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RESUME

™

Ce memoire présente un modeéle analytique pour prédire
l1'influence des non-lindarités assocides & 1 'écoulememt sur
le comportement dynamique de 1 'ensemble de la structure
formée.par la éoque et le milieu <fluide environnant. Sa
formulation a nécessité l'emploi de deux opérateurs
linéaires régissant respectivement 1°'équilibre de 1la coque
et le potentiel des vitesses, d‘une condition frontieére

d’'imperméabilité linéaire, et d'une condition frontiére

dynamique non-linéaire.

I1 s'agit d'une méthode hybride basée sur les théories -
des coques minces et des écoulements fluides irrotationnels
non—visqueux et sur la meéthode des éléments finis. Elle
s 'applique & des cogues cylindriques wminces anisotropes,
non—uniformes et sonises & différentes conditions aux

rives.

Les fonctions de déplacements de la paroi et de 1la
colonne fluide sont dérivées respectivement des équations de
Sanders et du champ de vitesse aséocié 4 la colonne.
L 'ensemble des matrices quantifiants leurs contributions
relatives a l'équlibre sont déterminées par intégration

analytique éxacte.



La reésolution des eéquations couplées a été effectuée
pour un regime d’'écoulement stagnant. Pour un régime avec
écoulement, quelques adaptations analytiques sont proposées

pour le ramener & 1 ‘analyse modale conventionnelle.

Les équations non-linéaires du mouvement sont
solutionnées par une méthode numérique: le Runge—-Kutta

d ordre quatre.

Les variations des fréquences sont alors déterminées en
fonction de 1‘’amplitude du mouvement. Les tendances des

non—lineéarités sont du type "softening®.



" ABSTRACT

This report presents an analytical model for predicting the
influence of non—finearities associated with fluid flow on the

dynamic behaviour of a structure consisting of shells and a

surrounding fluid medium. The mode! requires use of two linear
operators governing shell equilibrium and velocity potential, a
ltnear boundary condition of impermeability and a non—linear dynamic

boundary condition.

The model consists of based on thin shelil th

L

f

hybrid method,
and the non-rotational flow of non-viscous fluids plus the finite

element method. The method is applicable to non—uniform thin

anisotropic cylinders subjected to different boundary conditions.

The displacement functions for the wall and liquid column are
derived from Sanders' equations and from the veloc}ty field
associated with the éolumn, respectively. The set of matrices
describing their relative contributions to equilibrium is determi

by exact analytical integration.

ned



The coupled equations are solved for the no—-flow problem. For
cases where there is fluid flow, certain analytical modifications are

proposed to bring the situation back to conventional modal analysis.

The non—linear equations of motion are solved by the 4th-order

RUNGE-KUTTA numerical method.

The frequency variations are then determined with respect to the
amplitude of the motion. The non-linearity trends are of the

softening type.
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CHAPTER 1

"INTRODUCTION

Shells are highly efficient elements of bearing structures.
Their outstanding structural properties have been exploited since
ancient times in shipbuilding, for example. Nowadays, thin shells
are the basic structural components in aeronautical and aerospace
manufacture.
therefore, focussed on the analysis of thin

Many theories have

shells subjected to static or dynamic loads. It is generally agreed
that vibration studies of this type of structure are classified
according to factors such as: curvature, anisotropy, residual
stresses, variation in thickness, large displacements, rotary

inertia, effect of the environment, shape of the shell's edges and

the type of boundary condition involved.



Most of these studies have involved linear analyses of thin
shells both with and without interaction between the structure and
the surrounding fluid medium. Results proved to be satisfactory
where wall deflections are very small compared to the wall
thickness. Hence, a kﬁowledge of the dynamic characteristics of a
shell containing a stationary or flowing fluid is of considerable
interest to the engineer who is concerned with averting any
destructive effects which could occur during industrial use of the

sheils.

In this type of investigation, the surrounding fluid medium is

classified in terms of the following characteristics: +type of fiow,
number of phases involved, the density, viscosity and compressibility

of the fluid, and the free surface motion.

We owe the first attempt at an analytical formulation of the
fluid medium's influence on the dynamic behaviour of an elastic shell
to Rayleigh, in 1883. This was followed in 1809 by Nicﬁlai. Since
the end of World War II, {his area of investigation has seen a large
number of linear analyses of the free vibration characteristics of

these structures (1] to [7]). The characteristics of the damped



vibrations have been studied by Mizoguchi [8] and Lakis ([91, [251 to

[301>.

In a targe number of practical applications, a Iinéar analysis is
inadequate to predict the dynamic behaviour of structure/fluid
systems. Analytical solution of the equations of motion for
non—uniform thin shells is generally difficult, however, and only
approximating methods are used. The fluid-shell wall interaction
further compficates the analysis. Thus, studying the influence of
non—|linearity associated either with the strain-displacement
relations for an empty shell [31], with the definition of flow or a
combination of the two offers the investigator a multitude of avenues

to explore for an enhanced understanding of the dynamic behaviour of

these structures.

Among the approximating methbods used for non—linear analysis of
free vibration characteristics, we would mention the variational
formulation [111, Galerkin's method ([12] and [131) and the Rayleigh—
Ritz method [141. The true test of a method is whether it is able to
determine the whole set of vibration frequencies and modes with the

same precision and within reasonable processing time.



Galerkin's method does not meet this standard, in light of the
loss in accuracy at the high shell frequencies. The Rayleigh—-Ritz
method satisfies the criterion by turning the vibration problem

around into one involving solution of a symmetrical matrix system of

eigenvalues.

There are a number of disadvantages associated with the
Rayieigh~Ritz method, however: it requires a large number of terms to
express the displacements; the accuracy provided for the displacement
expressions is inconsistent with the accuracy associated with the
energy and deformation expressions and, finally, there are concerns
reqarding the compatibility of the assumed displacement functions

with the boundary conditions [15].

Reference [11] describes the free surface motion as governed by:

a differential |inear operator, a linear boundary condition and two
other non-!inear boundary conditions. Nevertheless, this model says
nothing about dynamic interactions between the shell wall and the
fluid.

References [121 and [13] report a dynamic stability study that
was conducted using the non-linear equations in thin wall theory
coupled with an equation giving a linear definition of the fluid
velocity potential. The intrinsic drawback in this approach is that

a shell of revolution is approximated by a set of curved plates.



Ramachandran's study [4] dealt with the effect of large
deflections in a shell immersed in incompressible fluid. These
non—linear displacement equations came from Donneil. Analysis of the
results was deficient nevertheless due to insufficient rigour: he
normalized the frequencies obtained by combining geometric
non—|inearities of the walls and the fluid interaction to results

sbtained with an empty shell.

s

1.2 Research Objectives

-~ 3 an P
Th report ores 1onN—41 inhear

115 report presents a general approach
analysis of thin cylindrical anisotropic shells partially or
completeiy filled with ligquid under flow or no—flow conditions. 1t
is a hybrid method, combining finite element and classical thin shell
theory (L8141, [253 to [323>. The finite element chosen was
cylindrical {(cf. Figure 5) and bounded by two circular nodes. There

were four degrees of freedom at each node: axial, radiai,

circumferential displacement and rotation. The géometry of the



finite element made it possible to use Sanders' equations of motion
£16]1 in their entirety to determine the displacement functions. This
method therefore turns out to be more accurate than the usual
polynomial functions that are chosen. Furthermore, the method is
free of the disadvantages in the Rayleigh—-Ritz method and satisfies

the finite element method convergence criteria as well [24].

In the present research, we investigated the effect of
non—iinearities associated with the Bernoulli equation on the natural
frequencies of an interactive fluid—shell system. The following
experimental parameters were used in the analysis: circumferential
mode, structural slenderness ratio, Reynolds npumber, vibration mode
coupling and uncoupling and the effect of composite materials. MWe
considered only the shell's breathing modes (i.e. where the
longitudinal axis of the shell remains immobile during structure

excitation).

The analytical solution was performed in two stages:



(1> Using the linear strain-displacement and stress—-strain
relationships which were inserted into the Sanders theory
equations of equilibrium, we determined the displacement
functions by solving the linear equation system. Next we

"determined the mass and stiffness matrices for a finite
element, then assembled the matrices for the complete shell

fz47.

