite 
element representation has been used, it can be 
extended to the enlarged I, interval by adding on a 
new segment. The previously determined constants 

w2 4 

Fig. 5. Extension of the representation of W,(I,) because of 
overlapping I,-I, paths. 



can be kept fixed while the optimization procedure is where A = (~?t,i,i,)‘, and [ denotes the right hand 
used to determine the new constants. In this way, the sides of equations (6.2)-(6.4). 
number of constants to be determined at each step can Boundary conditions are specified at r = 0 and 
be kept to a minimum. r = 1. It is shown in Green and Adkins (1960) that at 

r = 0,1, = k2 = q and dfidr = 0, f = A,, I,, 9, n,, a2. 
6. COMPUTING THE PARTICLE COORDINATES Then by equations (6.1) and (6.5), at r = 0, 

The equations presented in Section 3 can be com- 4 = ’ 1 0, ri = 1, i, = ~t(&J,&). (6.8) 

bined to give two equations for p{r) and z(r). These The support condition implies, by equation (3.1), that 
form a system of coupled second order nonlinear atr-1, 
ordinary differential equations. Most numerical pro- 
cedures first reduce these to a system of first order 1, = 1. (6.9) 

equations. Since equations (3.2)-(3.7) already form a Once equation (6.7) has been solved, subject to 
first order system, a great deal of effort could be saved equations (6.8) and (6.9), the membrane coordinates 
by starting there. However, these equations can be put are computed from equation (3.1). These give 
into a more convenient form. 

First introduce the dimensionless variables ? = r/a,, 
Z = z/a,, b = p/a,, 5, = ux/Co, i?= W/Co where a0 is 

p(r) = r12Wr 

, 
(6.10) 

the membrane radius and C,, is a convenient para- z(r) = 
I 

A,(1 - $‘)I ’ dr. 
meter with the dirhensions of stress. By their definition I 
in equations (3.1) and (3.4), L,, AL and q are unchanged 
by this non-dimensionalization. Next define the 

There are several reasons why the problem has been 

transformation 
formulated in this fashion. First, three dependent 
variables is the smallest number possible which results 
in a first order system to solve. An alternative system 
could be derived in which the three dependent vari- 
ables are L,, 1, and 1. However,‘this would necessitate 

The equilibrium equations (3.2) and (3.3), supplemen- differentiating functions W, in equation (3.7), which is 
ted by equation (3.5). become undesirable. Secondly, W, can be changed without 

dd, +ri - c?, affecting the form of equations (6.2)-(6.4), the method 
-- 

dr- r ’ 
(6.2) of numerical integration and the method of obtaining 

the inversion (6.6). All that is needed is a change in the 

drj (1 - if) ti2 subroutine for computing W, from given values of i., 
-=----- 

dr r 3, 

# - 4’)’ 2412 ( (6,3) 

01 
and I,. 

There are several mathematical topics to be dis- 
where P = pao/hCo. Eliminating p using I., in equation cussed. The first is the method ofintegrating the system 
(3.1) and q in equation (3.4) gives a compatibility of differential equations, incorporating the inversion 
relation (6.6). Suppose a fourth order Runge-Kutta integ- 

dl., i.,i - ,I2 
ration scheme is to be used. The error in such a scheme 

-=-. 
dr 

(6.4) is O(Ars) where Ar is the radial increment. Let the 
r solution be known at the point ri and denote its values 

Equations (6.2)-(6.4) define a first order system of there by I., i, Izi, ii, d, ir iri. The procedure for obtaining 

three differential equations for I.,, J.,, r), i,, G2. The the solution at the point ri+ I involves several appli- 

necessary additional equations are provided by com- cations of the following operation. The right hand 

bining equations (3.7) and (6.1), which can be denoted sides of equations (6.2) and (6.4) are calculated using 

as these values, multiplied by Ar/2 and then used to 

6, = 4,(iI,A2); &2 = d2(i.,,i2). (6.5) 
increment $ri, rji and L,i. Denote these new values by 
c?,, rj’ and X2. Regarded as functions of 4,, rj and I.,, as 