(2)Y The pressure exerted by the fliuid was givén by using a
non—1l inear development of the Bernoul | i equation. From our
solution of the velocity potential equation we derived an
expression of non-—linear pressure as a functicon of 1) the
nodal displacements of the fluid element, 2) the inertial,
centrifugal and Coriolis forces and 3) a combination of
non—}{inear effects. Through the usual finite element
procedure, we obtained the |inear mass, damping and
stiffness matrices for the fluid [9] as well as the
non—|inear matrices for damping and stiffness and a

combination of the two.



1.3 OQutline of the Report

A brief overview of the contents of the eight chapters comprising

this report is given below.

Chapter 2 contains a description of linear thin shell theory and

a statement concerning the hypotheses underlying the research.

In Chapter 3, we give the three equations of motion with respect
to the displacements and the elasticity matrix. Solving the
characteristic equation gives the format of the displacement

functions. MWe construct the mass and stiffness matrices for the

shell.

Chapter 4 presents a development leading to a matrix formulation
for linear mass, damping and stiffness and which gives non—1linear

effects for a fluid element.

Chapter 5 deals with the dynamic analysis of flow and no—fiow
conditions. For the latter case, we suggest a method for solving the

coupled and non—linear equations of motion.



Chapter 6 discusses the numerical algorithm used in computing the
different steps required in the model predicting the infiuence of
Bernoul!li related non-iinearity on the natural frequencies of a

fluid-shell system.

Chapter 7 reports the numerical results obtained and, finally,

Chapter 8 contains the general conclusions of the study.
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CHAPTER 11

BASIC THEORY

2.1 Hypotheses

In order to study the equilibrium of a cylindrical shell
including the membrane and bending effects on the reference surface,
we used first—order Sanders equations [1681. These equations are
based on Love's first approximation [17]1 and yield zero deformation

for rigid—-body motion, which is not true of other formulations.
The hypotheses for the analysis were as follows:

- The shell is made up of one or more layers of isotropic or
orthotropic material. |

- Displacements of the wall are sufficiently small to obtain
geometric linearity.

- The terms for rotary inertia and shear deformation are

neglected.
- Fluid characteristics: non—-viscous

incompressible
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- Flow attributes: non—rotational
potential
frictionless

- The constants for internal pressure and surge pressure are

ignored.

2.2 Method

The linear matrices were constructed using the procedure
described in references [9] and [24]. The non—linear matrices were
determined by development of the second-order Bernoulli equation.

Through modal analysis we transformed our equation of motion
according to the axes of the natural coordinates. This analysis
varies with the type of vibration encountered. Standard procedure
.was used for undamped free vibrations. For damped free vibrations,
we propose a method which consists of considering all information
contained in the eigenvalues and doing post-processing on the

eigenvector matrix.



The coupled equations of motion were solved by means of the

method used in reference [18].

12
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CHAPTER III

MATRIX CONSTRUCTION: NO FLUID

3.1 Equations of Motion

Applying the virtual work principle to an infinitesimal element
(cf. Figures 1 and 2) of a deformed average surface, we obtain the
five equations of equilibrium describing the behaviour of a shell of
arbitrary shape (Appendix A-1). We reduce them down to three
equations by eliminating shear forces Q4 and Qg. 1In the absence
of external forces, the equations of motion are as given in Appendix

A-1 (d7 to dS).

Displacements of a point on the sheil are reiated to the
deformation vector by the strain-displacement relationships, which
are given in detail in Appendix A-1 (d10 to d15). In its abbreviated

form, the vector is written:

t

{ed = {exx'£06’22¥6'KXX’K6672Kx0} 3.1)
h : ry are strains;
MheTeT tux' 00" CL
* Kxx‘ Koo? 2Kx9 are changes in curvature and torsion:

* Subscripts x and © designate the axial and
circumferential coordinates.



i4

The defarmation vector is reiated to the stress vector by the

s-stra:n re;ationships.

i

aTre

N = t
(U}E{Nxx’NOO'NXO’Mxx'"OO'"xO} = [P] {¢) (3,2)
wheres Nxx’ NOO' NxO’ "xx' "99' H;O are resultant constraints.
Eiements p; ; in [F1 describe the anisctropy of the sheitl.

express tThe

il

Sdbstituting (3.1) and (3.2 in (A-1, 47 ©o d9%), w
equiiibrium equations in terms of the dispiacement functione [Z2335.
Tnree differentiail linear operators are obtained ( Lyy 1 = 1,2,2

and are given in fuil detail in Appendix A-Z,

L Uy vyWw,p. .} =0
1V 1P1J

1
L2 (u,v,w,pij) = 0 ‘ (3.3)
L3 (u,v,w,pij) = 0
where: U,v,w are the axiai, tangential! and radial

dispiacements.

Ail vaiues refer to the reference surface.
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3.2 Elasticity Matrix

The elasticity matrix deéends solely on the mechanical properties
of the shell material. MWe will limit our analysis here to the
anisotropic case of a shell of revolution commonly called
orthotropy: the mechanical characteristics are invariant in rotation

around a fixed axis.

For anisotropic material, [Pl is generally written as [231:

- oy

Pi1 P12 © Piq Fys ©
P21 Paz © Pop Pos O
[P] = 0 0 P00 0 Py (3.4)
Pay Pap O Pug Pus O
Psy Psz © Psg Pss O
- o o P36 0 o P66 |
For a shell composed of a number of symmetric layers of iso-— or

orthotropic material arranged as in Figure 4, elements pij of LP]

are expressed in the format given in Appendix A-3.



=2 Displacement Functions

The sheil of revolution is a defoarmabie continuocus medium Wwith an
infinite number of degrees of Treedom. Its state of equiiibrium is

governed by eguatiaens (Z.3). The ariginal shelil is partitioned intao

a number of finite elements having, theretrore, a inite number of

-
1]

degrees of freedom. Dy carefully choosing the dizspliacement

(2

functions, we transform our difterential partiai eguatiens of

equi s ibrium into a system of linear zigebraic equations.

As dispiacements are periodic in the circumferential direction,

we assume that the dispiacement Ffunctions czn be expressed by

expansion into a rourier series [3323.

t o t
fulx,0) ywix,0) ,vix,0)> =LIT(N,0)ICu_(x),w (%) ,v_(x)2 (3.5)
n=1 n n n
>where n: number of circumferentia! modes

Ti: square diagonal matrix given in Appendix A-G.

The procedure for solving the (Z.5) system of equations is

described in Appendix A-4.
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The resulting displacement becomes:

¢ W (s,
{uywy,v} = E [N] $ L ’ (
E s 161; | 3.6)

with [NJ1 = [T] [L]1 CX] [A~13

where [NJ: 3 X 8 matrix
Exact nodal interpolation function defining

displacement of point M.
[Al, [L], [X]: matrices given in Appendix A-5
degrees of freedom associated with nodal

{6i}= displacements at boundary i.

3.4 Mass and Stiffness Matrices

The deformation vector {€} (3.1) is expressed in terms of the
nodal displacements (3.6).
o (e,
{er = £ Bl o0 (3.7)
n=0 (¢
£T13 CJ1 X2 tA-13

with [T11 = [ty o
o CT1 |

1

where [B1

CJ] is given in Appendix A-5.

The stress vector {o} (3.2) is also expressed in terms of the

nodal displacements (3.6).

]

{a} P11 {e2

1

00 &. .
{oc} = £ [P] [B] 1 (3.8)
_ &

n=0



wWe have formuiated our egquiilibrium equations and our

strain-displiacement and stress-strain reiationships in terms of the

nodal dispiacements. These dispiacements are determined by appiying

the Lagramgian equations to the discretized doemain. Thus, the matrix

farmat of the equaticons of motion s obtained as foilows:

Im_1 (&8} + [k_1 (&8 = O. (3.9)
s s 4

where Lmngl: siass matrix for a finite eiement
[kgd: stiffness matrix for a finite element

Both are 2 X 2.

L4
These matrices are given bv:

t
= ] .
Emsl ﬁst IﬂgN' CN1 dA

(3.10)

[k 1 = Icsnttm [B1 dA
s Ai

whetre dA = Rdxdé
Using (Z.4) and (Z.7}), we integrate {(3.10) with respect to o over

the [O,Zw] intervai, then to x over the [0,13 intervai, which gives

us :
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[m_1 = nRp_t ta 1t Rl tal:

[k 1 = nR [A” 1" [BB'] [A 1

where the (p,q) term in [R'] is expressed by:
| (N _+A )1/R

L'(p,q) [e P 9 - 11 if A¢ Aq# o
(h_+A_)
. . _ if A+ A =0
L' (p,q) 1 1 P q
and in [BB '] is given by:
(A_+A J1/R
J'(p,q) e P 9 -11 ifA + A #0
(h_ +A ) L
p q
BB’ (p,q)= (3.13)
J'(p,q) . 1 ifA+A=0
P9 p q
where [L'1 = [LIt [L]
= £Jat P11 CJ2

£J'1

"1t finite element length
Pt density of shell material

Inspecting relations (3.11) to ¢(3.14), we can see that the mass
and stiffness matrices for a finite shell element are therefore real

and symmetric.
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CHAPTER 1V

ANALYTICAL FORMULATION: WITH FLUID

4.1 Dynamic Pressure

We are considering a cylindrical shell with a vertical generator
axis. MWe shall use the procedure outlined in section 1.2 within the
constraints of the hypotheses listed in section 2.1.

For ideal, frictionless flow, velocity potential [18] is governed

by:
1 ak ) wh o wh =y
Pe=L [ 98. (Vo .9 Vo + o,,, +2 8. vp, ] (4.1)
C2 tt t
where c: speed of sound in the fluid medium

@w: velocity potential

)y & 8C)
't ot

Appendix B—i gives the development of this 3rd-order non-—linear

~equation in @

The linear form of the relation in (4.1) is expressed by:
Pe=Li g4 +2U @ + U%s., 1 (4.2)
2 tt x 'xt X VXX

c
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Furthermore, for steady flow, the velocity potential must satisfy
the Laplace. This relation is expressed according to a cylindrical

coordinate reference point through:

2

®100
ves= % ALELZIN R 2 + By (4.3)

We define the velocity field associated with this flow by:

v = U + @,
X X
Dy
= 2 (4.8)
Vo = F
Ve = &y
where U, : Veiocity associated with the fiow rate by

considering the fluid inviscid

A full dgfihition of the flow requires two conditions applying to
the shell-fluid interface. The impermeability condition ensures

contact between the shell surface and the fluid. This should be:

v = ¢, = (W + UxN') _ (4.3)
r=a r=a r=a



—

e

i

H o o s e e T e o I H -~ [ SO N S N .
He dayitdamiL LUl L D J1veilt Uy viwy LDer i

2 (#1g) 2

where u “in'" wor "ouat" as the case may

subscripT representing

if u= i then & = a, = a - t/2
f u = then E=a =a+ t/2
e

ine deveiopment for the expression In {(4.45) 1s Jiven in Appendix

-5 {(zee aisn ref. L21).

The differentiai o2perator is saived using the varianie separation
method. we fTirst set the format tor the radial dispiacement and
velocity potential [?1, as:

itne + A 2 4+ wt) .
k a
W =C. e . (4.7)

(0,x,t) (4.8)

Tk(r) Sk

where kth root of the characteristic equaticn

”Y : natural angular frequency
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Applying the impermeability condition, we determine 5. (8,x,t)

explicitly. If we set relations (4.2) and (4.3) as equal, we will

obtain the ordinary homogeneous differential Bessel equation:

2.2 222 2. _ )
rd Rk(r) + rde(r) + Rk(r) L1 mKr n ] o) (4
d rz d r
A, 2 1 A 2
where . _ ( Kk, A L -l (4.10)
k au [y u

We carry the Bessel equation solution back into (4.8) to obtain

the final expression of the velocity potential evaluated at the

cylinder wall.

¢u(r,6,x,t)k = aqu u(1mkau) L wk’t + Uxuwk,x ] (4.11)
i
Z (im a ) = - . -
where “x y k u o ima Jn+1 (1mkau) if u i
k u Jn (imkau) (4.12)
1 : if u=e
y4 (im,a ) = - -
k u k u Yn+1 (1mka )

k u Y {(im au)
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Substituting (4.11) into the non-—linear boundary condition

expression (4.6), we obtain the equation for pressure on the cylinder

wall. It is useful to partition total pressure into its linear and
non—|inear terms:
p=ALp - p > + {p - p > (4,13)
in out L in out NL
8 -
where PuL = "Ptu §=?uzp u[wp,tt * ‘Uxuwp,xt * Uxuwp,xxJ (4.14)
p*u 8 8
= ~- — I W
Pu NL 2 p=1 §=f upuq[ p,xtwq,xt * 2Uxuwp,xqu,xt
U2 +

-
W W + 2U W + U° W W 13 (4.15)
ﬁpﬁq p,t qg,t Xu petogyx XU PyX QgX
where « = a 17 g =1 - nZ
P u pu P P u
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4.2 Linear Matrices for the Fluid Column

We introduce the nodal interpolation functions for the fluid
which are compatible with the functions for the shell (3.6) into the
dynamic pressure expression in (4.14) and execute a series of
intermediate matrix operations made necessary by our choice of
method. The mass, damping and stiffness matrices for the fluid are

obtained by evaluating the following integral [8]:

-1.t -1
[m,3 = [A (37 (5.1 [A ] (4.16)
-1._t -1
c.1 = ] (4.17)
[c,d = [A ;1 [D] [A (]
1.t -1
= (4.18)
[ked = [A ;1[G [A (] .
S (p.q) = m [=8,y2Z .1 + 8 yoz I 3 (4.19)
where £ P.q 1Y1 q i pq i e'e’q e pg e
= 2i - 0 U .20)
D, (pyq) = 2iA nl s;v;0;20 ;10 i*8ev¥eleZy olng 1 (4.2
2 .—2 _2
= - - (4.21)
B{(p,q) Aqn L 5iUiZq inq ;g ¥ GEUEZq eIpq e 1

and p, q = 1,...8
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In equations (4.19) to (4.21) we define the following

non—dimensional

_ % Peu

quantities:

2 _ p(i,1,1)

3 =
u ot P, © Py %y
a
= Yeu v = u
Uu Tou u "y
o
where Pyt density
t = thickness of the first finite element of the shell
r = radius
p(1,1,1) : 1st element of L[P]
1.
i+ AL) a’
P Q u
e - 1
Igu™ 7100 ¥ 20 AE AL ¥ A £ O
P q
(4.22)
1, - 1i
= i + =
pPq u a A At Ry =0

4.3 Development of the Non—-linear Matrices

We use the procedure outlined in the previous section, ignoring

the cross products in the non—linear dynamic pressure expression

(4.15).

We obtain the following matrices for the non-linear effects:
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e, 1 = [AIIJt (D, 1 ta;ln (4.23)
NL NL
(ke 1 = EA;’Jt [GD, 1 EA;IJ (4.24)
NL NL
[k, 1 = cAIIJt [G, 3 EA;1] (4.25)
NL NL
where:
' érin
D, (p,q) _— 1 coav.a 0 z2 tn?+ A% -1 3
fNL éin i'i pg i q i
- s ya 7% % +2%1-113 (4.26)
e'e'pg e “ge q
(e6Nin iy A i —
GD, (p,q) : 9 ¢s.u.J_ .rZ° .tn? + %1 - 13
£ 3in iipgi "qgi q
NL
-804J £z2 tn? + a%1 - 13 (4.27)
eepge qe q
(ebnin 1) AZ _2
9 e 2 2 2
G, (p,q) = C J . rZ% .[n® + A%3-17
fNL 6in Yi pq i g i q

[z° [n® + A%1-113 (4.28)
e q



where:

J

1

<8

if A_+2A 0
if A+2Af

i(A  + 22 ) J
P q u
e -1
i(A + 22 )
p Q

(4.29)

if A_+2AN =0
P q
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CHAPTER V

ANALYSIS OF FREE VIBRATIONS

5.1 Global Matrices

The motion of a shell element interacting with a fluid column is

governed by the equations of motion in generalized coordinates.

LI ) - I2 - 2
CCml-Cm31{8}~L[cI{33+LLkI-[kII{EI~LcI{38}-Lkcl{d8I-[kI{8I=(0}
s f f s f £ f £
L L L NL NL NL
where subscripts s and f refer to the shell and fluid,

respectiveiy.

{A} is the degrees of freedom vector for the total nodes, and

total structure motion is governed by an analogous equation which we

shall write:
@ o L] I2 a 2
[IMI-CMIY£{AY-L[CILAY+[[KI-LKII{AI~LCIL{A)-LKCI{AAI-LKI{Aa)={02
() F F g F F F F
L L L NL NL NL

(5. 2)

These global matrices are obtained by assembling the element

matrices. The assembly operation must satisfy two conditions however

L203:
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- Continuity of nodal displacements at the boundary between
two adjacent elements, such that:
{6i+1} = (éj}
- External forces and moments applied at a given node must be
equal, respectively, to the internal forces and moments,

such that:

e
3% = {fj} + {{i+1}
Assembl ing the matrices is done using the overlay method [241, as
illustrated in Figure 6. The global matrices are square, of order

4(N+1), where N is the number of finite elements.