System (6.2)-(6.5) can be reduced further. The suggested in equation (6.7), the right hand sides are 

variable G1 is eliminated using the second part of now to be evaluated at these new values. However, the 

equation (6.5). The first part of equation (6.5) estab- actual evaluation of the right hand sides of equations 

lishes a relation between &r, 1, and 1,. It is assumed (6.2)-(6.4) also requires new values for I., and G2. An 

that this can be inverted to give equation for the new value of it is given by the first of 
equation (6.5): 

which can now be used to eliminate I,. The method of 
c?t = 4t(n,.i.;). (6.11) 

inversion will be discussed later. Note that the system This is solved by iteration for Z, to give the inverse (6.6) 

is now reduced to three equations for c,, fi and I,, evaluated at c?, and ,Y2, i.e. 

d/I i-‘t = b*(d;, &). (6.12) 
+ = F(A, r, P), (6.7) 
cv 

_ - With this new value, a2 is computed from equation 
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(6.5). Since (ii, ii, rj’, t?i, Zz) are known, the operation 

can be repeated. 

The second topic is the method of satisfying the end 
conditions (6.8) and (6.9). which is as follows. The 
value of the stretch ratio at r = 41,. is specified from 
the experimental results using the definition of 1, in 
equation (3.1). For each choice of the constants in the 
representation for W,, d, can be evaluated. Equation 
(6.8) now provides initial values for the integration of 
equation (6.7). This can proceed as soon as a value for 
P has been specified. Experimental data gives the 
radius aO, thickness h and the pressure of p at each 
inflation level. Since the parameter Co is as yet 
arbitrary, P is also arbitrary. The value for P will be 
determined in order to satisfy equation (6.9). As a first 
step, a value P, for P is assumed (or equivalently Co), 
and equation (6.7) is integrated. Note, now, the 
following property of equations (6.2)-(6.4). If r = $P, 
the equations become independent of P. The solutions 
depend only on r^= rP. In particular, 1, = ,i2(rP). 
Suppose L1 = 1 at radius r* # 1 for P = P,, i.e. 
12(r*P1) = 1. Then AI = 1 at radius r = 1 at a dimen- 
sionless pressure P,r*. In actual computation, r* can 
only be estimated, since values for ,lL are known only at 
the radial mesh points. However, a good estimate for 
the correct value of P can be obtained by this scaling 
method. Improved values are then obtained by 
Newton-Raphson iteration. 

In the numerical integration, values are provided for 
W,/C, which, by equations (3.7) and (6.1), enter into 
the evaluation of ti,JC,. For consistency, correction of 
the modulus in the definition of P requires correction 
of the modulus in these evaluations. This is taken care 
of by regarding WJC, as (WJr*)/(C,Jr*). Thus, if W, 
has a finite element representation (equation 5.1), the 
solution to the boundary-value problem corresponds 
to the constants @/r*. 

7. DETERMINING THE CONSTANTS A, 

According to the method outlined in the preceding 
section, the coordinates of the grid intersections in the 
deformed membrane can be regarded as functions of 
the constants Ai”. By equation (3.9). the same is true of 
the error E, i.e. E = E(Ai:‘). The best choice for these 
constants is that which minimizes the value of E. The 
methods for calculating this optimal choice.fall into 
two categories. The first category includes the method 
discussed by Iding et al. This essentially consists of 
deriving the system of nonlinear equations which 
represent the necessary conditions for a minimum of 
equation (3.9), i.e. aE/iJ[&‘] = 0, and then solving 
them by an appropriate numerical procedure. Typical 
of the second category was the approach used by Lin 
and Sackman (1975) in an application of the identifi- 
cation method in one-dimensional visco-elasticity. An 
error function defined in a manner similar to E was 
operated on directly by an optimization procedure 
which was developed in another context. 