5.2 Equations of Motion

After the boundary conditions are applied, these matrices are
reduced to square matrices of order 4(N+1)-J.
where J: number of restrictions imposed.

To abbreviate the expression, we set:

M 1 = [CMI-CMJJ et [K 1 = [L[KI-CK]]
T s F T s F
L L

rooea . r r .2 roo. r 2
M 1{a}-LC 1{aX+[K 1{aY-[CICAY-LKCI{aAY~-[KI{AY={0} (5.3)
T L F T F F F

r

where r means reduced.
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r
Let us set { & ) = [a] (N (5.4)

where [¢l: : square eigenvector matrix in the symmetric linear

matrix system

r .
3, ¢ & 3F displacement vectors expressed as natural and
generalized coordinates, respectively.

¢ J: _.. matrix ... generalized coordinates

We first substitute expression (5.4) into (5.3), then multiply
(5.3) by {#l® to obtain, finally:

[M J(h;-[C J{n)+IK 1{n}-CalLC 1Le 1{n?
T L T NL
t 2 . t 2 2
-[alI[KC Il 1{nn}—-LallK 1Lg 1{n} = {02 (5.5
NL N
D t
with [M 1 = [gl [M 1 [al
T
D t
(C 1 =T=Cgl [C 1 [a&]
F
D t
[k 1 =1Ll (K 1 [al
T
where D stands for diagonal
D

r J: ... matrix ... natural coordinates
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The matrices quantifying the fluid column contribution to the
matrix equations of motion are non-symmetric. To facilitate
analysis, therefore, we consider only the symmetric portion of the
matrices. We will be seeing later on that this simplification is

Justified.

5.21 No—flow Conditions

Under stagnant conditions, equation (5.2) reduces to:

a = -2
[M] (A} + [K1 {a} - [C] {a} = {03 (5.6)
T F
First we solve for the linear case to obtain the 4+(N+1)-J

eigenvalues and eigenvectors. MWith this eigenvector matrix, we then

develop the coupled equations of motions in natural coordinates.

5.22 Flow Conditions

As mentioned in section 2.2, we make some modifications to the

procedure described above.

Due to the presence of a non—proportional damper, we reduce the
2nd-order linear system to a lst—order system. MWe again consider
only the symmetric portions of the fluid matrices, as given in the

equation:
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[M] <q} + [C1 {q} + [K1 (g} = (O} (5.7)

which may be represented by the following form [21]:

[Al {y} + [B] {y} = {02 (5.8)
_ | o tM3 ]
where: [A] = B [ci |
R B o I i
tB1 = | 0 - K1 ]
- -3}
{y3l ;{q}z
We assume the form of the homogeneous solution to be:
{y(t)} = e rt {¥2} (5.9)

Relation (5.7) becomes:

A LA {¥) = - [BI (¥2 (5.10)

From the solution of (5.10), we obtain a series of 2n eigenvalues
and 2n eigenvectors. For each given eigenvalue, Ary the

corresponding eigenvectors are developed as follows:

v 5 = A te? ] n=1, 2,...N | (5.11)
n (o 3 where N: number of degrees of
freedom
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The eigenvalues are complex and always occur in conjugate pairs.

The dimensional incompatibility between the eigenvector matrices
defined in (5.4) and (5.11) and the absence of any weighted
orthogonal relationships between the [M1, [C] and [K] matrices in

(5.7) are difficulties which have to be overcome.

We attempt to determine the m;;, c;; and k;; for each of
the uncoupled equations of motion. To this end we have two pieces of
information (concerning the state of the damped system) for each

eigenvalue pair.

A =« + ip (5.12)

According to (5.9) and (5.12), we also have:

ALt o t ip, t
Yn (t) ='1;ne =vne e (§.13)

Now, for a damped system, the displacement is defined by [211]:

-% wnt iwd t
Yn (t) = YO e e (5.14)
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where v initial amplitude

o

E critical damping coefficient
Wo f natural angular frequency

Wy ¢ damped angular frequency

We then, by analogy, associate the terms in relations (5.13) and

(5.14) to find our unknowns. Finally, we obtain:

2 2
nn n n nn

c = 2 o m (5.16)
nn N nn

The m,, are taken from the orthogonal relation:

t
(¥} Bl (¥} =0 (5.17)

The first n diagonal terms of the resulting matrix are the n

elements of diagonal [MI.

The eigenvector matrix is constructed by selecting and assembl ing
side-by-side the n column vectors {gn} in (5.11) associated with each
pair of eigenvalues Ar . With this [#l1, we then go on to couple

the motion equations in natural coordinates (5.9).
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5.3 Solving the Coupled Equations

During the modal analysis, we have to consider coupling between

the different modes since products of the form [g@l* [M] [@#=]1 do not

generally give diagonal matrices.

A typical system equation therefore would be of the form:

NREDUC
mog My T 5 Mt okyymy — DLCymymy + KE gmymy + Ky gmym =0
j=1 (5.18)
Let us set:
() =
n; (v Ai fi(r) (5.19)
which satisfies the initial conditions
(5.20)

£.(0) =1 and £_.(0) =0
i i

where A; : vibration amplitude

Relation (5.18), after simplifying by A; and dividing by mj;,

becomes:

NREDUC
e @ lb 2 Ai L. L]
- = - L(— + 0, f.f,
i T, fi + W, fi ?( t){rijfifj + Eijfifj n;fofJ} = 0

(5.21)
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c..
h Uz = ii 1 = 11
where i mii Ti mii
(NL) C(NL) .
€ 5 KCy s
m = ®,. . =
i m +J m, .
ii 11
(NL)
Kij
0. . =
1] m, .
ii
t: shell thickness
If, however, we ignore non-linear coupling between the natural

coordinates, equation (5.21) will

take the form:

e o i e [ I - &
- — f. + 0. f, -~ (=DM, . f, + w,  ff, + 0 F I=0 (5.22)
i i ii ii i i
T, t
i
The solution f;{(7) of these ordinary non—linear differential

equations which satisfies the initial conditions (5.20) is
approximated numerically by a fourth—order Runge-Kutta. The |linear
and non—|inear natural angula; frequencies are evaluated by a

systematic search for the f;{(71) roots as a function of time.

The Wrat, 7.

ratio A;/t.

ratio is expressed as a function of non-dimensional
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CHAPTER VI

THE ALGORITHM

Numerical applfcation of the analytic formulations described in
this report required four computer programs. These programs were

written in Fortran versions IV and V and were run on a CDC CYBER 855

£311.

The initial cylindrical shell was subdivided into a sufficient
number of finite elements to ensure convergence with the method. For
each finite eiement, the caiculiations were divided into three
stages: the first relates to the linearity of the

strain-displacement relationships, the other two to the linearity and

non—linearity, respectively, associated with the Bernoulli equation.

Execution of the algorithm required input of the following

information:

i) number of finite elements
ii> geometry of each finite element: length, radius, thickness
iii) mechanical properties of each distinct shell section:

Young's modulus, Poisson’'s ratio and density
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iv) boundary conditions

v) characteristics of the fluid column: density, flow

conditions

vi) number of circumferential modes

Below is a list of the main éteps in the calculations that were

done for each n harmonic.

The procedure the algorithm follows involves determining:

a)> for each finite shell element:

i)

ii)

iii)

iv)

v)

the characteristic equation coefficients as given in
Appendix A-©

the 8 A\, roots of the characteristic equation. They
are determined by the Laguerre method with the help
of IMSL's ZPOLR subroutine.

coefficients ws and ; defined by the relations
given in Appendix A-4

matrix [A] defined in Appendix A-4 and its inverse,
by the LINV2F subroutine from IMSL

matrices [R'] and [BB'] defined by (3.12) and (3.13)

the elemental mass Lm] and stiffness L[k31 matriées

defined by (3.11)



b>

c)

d)

e)

>

a?’

40

for each finite fluid column element:

i) the [A-3 matrix compatible with the matrix defined
in A;pendix A-S5 and its inverse, by IMSL's LEQTZ2DC
subroutine

ii) matrices [S o1, [Der 01, [Ge .1 and

[Dr r.ly, [GDF wel, L[Gr ] given by the equation
systems in (4.19).to (4.21) and (4.26 to (4.28),
respectively

iii) the elemental mass [mel , damping el , and
stiffness [kel matrices plus the second-order
non-|inear effects [Cr1, [KCe1, [Kel given,
respectively, by (4.16) to (4.18) and (4.23) to
(4.25)

the global matrices (corresponding to the matrices defined

above) for the complete shell, to be assembled

the matrices reduced by application of the boundary

conditions

the mass and stiffness matrices of the shelli-fluid system,

by overlaying the corresponding matrices

the natural vibration frequencies and the main modes

associated with them. The EIGZF program from IMSL is used

for that purpose [S].

the diagonal terms in the mass, damping and stiffness

matrices, using the methods described in section 5.2
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i)
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products of the form [@*] [A] [gZ]1 from system (5.5)
the influence of non-linearity in the flow definition on the
natural frequencies of equation system (5.21). +the RUNGE

program is used to quantify the influence.
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CHAPTER VII

CALCULATIONS AND DISCUSSION

7.1 Introduction

This chapter will be describing application of the new method

proposed to a number of cases.

First, calculations were done to demonstrate the validity of the

simplifying hypothesis we described in (5.21). Next, we conducted a

systematic investigation into the influence of the non—linearities
associated with the Bernoul!i equation by considering the
experimental parameters listed in section 1.2. Finally, we will

briefly discuss the stability problem inherent in the dynamic

behaviour of the equation system studied.

7.2 Validitation of the Simplifving Hypothesis

Development of the analytical model required an additional
hypothesis. Indeed, with the present state of our knowledge, we are
unable to apply the orthogonality properties of the modal vectors to
a general eigenvalue problem ([21], [22]). MWe are thus simplifying
the parameters and limiting our dynamic analysis strictly to
consideration of shell—fluid systems that lead to a symmetric matrix

system of eigenvalues.
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This simplifying hypothesis is validated if the resultant
eigenvalues substantially approach the original system. Tables 1 to
4 show the variance between the eigenvalues in the original and
simplified systems, corresponding to cases of damped and undamped
free vibration. A trend was observed toward minimum variance at the
extremal modes and maximum variance (15% and 19.5% for a damped and

undamped case, respectively) at the median modes.

The simplification therefore seems to be right since it describes

both systems as having comparable dynamic behaviour.



44

7.3 Analysis of Results

We used four cylindrical shell models to investigate the
influence of a fluid medium. The shell had the properties given in

reference [13].

20.68B5 x 103 MPa

E = (steel)\
v = 0.29
R = 193.675 mm R
} == 150

t = 1.29117 mm t

3 3
Psnery = 7-8125 x 10~ Kg /7 m P ater

3 3 shell = O 1<8
Pyater = 1-0000 x 10~ Kg / m g
The boundary conditions were for a sheii simpiy supported at both

ends, such that V=W=0.

The parameters of the investigation took the following values:
-~ n = 3 and 6 corresponding to the 3rd and 6th
circumferential vibration mode
— structural slenderness ratio
L/R = 3 and 6
- Reynolds number

Rv = 0 (undamped vibration)

Rev

1.0E4+06 and 2.0E+06 (damped vibration)

Young's modulus of elasticity

E steet @and B g4ee)/100



e

4i
i

W

el
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parameters of our study, in descending order, is: the circumferential

vibration mode, composite material effect and structural slenderness

ratio.

A glance at the synopsis in Table 5 reveals the large amplitudes
required to obtain any tangible effect. An amplitude of this
magnitude corresponds to a pump discharge pulse or "water hammer"

effect!

It would be of interest nevertheless to explore the possible
influence of composite materials further, since the order of
magnitude for the non—dimensional amplitude ratio is the closest to

unity.

There are two other avenues of investigation which hold out
inviting prospects — the boundary condition and compressibility
effects. Common in the aviation industry is a particular structure
that falls perfectly into our analytical model: the jet engine
nozzle, which is a clamped-free structure. It also involves the
possibility of coupling occurring between the modes associated with

floating instabilities and the non-linearity studied when Mach number

verges on 0.30.
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Qur investigation to date has thus confirmed the hypothesis
stating that the influence of Bernoulli equation non—linearity on the

dynamic behaviour of the shell-fliuid structure is negligible.

7.4 Numerical Stability

e had some difficulty in stabilizing solution of the non-—linear
equations of motion under one partigular condition. This condition
related to the magnitude of the contribution by the non-linear
effects to system inertia. Furthermore, damped structures also

present greater numerical stability than undamped structures.

The instabilities were characterized either by osciilations whose
frequencies varied substantially through time or by an inconsistency
between the frequency and rate of these oscillations around the

balanced position. This occurred right from the initial pulse.
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We adopted a convergence criterion which would keep us within
the realm of stability. The criterion involved making sure that the
selution would repeat by considering a frequency response acceptable

if it fell within a band under 1% of its nominal value.

7.5 Processing Time

The computer program was run on a Cyber 855 computer in the
University of Montrea! Computer Centre. This CDC product allows for
an internal B0-bit single—-precision representation of numbers in

floating—point mode (48 bits for the mantissa, 11 for the exponent

and 1 for the sign).

In the following paragraph is the running time and memory

required for the case described below:
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Shell model No. 1 subdivided into 5 finite elements with a filuid

column velocity corresponding to Rw~ 1.0 E+06.

CPU time H 100 sec.
Memory space : 134000 bytes
Cost : $35.00 (Cdn)

We would mention however that the program was designed to ensure
compatibility with existing programming. Structured programming of
the master program and the option of dynamic memory allocation are
improvements that could be considered for a more flexible and

higher—performance machine code.
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CHAPTER VIII

CONCLUSION

For the purposes of our analysis, a method based on Sanders' thin
shell equations, equations for non—-rotational and frictionless fluid
flow and on the finite element method as its basic skeleton was
developed. The method predicts the influence of non-linearity
associated with the flow definition on the dynamic behaviour of
vertical cylindrical shells partially or completely filled with a

stagnant or flowing liquid.

The finite element was cylindrical and geometrically
axisymmetric. The displacement functions were therefore derived from
the equations of motion for the shell. The mass and stiffness
matrﬁces were determined by exact analytical integration. The
displacement functions for the fluid column were derived from the
~velocity field associated with the column and from the non-1inear
impermeability and dynamic conditions applied to the shell-fluid
interface. The matrices for the fluid column contribution were

determined in a manner similar to the matrices for the shell wall.
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Conventional modal analysis was used to treat a shell with
undamped free vibrations and vibrations damped with a
non—proportional damper. This latter vibration case required
therefore a simplifying hypothesis which proved justified as well as

a few analytical modifications.

The non-linear equations of motion expressed in natural
coordinates were solved using a numerical time—based integral

method: +the fourth—order Runge-Kutta.

This area of investigation is still wide open and there is a
.dearth of literature on the subject. MWe are unablie, therefore, at
this stage in our research to confirm whether, in the context of a
dynamic analysis, we are justified in completely neglecting the
influence of the non-linear boundary condition at the shell-fluid

interface.

The present theory was formulated and applied to straight
cylindrical shells with circular sections. It can however be used to
analyze a shell of revolution with arbitrary curvature by proper
assembly of the cylindrical, conical or spherical elements to

approximate the geometry desired.
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It would be interesting to apply the method developed to
investigations of forced vibrations in a cylindrical shell subjected
to dynamic loads. It would also be interesting to include phenomena

of flotation and buckling instability in our analysis.

Finally, the logical extension to the work of our group would be
to investigate the effect of geometric non—linearities of the walls

on the dynamic behaviour of the shell-fluid interaction.
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APPENDIX A-1

SANDERS' THIN SHELL THEORY

£ oemaer e
Vo Egu i s Forium

In final format, here are the five differential equations of
motion given by Sanders [16]:

O (AN, ) o (AN N_o8A N _d A A.A. B

211, 112" _22% T2  Tat2 tr
8 E, e E, 8 E, 8 E, R,
Ay @ 1 1 =
S (= - Z2=) M, J+AApP, =0 (a1)
- o E R, ~ R, 12 172P
2
8 (AN, o (AN ) N ,8A, N, &A AR G,
+ + - + +
o E, 8 €, o E, o E, R,
A_d
2 1 1 = . _
- (>~ -2) M, ] +AApP, =0 a2)
2 6 €, R, ~ R, 12 1P2P2
o (AR,) &8 (A,Q,) N N
271 172 11 22
+ -AA, ( =— + == ) + AA_Pp_ =0 (a3)
9 E, 9 E, 172 . R, 172Pn
o (A_M..) o (A M,.) oA o A
211 112 — 1 2 _
5T, YT E *Mz e, T M2 5E, T AARTO Y
 (A.M_) & (A M, ) oA )
122 112 — 2 1 _
5 € * e T * Mo T T M gE. T ARELS0 (8D
2 1 1 2
with -
Njp = 172 (N + N;.)
M =

12 172 (M1 + M,,)
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Figure 1 contains an illustration of these components by
unit length of membrane and shear forces and the moment,
with respect to the surface of reference.