This latter approach is the one used in the present 

work. It uses a code called PRAXIS which is available 
in the Computing Center Library at the University of 
Michigan. In effect, for each choice ofconstants ,!I’, E 
is approximated locally by a quadratic surface. Data 
for determining properties of this surface are obtained 
by evaluating E at a number of neighboring choices. 
When sufficient data has been obtained, a new set of 
constants is calculated which leads to a local minimi- 
zation of E. The process is then repeated. Each 
evaluation of E calls, as a sub-program, the program 
for solving the boundary-value problem. During the 
evaluations, the pressure and the geometric para- 
meters specifying the inflated state are held fixed. A set 
of values for the constants Ai” is the input data and 
computed coordinates pi, 6 are the output data. The 
number of evaluations of E depends on the number of 
constants Ai” to be found. Thus, by using the mem- 
brane inflation test, the number ofconstants and hence 
computer costs is kept small. 

The convergence criterion used in PRAXIS is met 
when a norm constructed from the difference of the 
constants determined in two successive local minimi- 
zations is less than a specified tolerance, I:,,. In appli- 
cations, it was found that satisfying this criterion led to 
longer computation time than needed. Because the 
experimental data is known only to a certain number 
of decimal places, several neighboring choices of the 
constants could lead to essentially the same minimum 
value of E. Successive minimizations could determine 
neighboring choices of those constants and not satisfy 
the convergence criterion of PRAXIS. Thus, a choice 
of constants was accepted if after an evaluation. E was 
less than some tolerance I:~:. 

8. HYPOTHETICAL EXPERIMENT 

The results of a hypothetical material identification 
experiment based on the membrane inflation test are 
discussed below. Data for this experiment were ob- 
tained by computing several inflated states using the 
following form of the strain energy density function 
proposed by Alexander (1968) : 

W, = Cl @‘I-“‘; W2 = 
C2 

(11 - 3) + CJ 
+ CA 

(8.1) 

where k = 0.00015, c, = 17.0, C1 = 19.85, 
c, = 0.735, c, = 1.0. 

The method of solving the boundary value problem, 
presented in Section 6, requires that a value for E.,, the 
polar stretch ratio defined in equation (6.8), be speci- 
fied. Since each inflated state corresponds to a unique 
value of L,, selection of the former is equivalent to 
selection of the latter. Inflated states and the cor- 
responding pressures P were computed for 
i., = 1.2-2.0, with At, = 0.1, as well as for A,, = 2.5, 
3.0 and 4.0. At i., = 3.0, the equations were integrated 
with radial increments Ar = 0.02 and & = 0.1. Since 
the corresponding computed coordinates agreed to 
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Fig. 6. Plot of W,(f,) based on equation (8.1). 

four decimal places, all further computation was 
carried out with Ar = 0.1. The grid intersection points 
were chosen at ri = ia,/lO, the same points where the 
coordinates were computed. Finally, the dimensional 
pressures were computed using h/a, = 0.01 and 
co = Cl = 17.0. 

For the range of values of I, considered, W, is nearly 
constant over the membrane. Consequently, it was 
decided to identify W2 as a function of I,. This function 
is shown in Fig. 6. W, was identified twice, first with the 
form shown in equation (8.1) and then with a finite 
element representation. 

The first choice was selected as a test of how well the 
procedure could reproduce the constants from which 
data was generated. The error E now becomes a 
function of the set C = (C,,Cs, C,), the constants 
appearing in equation (8.1). Experimental data was 
taken from the inflated state corresponding to 
& = 3.0. For this case, I, varied from 3.174 at r = 1 to 
81.222 at r = 0. Figure 6 shows that WL decreases 
rapidly on the interval 3 < I, 5 15, and then more 
slowly to the asymptotic value W, = 1. The cross 
marks indicate the values of I, at the grid intersection 
points corresponding to the ‘measured coordinates’. 
This inflation state provides data split equally between 

the range of rapid variation and the range of slower 
change. 