Deformation vector

. _ 1 éul . u2 GAI . v
11 A, ToE, AA, TBE, R,
) _ 1 6u2 . u1 OA . .
20 A, TOF, AR, ToE, R
- _ 1 ; 1 6u2 . 1 6u1 u1 6A1 _ u2 6A2 ;
12 = 3 A, ToE, A, SE, AA, BE, A A, BE
o 8A
R 1 1
“11 5 Ba.f e % o ?
i'2 i
o=l LA 2. g w2
22 AR 1 3%, 1 8%
— 1, 1 o L se; o oA ) oA, )
12° 3 A OE A, 3, ~ A A, 2 3F, 1 3F,
1 1
+ @ ( — - =y 3
R Ry
g = ol _ 1 ow
with 1 Ry A oF,
g = —2 _ 1 ow
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o(A_u,) ~O8(A _u,)

2 171

Boundary conditions

- ]
652

The boundary conditions are given by:

Nyp = Ny
M
_ 3 1 12 =
N + (= = =) =17
12 R, ~ R, >
Q 4..!. ?PJ—Z-_:V
1 * A, 3, 1
Mg = My

for a boundary with constant §:

r u, = u
° 1
or ul = u

or W F W

or ¢1'= ¢1

s the double-barred terms

correspond to the boundary values. For the constant E=
boundary, subscripts 1 and 2 are simply interchanged.

Parameters for a cylindrical shell of revolution
El = Ai = 1 R1 = 0 = U
= = = =V
E2 A2 R R2 R
= W

Substituting these parameters into the five equilibrium
equations (A-1, .1 to .5), we get:
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XX 1 x6 1 xe . p =0
5 (d1)
X R 06 2R2 o x
' ONyo . oN. o 1 Mo By A
R 96 ox 2R Ox R -~ "¢ = " taz)
oQ
By v 1% _Nee | _
e R 90 R n=?9 (d3)
Mex , 1 Mo _ o
ax R 86 x = © (d4)
; Mo . oM o _ _
R 36 ox Qg =0 (d3)

Elimination of shear forces Q, and Qg by means of

equations (d4, dS) reduces the number of equations of motion
from 5 down to 3. In the absence of external loads, these
equations become:

N oM
Mex , 1 Mxe _ 12 aexe = 0 (d7)
3> R 96 >R -
N M M
1 Moo MNxe . 3 ke 1 Moo _ o (a8)
R 96 ax 2R Ox R2 00 -
2 25 2
O Myx . 2 Mo 1 Moo _MNee _ 0 (d9)
2 R ox06 RZ 962 R
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Substitufing these parameters into the deformation vector we
get:

v
{ 356 + w )

Q@

X
D=
QJIQJ
o|C

{e) = (d10  d15)

9w + 3 o - 1 du

Ox 00 2R &x 2R 8¢
\ T /

The reference surface geometry of the shell studied together
with the coordinates used are illustrated in Figure 3.
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APPENDIX A-2

EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin cylindrical

anisotropic shell which were referenced in the different chapters of

this paper.

2 P 2 3
o u ., 12 62y su "W
L Valepy ) = P Tt R (amee T o )~ Pig o4
o x Ox
Pis  o®w % v | (233 _Pez . 6%y _ 1 6% ) .
R2  oroe | oxa0 R e 06 ~ R o2
(36 Pee, 200 L 38 1o ) (1)
- . oxoe2 | 2 0x08 T 2R 2
P P 2 P P
= (21  Pst %y 1 Py  Ps
L2WhVaklepy ) = C =+ 5 ) Sae * R o= + 5}
R R
8%V ou P2q  Psg oW 1 Pzs Pss
(a2 Ta8 ) TR Y ) (TH— ) v S B2 59,
06 R ax 206 R R
“T
oW % Y+ (poe SPe3 y 0%y 84U ) s
505 oa2 33 ¥ 2R o | ROx0®
1 . SPeg (-2 o°u L3 o%v &% , (2)
R ' Pz" 2R 2 2 . 2 ZRoxo6
ox 206 )
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3 p 3 2 4
o~u 42 . oV - o%u 9
Lo (U,V,W,p..) = p + 32 + ) - p
3 i a1 3 R o200 o2 4a 4
Pas o%w oV 2 Pys U oV 2Py
om0 Y TR ¢ Roxee z ) Y3
R Ox<o0 9% <986 Ox“a6 R
" 3 oV U P51 95U Pso a5y
(=2 —F—F + 3 %~ )+t 3 st (T3¢
0%~ 06 ox206  2ZRAX00 RZ  ox06 R Y
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o
502 ~a 50® | aad R % 2 onZos? 2 ' 00
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24 %W 25 W . v
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APPENDIX A-3

Matrix of Elasticity

The elasticity matrix depends solely on the mechanical properties of
the material making up the shell. We shall limit our analysis to the
particular anisotropic case of a shell of revolution commonly called
orthotropy, where the mechanical characteristics are invariant in
rotation around a fixed axis.

For anisotropic material [23], [P] is generally written in the form:

r -

Pir P12 © Pig Pys O
P21 P22 ° P24 PZS °
[FP1 = 0 0 Pxz0 0 Py
Pai Paz © FPag Fus ©
Psy Psz © Psg Pss ©
i O G P36 o o Pbb ]
For a shell made up of a number of symmetric layers of iso- or

orthotropic material arranged as in Figure 4, elements P;; of [P]
are expressed as follows:

— for number of layers 2v:

v
- s o
Pij =2 z=?ij(6s Sevt’

n

with i =1 to 3 and j =1 to 6
M 3 .3
.. = 2 T B -
plj 3 §=11-3,j-3(6$ as+1)
with i = 4 to 6 and j = 4 to 6



— for number of layers 2v + 1:

v+1 v c
pij = 2 [ Bij6v+1 + §=$ij(és—ds+1)3
with i =1 to 3 and j = 1 to B
v+1 3 MRS 3 .3
- - ) J
Py = 20 Biox sozfer ¥ I Bion, 5-3% %
with i = 4 to 6 and j = 4 to ©
e
where: B®. =
11 - V85
12
5 = B%. = v2E1
12 21 _ . S.S
(1 vlvz)
s
BS = E2
22 s s
(1 V1V2)
s s
833 = 0.9 612
S =
Bij 0 elsewhere

- 65 coordinate of the sth Jayer with the average
surface as reference.

65
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_ s s s s
(E1’V1)' (Ez'V2)= Young's modulus and
Poisson's ratio, respectively, with respect to

axes x and ©.

- G?z : shear elastic modulus
For an isotropic cylindrical shell made up of a layer of constant
thickness t, we have:
D vD 0 0 o) o
vD D 0 o 0 ]
0 0] (1-v)D o] O 0
[P1 = 2
(0] o} 0 K vK 0
o 0] (0] vK K (0]
0 O 0 0O o (1-v)K
! 2 .

with D : membrane stiffness

K : bending stiffness

12 (1 - v5)
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APPENDIX A-4

Nodal Interpolation Functions

The shell of revolution is a continuous deformable medium with an
infinite number of degrees of freedom. Its state of equilibrium is
governed by the equations in Appendix A-2. The original shell is

partitioned into a number of finite elements having, therefore, a
finite number of degrees of freedom. By carefully selecting the
displacement functions we convert our differential partial
equilibrium equations into a system of l|linear algebraic equations.

As displacements are periodic in the circumferential direction, we
assume that the displacement functions can be expressed by expansion
into a Fourier series.

00

t
{u(x,e),w(x,O),v(x,e)}t=E[T(n,O)J{un(x),wn(x),vn(x)} (a)
n=1
where n: circumferential mode number

£T1: square diagonal matrix given in Appendix A-5.

Let us set:

/R

ui(x) = A EAX

vix) = B ekx/R (&)
/R

wix) = € e

Inserting the expressions for displacement functions given in (a) and
(b) into the (App. A-2) system of equations, we obtain a system of
algebraic equations of the form:

(c)

[H1] {A,B,C}t = {0J

So that the solution is non—-trivial, the [H] determinant must be
zero. This gives us the characteristic equation:
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8 é 4 2

= - - : (d)
det ([H1) hek hbk +h4k hzk +ho = 0

The h; expression in this fourth—degree polynomial in A2 is given
in Appendix A-5.

Each ' A; root gives a displacement (un(x),wn(x),vn(x)gt .

The complete solution is obtained by linear combination of these

eight displacements. This therefore gives us:

8 A _x/R
u (x) =T A e
n p=1p
8 A_x/R
vix)=rBe P (e)
n p=1P
8 A x/R
w (x) =L Ce P
n p=1p .
Constants A,, Bp and Cp are interconnected by (c). Ap and
Bp are usua?iy expressed in terms of Cp.
lLet us set:
The “p and Bp expressions are obtained from the following
relations:
[ Hyy Hio ] 0| _ “Hys @)
Hz1 Hazp Pp ~Hos

where the Hy| coefficients are given in Appendix A-5.
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Equation (a)'is then expressed in terms of the eight Cp constants
by expressions (e) and (f). MWe then obtain:

(u(x,e),w(x,e),v(x,e)}t = [Tl [R] (C2 th)

where: [R1] 3 X 8 matrix given in Appendix A-5
{C} column vector for the eight Cp'constants

Setting [R] = [L] [X1, the (h) equation becomes:

(U, 8) Wix,8) v ix,8235 = [T [L] [X] {CD ()

For particular circumferential mode n, displacement of any physical
point m(x,6) may be expressed in terms of degrees of freedom {6i 3
and {dj 3 of nodes i and j on the finite element on which the point

is located.

The nodal displacements at element boundary i (x = 0) and j (x = 1)
will be:
Ow_ . Ow_ .
&1 ni nJ = [AICCY ()
{6j}={uni‘wni’ o . "Vni'Yni™ni' B "Vnj? 3

where the [A] terms, given in Appendix A-5, are obtained by
successive applications of the boundary conditions to [RI].

Multiplying (j) by [A’ll, we obtain:

-1 ¢ |
(Cr> = A "1 s ‘ (k)
The (j?> relation is then written:

8.
tuyw,vdt = 071 L3 x3 a7l {al} (1)
3



that is: {u,w,v3t = [NJ

6i :
o m)

3

with [NJ = [T] CL]1 [£X1 CA1]
where ENJ = 3 X 8 matrix

Exact nodal interpolation function defining
displacement of point M.

The resultant displacement is therefore:

oo 8.
{uyw,v2}" = L [N] 61 (n)
n= 3

70



APPENDIX A-5S

MATRICES

This appendix contains the matrices which were referenced in the
course of the various analytical developments.

The matrices are classified as fol lows:

[H1] (table 1)
LA] (table 2)
try , CLLlI , CX3 (table 3)

{table 4)

[Ji

71

The eight roots of the characteristic equation (Appendix A-6) are
represented by Ap (p=1, ..., 8). The values for mp and Bp

are defined by equations (A-4,g).

The | and R terms are the length and radius, respectively, of each

finite element.



TABLE 1
MATRIX C[HI]
(3,3)
A Hip M2 His
CH1] B = {0} ; LH]= H21 H22 H23
c Hyy Hiz His
Here, we will only be giving the coefficients appearing
(A-4,g).
2 2
Hip =7 hy APy
le = —nihg
Hay = Hi2
o ol 4 32
H22 = - h7 - A hq
3
AP
2 14
13 = -A(n hS + p12) + R
P P
2 25 3 Pss_ 2
H23 = - n(l + n) R Poo n R2 + NnA h11
P36 Peo
with h1 = Pzzx 7 R M 2

72

in equation



i1

b 4 po 4 ‘Pis * P3e’  SPye
”~
1 33 R A2
{ + 2 Pos
Pis Pz R
R
o+ Pss . 2P 55
~3"
3p.. %p
Pz * Roé M gé
~ 4R
SP g Psq

73
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with {(C2?

A(7,q)

AB,q)

(8,8)

C

Al {C>

(c,, C

All,q)

A2,q) aq

A(3,q)

At4,9) a

w.,
1

(8,1)

2!

ow

a

a
q

ox

TABLE 2

MATRIX [A3J
(8,8)

CB}

V.
1

and 9

t

W
J

L,

ow
ox

LRI

3

74



U(x,6)
Wix,0)
Vix,0)

with (C3

£L7T3

Ldl,q)

L(2,q)

L(3,q)

X(p,q)

X(p,q)

MATRICES [T3]

(71

(3,3) (3,8)

TABLE 3

Ll £XJ

@ w w9 CB}

(8,8)

t

, [LI , [X)
(3,3) (3,8) (8,8)

{C>
(8,1)
0
o
sin né
q =1,
ifp = q

--.,B

75



TABLE 4

MATRIX [J1]
(6,8)
[Tl  [03 4 8
(e = [J1 [X1 €A '3 s
ol CT3 3
(6,6) (6,8) (B,8) (8,8) (B8,1)
A
with J(1,9) = o —-
J2,q) = £ (g + 1)
J3,) = 2 (8 A - nx)
ga=1., ...,
A2
Ji4,q) = —(—Eﬂ—)
J(5,q) = —15 (n? + p_m
q
R
1 3 1
J(b,q) = —— (2nA + 2B A + = nx )
'q R2 9" 2Pt 2 q



APPENDIX A-6

CHARACTERISTIC EQUATION COEFFICIENTS

The characteristic equation (A-4,d) is:

8 6 4 2
hgh® = h A% + hat = ha% 4 =0
h
e B = 7 - p2
where: hg = 2 P11Pagq ~ Pyg’

— - T2
"e T T2 Choth Pgag + 2P 1Pgs * 4Py Pee ~ 2Ng™Pyg)
2 2 2 2
ho (P yPag ~ Pyg) ~ T yPyy ~ haPaq * 2rhzh Pygd

2
 PgPy4Pog ~ P1gPy2’

4
= (D
ha = (77 thiMPas * hoPy1Pss * (2P45 + 4Py, (hyhg
h - h2) + ¢ + 255, | (on - 2h r) o+
7P11 3 Pas r . 3P4 11P11
h. r2(2hoh. - h.h..) - rhe (2hop., + rhoho)d +
11 3"s P11 5 7F1a s'g
n< h3Pyg

( ) . [2 (p25 + rp22) ((~——F———) - hllpll)
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7P14 ~ N3hym) T 2P5, thy - hihg -
- - . T T T Pom _..2)
TPt T SR iiPest T e WP 14Pos T Py
6

hy = (75 Thyh (2pag + 4Py,) * Pggthihg + hopyy = h3) -

r2h§h7 + (p25 + _;QE) . (—-2rh1h11 + 2rh3h5 ~ PyPps
- pl:pssl * :4 L2hyhoPog * 2Py5(hihg + hopy (- h§)
T 2P plrhgh, = hapog = "2§§§§" T2 Py *rRyy) -
thyhyy * 915925 * p11tgs - hghg)d +
"2["22‘“1hm + hypyy ~ h3) - s : a2’ .
t p1:p25 * PyyPop T Zhgpy5) h7pf23
4 2”2925 “4p55 2

hO = n h1h7 Ep22 + - + r2 1l - n h1
c(—EE> (P + 255 y o+ (B p 4 Ep22>32
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APPENDIX B-1

Equation for Non—rotational and Non-viscous Flow

Here we have:

1 - - S - - - ,
v2¢ = ) [ v . (Vg . V) Vg + ¢,tt + 2 Vg . V¢,tJ (a
c

-

-t
and § = g

In terms of its components, the velocity vector is written:

- -3 '
P + ¢'rer (b)

- - ¢1e
V=, o+ e, ) e + —

X
|

Substituting relation (b) into (a), we obtain:

. L 2 2
v2¢ B 2 €, + e, Pryux ¥ -2 W, + Bry) Pr6%1x0
> %56 2
M 2(Ux + ¢'x) PrePorpx * :5 Pro® - Prrg * (-:E) ®r 06
@,
r 2
AT LML AT AT R
¢'9
2 £¢'xt(ux MR LTV r2 Pror * ¢"rﬁ'rtJ ? (e)
We extract the linear component from this last expression in order to

obtain the expression given in (4.2).
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APPENDIX B-2

Bernoulli Equation for Ideal Flow

This is the Euler ideal flow equation where the contribution by the
external forces is considered equal to the scalar potential of the
gradient.