The set C was determined twice. First the ‘measured 
coordinat&‘, ~7, -7. i = 0,1,2,...9 were chosen to 
agree with the computed coordinates to 8 significant 
figures. The minimization process was found to be 
somewhat sensitive to the initial estimate 
CO = (C4. c;, C”,), either because 
of the operation of the PRAXIS program or 
the topology of E(C). For a given starting value 
Co, the error E would be rkduced at each local 
minimization, and would then increase as choices for C 
were tested for the next local minimization. Thii 
process would continue until the convergence criterion 
was met or the computation time limits were exceeded. 
When the latter occurred, computation was restarted 
using the best values for C in the previous run. 
Repetition of this process let to a starting choice for the 
final run of C = (20.779, 0.7725, 1.03241, which was 
fairly close to the desired solution. The corresponding 
value of E was less than 10b3. The solution converged 
to C = (19.85 1,0.7350, 1.00005), for which E < lo- lo. 
The maximum difference in the coordinates was 
2x 10Tb. For the second determination ~7, .zy were 
equated to computed coordinates after rounding them 
to 3 significant figures. It was found that several 
choices of C in some neighborhood of (19.85, 0.735, 
1.0) were equivalent in the sense that max ( 1 py - pi 1, 
1 z: - d 1) < 0.001. A typical choice is C = (20.024, 
0.741, 1.007). 

These results are very satisfactory. However, they 
are biased in that the same form of representation was 
used to identify W, as was used to generate the data. 
Therefore, W, was identified again using a finite 
element representation. Since W, depends only on I,, 
the procedure discussed at the end of Section 6 was 
followed. That is, Wz was identified initially in a limited 
I2 domain. Then, by using higher levels of inflation, 
identification was extended to new intervals. 

Linear elements were used initially. However, be- 
cause W, decreases so rapidly near I, = 3, it was 
difficult to get satisfactory results without going to 
very small intervals. Consequently, it was decided to 
approximate W, by cubic polynomial elements, i.e. in 
the interval Xi I 12 < Xi+ 1: 

-I 0 
t 

Fig. 7. Plot of NW,) = (W~)LM~M - (W,),,,,,. 
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w, = ([A, + (Aj(.K, - .K,+ I) - 2Ai) 

x(12 - .x,)‘(+ - .K,,1,](r2 - .K;*l)2 

+ [A+1 + (AIAl(.Ki** - Xi) - 2Ai, *) 

x (r2 - ‘K ,LlNT+, - .Ki)](fl - .K;)L\j(.Ki - .Ki+*)‘, 

(8.2) 

,+ and A; denote the values of W2 and c?W, ‘21, at the 
nodes x,. This element allows continuity of Wz and 
2 W2,:S12 there. 

The nodal points xi were selected as the upper limits 
of the I2 ranges covered by the solutions of the 
boundary value problems for i, = 1.2, 1.3, 1.4, 1.5, 1.7, 
1.9. These points are shown in Fig. 8. This choice 
appeared satisfactory to give small fz intervals when 
WI decreases rapidly and larger intervals when W, 
decreases more slowly. 

For each inflation state, ~7. z: were obtained by 
rounding the computed coordinates to 4 significant 
figures. W, was identified on the domain 3 < I, 
I 13.586 in 6 stages: 

(1) the first element covered the interval .x, 5 lz 
I .~r. Constants A,, A;. A?, Ai were determined 
using data for & = 1.2; 

(2) the second element covered the interval xz I I, 
I .x3. The constants were determined using data 
for i., = 1.3. Initially, AI, Ai were kept fixed 
while A,, A’, were being determined. It was found 
that if for several intervals, only the constants at 
the right end of the interval were found, then W, 
tended to oscillate. This was eliminated by 
keeping A,, A; fixed and determining A,, A; and 
A,, A;. This procedure was followed in the 
remaining intervals ; 

(3) the third element covered the interval .xj I I, 
I .xa. The previously determined constants A,, 
A;, AZ, A; were held fixed while A,, A; and A,, 
Ai were to be found using data for .Y,, = 1.4. The 
change in A3, A; would affect the fit of the 
element in the interval .x2 I I, < xs. The data 
for i., = 1.4 provided only two points in this 
interval, as can be seen from Fig. 8, which is not a 
sufficient number to ensure a proper fit of the 
element. To overcome this difficulty, it was 
decided to incorporate the data for &, = 1.3. 