-

U = R TR - R (a)

ot + (U . v U > :
Where vector area for flow velocity

scalar pressure area

scalar potential associated with external forces
fluid density

oE VCL

We obtain the Bernoulli equation by integrating relation (a) along a
streamline allowing for the hypotheses stated in Chapter 2.
2
6 , U_ B -k
3t + 5 + w + P K (b)

where K is an arbitrary constant.

In the absence of external forces, we revert to the usual form of the
Bernoulli equation.

r

9¢ ., U~ _p _ |
| + > + . = 0 (c)

We thus obtain expression (4.6) by associating the velocity fields
defined in (4.14) with G and substituting this expression into
relation (c).
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&
Model No. 1 ; Reynolds Number: Ry= 1.0 x 10
Axial Eigenva)‘l’ue Eigenva)}ue -,_'
mode 1 i variance
m (asymmetric case) (symmetric case)
’==========:B========:===============E========================:============
4 k4
1 0.33135 x 10° 0.33139 x 10° 0.012
4q 4
2 0.11101 x 10 0.11099 x 10 0.018
< ' 4 4 .
3 0.23497 x 10 0.23480 x 10 0.072
N 4 4
4 0.39835 x 10 0.39739 x 10 0.241
. 5 -5
5 ¢4,12038 x 10 0.12002 x 10 0.46464
5 ]
) 0,14969 x 10 0.14668 x 10 2.011
- S ]
7 0.21754 x 10 0.20016 x 10 7.990
S S
8 0.29544 x 10 0.25143 x 10 14.90
5 S
9 0.32166 x 10 0.2875! x 10 10.62
S 5
10 0.32497 x 10 0.29926 x 10 7.912
S S
1 0,32605 x 10 0.33276 x 10 2.058
o) S 5
{ 12 0.33631 x 10 0.33282 x 10 1,037
____________________________________ L e e e e e e e e e e i e e e e e e o o i e e e e e s
Table 1: Validation of the proposed model for flow

conditions
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Model No. 2 ; Reynolds Number: RN= 1.0 x 10°
Axial Eigenvalue Eigenvalue "
mode Ai Ai .
. variance
m (asymmetric case) (symmetric case)
!:=========:::====================::d-========================:============
i 0.95365 x 10° 0.95422 x 10° 0.060
4 4
2 0.10471 x 10 0.10470 x 10 0.010
3 0.13394 x 10° 0.13391 x 10° 0,022
| 4 4
4 0.,18845 x 10 0.18841 x 10 0.021
4 4
] 0.31266 x 10 0.31263 x 10 0.010
4 0.41399 x 10 0.41382 x 10 0.041
4 4
7 0.60470 x 10 0.60411 x 10 0.098
4 4
B8 0.91640 x 10 0.91412 x 10 0.249
5 5
9 0.14379 % 10 0.14277 % 10 0.709
. ] ]

10 0.18409 x {0 0.18175 x 10 1,270
______________________________________________________________ e
11 0.27930 x 10° 0.28033 x 10° 0.369
________________________________________________________________ L e oo e e e o e e i e o]
12 0.280857 x 105 0.28099 ¥ 105 J 0.150

Table 2: Validation of the proposed mode for flow

conditions
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Model No. 3 ; Reynolds Number: RN= 0.0
Axial Eigenvalue Eigenvalue y
mode M M .
m (asymmetric case) (symmetric case) variance
!=====‘_’==="-'=:=======’=================b======================== (1 3-4—4-4-+ 443443
i 0.10960 x 104 0.10958 x 104 0.018
___________ o e oo e i e o . e e . 0 . i B s e o o O e o ——— - p
4 4
2 0.36149 x 10 0.36032 x 10 0.324
. 4 4
3 0,68349 x 10 0.67494 x 10 1,251
5 4
4 0.10127 x 10 0.98589 x 10 2,647
I .5 5
5 0.33425 x 10 (.26910 x 10 19.49
. 5 5 '
b 0.34021 x {90 0.27880 x 10 18,05
S 5
7 0.35B845 x 10 0.30030 x 10 16.27
___________ e e e e ]
5 5
8 0.3594B x 10 0.31801 x 10 11.54
. 5 5 .
9 0.36050 % 10 0.32021 x 10 11.18
5 5
i0 0.36221 x 10 0.32259 x 10 10.94
T 0.36497 x 10° 0.38303 x 10° 4,950
5 5
12 0.36801 x 10 0.39870 x 10 | 8.340
Table 3: Validation of the proposed model for no-flow

conditions
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Model No. 4 ; Reynolds Number: RN= 0.0
Axial Eigi:value Eigen;alue "
mode . i i variance
m {asymmetric case) (symmetric case)
K===========:========================t=======================: -+ 244444 -4 44
2 2
i 0. 33156 x 10 0.33156 x 10 0.000
b e e e e e e e e i e e e e e e o o] } _____________________________________
3 3
2 0.11102 x 10 0.11101 x 10 0,009
3 0.23498 x 10° 0.23482 x 10° 0.290
4 0.39836 x 103 0.39742 «x 103 0.236
5 0.12058 «x 104 0.12002 x 104 0.464
4 4
6 0.14949 x 10 0.14668 x 10 2.011
7 0.21755 «x 104 0.20017 «x 104 7.990
8 0.29544 x 104 0.25143 x 104 14.92
4 . 4
9 0,32153 x 10 0.28752 x 10 10.58
10 0.32496 x 104 0.29927 x 10° 7.912
___________________________________ e e e e e e e e e e e e e e e e e o)
i1 0.32547 «x 104 0.32276 x 104 0.833
Y 4
12 0.33990 x 10 0.33276 % 10 2.100
____________ J.._......_.._....._._....._——...___....................____.__..__—_...._....._.._.__=..._._.__....._.._._..
Table 4: Validation of the proposed model for no-flow

conditions



SYNOPTIC TABLE

Model

Axial mode coupling

Axial mode uncoupling

Experimental parameters

Range of values

Range of values

Reynold 3rd o
No. n L Young's synolds uNL A axial N A axial
R number — = - Y mode
modulus v t mode ) t
R L . L
N
0. x 10" oo eroon] 1 et | 10-12-9  |osooerooo | 100 e10®| 9710
R Lortod {osoe o | 08e 0?12 0.935 @ 1.000 | 10" @ 107 -3-7
steel
2 x 10° | o997 0 1,000 | 1000 | 132 0.950 @ 1.000 | 10'5 @ 10% 1-3-7
0. x 100 |o.935 0 oo | 10f 10! | wr-to-12 | o.e00 8 rovo | 107 eto! | iz-t0-11
21 6 | 8 .
(341
Loxtof o992 0 000 | 10t @ n0? | 1-37 0.925 8 1.000 | 10'7 @ 10% 1-3-7
0. x 100 [o0.900 0 1,000 | 102 10! | 12-9-7  |o.800 8 1000 | 10 @ 10® | 12-10-7
303 |3 fe .
t B
steel 0f {oomoenoo | 0B ere® | 29t {o.9m0e 000 102 erd® | 2110
Eotool | 0 X 100 | o000 1,000 | 10% aro™ | to-1z-9 | o.m00 e rooo | 107 w1 | 9710
"
100 b g . 18 v .0
5 10° |o0.998 e 1.000 | 10° 210 {-3-2 0.900 & 1,000 | 107 # 10 {-3-2
Table 5: 1Influence of different experimental parameters on their relative

contribution to variations

in the frequency ratio

]
o
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Direction of resultant constraints

Direction of resultant moments

FIGURE 1: Differential element for a thin shell



XX

(a) Resultant constraints and displacements

(b) Resultant couples and external loads

FIGURE 2: Dpifferential element for a cylindrical shell
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FIGURE 3:

Reference surface geometry for a cylindrical shell
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FIGURE 4: Shell made up of an odd number of anisotropic layers
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Displacements and degrees of freedom at a node
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FIGURE 6:
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Variations in frequency ratio as a function of motion amplitude
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Variations in frequency ratio as a function of motion amplitude
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Variations in frequency ratio as a function of motion amplitude




FIGURE 11t variations in frequency ratio as a function of motion amplitude
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Variations in frequency ratio as a function of motion amplitude



FIGURE 14: Variations in frequency ratio as a function of motion amplitude
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FIGURE 135: Variations in frequency ratio as a function of motion amplitude
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Variations in frequency ratio as a function of motion amplitude
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