To accomplish this, the error E was genera- 
lized. Let E”’ denote the square error defined in 
equation (3.9) for the zth inflated state. Then the 
generalized error is 

E = i E”‘, (8.3) 
I=1 

where 1%’ is the number ofstates to be considered. 
The program was modified in two ways: (a) to 
accommodate the increased amount of input 
data, i.e. measured coordinates, polar stretch 
ratios and pressures for each inflation level : (b) 
for each evaluation of E, the boundary value 

Fig. 8. Range of f2 values for various inflated states, and 
choices for nodal points xP i., denotes the stretch ratio at 
r = 0. The vertical marks denote I2 values at the grid radii. 

problem would have to be solved for the N 
inflated states ; 

(4) the fourth element covered the interval x1 $ I, 
2 .x5. Constants Aa, A;, A,, A’, were determined 
using data for i., = 1.5 and i, = 1.4. The latter 
set provided points in the interval xs < I, I .u,; 

(5) the previous results indicated that W, is decreas- 
ing less rapidly. The next element covered a 
longer interval, .~s i I, I .x6. Data for i., = 1.6 
and i., = 1.7 were used ; 

(6) the last element considered covered .x6 I 1, 
5 .x7. The constants were determined from data 
for i., = 1.8 and L, = 1.9. 

Values for the constants were accepted if either (a) 
the PRAXIS program tolerance I+ c lo-’ or (b) the 
error tolerance I:): < 10-s. Stages (l)-(4) and (6) 
converged by (b) and stage (5) by (a). For the first 
element, the initial guess for the constants was de- 
termined by experience with the linear elements. For 
the later elements, the initial guess was obtained by 
linear extrapolation from the results at the right end of 
the previous element. About 150 evaluations of E were 
required at each stage in order to obtain a satisfactory 
choice for the constants. 

For the identified W,, the fit of the computed profiles 
to the measured profiles was very good, with a 
maximum error of about 0.1 “A. The identified W, also 
compared very well with the exact form given by 
equation (8.1). Table 1 compares the nodal constants 
of the identified W, with those calculated from equa- 
tion (8.1). Figure 7 shows the difference between the 
identified W2 and that given by equation (8.1) on the 
entire range of identification. 

As was mentioned under stage (2), whenever a new 
element was added, the constants at both ends of 
the interval were determined by the minimization. 
This meant that the constants at nodes .x~-.K~ were 
determined twice. Table 2 shows the changes produced 
by the second determination. As would be expected, 
the biggest change was in the slopes. 
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Table 1 

3.0 28.007 -0.752 - 36.744 1.559 
3.4626 17.575 -0.611 - 13.840 1.391 
4.036 12.208 - 0.45 - 6.329 0.7326 
4.8620 8.643 - 0.347 - 2.9432 0.3641 
5.951 6.3852 -0.2935 - 1.4610 0.1237 
9.0 3.9473 -0.1985 - 0.4376 - 0.0079 

13.6 2.7512 -0.1542 -0.1545 -0.0305 

(. )s means computed from equation (8.1). ( ), means identified value. A( ) = ( ), 
-( )c 

Nodal point 

Table 2 

First determination 

W2h b3%/~12h 

Second determination 

Wh ww~,), 

3.0 28.0 - 22.0 - - 
3.4626 17.0 - 22.0 17.0 - 11.0 
4.036 12.5 - 6.0 12.0 -5.0 
4.862 8.0 -3.5 8.3 -2.6 
5.951 6.3 - 1.3 6.0 - 1.4 
9.0 3.8 -0.6 3.7 -0.44 

13.6 2.4 -0.2 - - 

The use of the finite element representation in the 
integration of equation (6.7) requires discussion of a 
final computation issue. In computing the solution at 
rj+ I by the Runge-Kutta method, it is assumed that 
the functions have a continuous fourth derivative. 
Suppose that I,(rj) is in the domain of one basis 
function and J2(rj+ I) is in the domain of the next, so 
that it becomes necessary to change from one to the 
other within the interval. Since W, will not have this 
required continuity at the nodal points of its repre- 
sentation, the integration scheme may not give the 
correct result. This difficulty is overcome by following 
the suggestion of Iding er ai. The same basis function is 
used for all calculations in the interval between ‘j and 
rj+r. If this interval is sufficiently small and the 
variation of the solution sufficiently slow, the error 
induced by this assumption is likely to be small. The 
satisfactory results described here suggest that this 
seems to be the case. 
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