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Abstract-The asymptotic plane-stress mode 1 crack-tip fields under small-scale yielding for pressure- 
sensitive materials are investigated. The yield criterion for these materials is described by a linear 
combination of the effective stress and the hydrostatic stress. Plastic dilatancy is introduced by normality 
flow rule. A closed-form genera1 asymptotic solution for singular centered fan sectors is given as a function 
of p, which is a pressure sensitivity parameter introduced in the yield condition. When elastic-perfectly 
plastic behavior is considered, the finite element results show the existence of elastic sectors bordering the 
stress-free crack faces. The near-tip stresses of the finite element results agree well with those of the 
corresponding asymptotic analysis. The angular spans of the elastic and plastic sectors vary with the value 
of p. The parameter p also has significant effects on the sizes and shapes of the plastic zones. The 
contribution of hydrostatic stress in the yield criterion for this class of pressure-sensitive materials extends 
the boundary of the plastic zone much farther in front of the crack-tip than that for incompressible Mises 
materials. 

1. INTRODUCTION 

FOR ISOTROPIC materials, the yield condition can be expressed as a function of the three stress 
invariants; for example, see [l]. In the classical theory of plasticity, it is commonly agreed that the 
effects of the first invariant, which represents the hydrostatic stress, can be neglected. This was and 
still is a valid assumption for dense metals and alloys such as steels. Recently, there has been a 
great deal of research interest in toughened structural polymers and ceramics because of their 
outstanding mechanical properties. For both classes of materials, results of experiments suggest a 
constitutive description of yielding where the hydrostatic stress effect must be considered. 

As discussed in [2], the effect of hydrostatic pressure on yield and plastic flow has been shown 
experimentally for a variety of metals and plastics. It could be inferred that hydrostatic pressure 
dependent yielding is one cause of the plastic volume increases of polymethyl methacrylate seen 
in the experiments by Whitney and Andrews [3]. Spitzig and Richmond [4] and Richmond and 
Spitzig [5] showed similar results for polyethylene and polycarbonate and concluded that hydro- 
static stress has a significant influence on flow stress. More recently, Carapelluci and Yee [6] 
performed tests on glassy bisphenol-A polycarbonate and verified that a modified Mises criterion 
with linear dependence on hydrostatic stress gave a good fit for their experimental data. The 
phenomenon of pressure-sensitive yielding was also observed in tempered martensitic, maraging, 
and HY-80 steels by Spitzig et al. [7,8]. However, the pressure sensitivity of yielding for steels is 
relatively low compared with those of polymers. Recently, similar pressure-sensitive yielding 
behavior was observed in transformation toughened ceramics by Chen and Reyes-Morel[9] and 
Reyes-Morel and Chen [lo]. 

For isotropic pressure-insensitive materials the asymptotic crack-tip fields have been obtained 
by Hutchinson [l 1, 121, Rice and Rosengren [13], and Rice [14]. The asymptotic crack-tip fields for 
orthotropic materials can be found in [15-l 81. For pressure-sensitive materials, both the asymptotic 
crack-tip power-law and perfect plastic solutions were given by Li and Pan [19,20]. Note the radial 
stress discontinuity in plane-stress fully-yielded asymptotic crack-tip fields in [12,20]. Dong and 
Pan [21] carried out an elastic-plastic analysis of cracks under plane-strain and small-scale yielding 
for pressure-sensitive materials. Their elastic-perfectly plastic solutions show the existence of elastic 
sectors bordering the crack faces. The existence of elastic sectors, to eliminate the radial stress 
discontinuity, for elasticqerfectly plastic Mises material has also been verified by both finite 
element computations and asymptotic analysis in [22,23] under mixed mode loadihg conditions. 

In this paper, we study the effects of elasticity and pressure-sensitive yielding on mode 
I near-tip fields under plane-stress and small-scale yielding conditions. We first investigate 

649 



650 Z. E. A. BEN-AOUN and J. PAN 

the near-tip fields by finite element methods under monotonically increasing loading 
conditions until a steady stress state for the crack-tip elements is reached. Then, the asymp- 
totic near-tip field is assembled and shown to be in full agreement with the finite element 
results. 

2. PRESSURE-SENSITIVE MATERIALS 

In this paper, we account for pressure-sensitive yielding in the yield condition by means of 
a linear combination of the hydrostatic stress cm and the tensile effective stress rr, [2-10,241. The 
yield condition can be written as 

j-(b)=~.,+&J,-cr(ro=o 

6, = (&)I’2 sV = frii - a,& a, = a,,/3, (1) 

where sii are the deviatoric stresses, ~1 is a pressure sensitivity parameter, and a, is a reference 
stress. This yield condition along with the familiar von Mises yield condition are plotted in 
Fig. 1. 

We consider a plane crack problem as shown in Fig. 2 where the Cartesian coordinates xi and 
x, represent the in-plane coordinates and x3 represents the out-of-plane coordinate. Under plane 
stress conditions, we have au = az3 = a33 = 0. Therefore, the yield function defined in eq. (1) can 
be expressed in the Cartesian coordinates as 

f(a) = (a:, + a& - allaz2 + 3a:,Y2 + L (a,, + a22) - 0, = 0 
d 

or in the polar coordinates, centered at the tip as shown in Fig. 2, as 

(2) 

f(a) = (at, + a& - a,rage + 3a$)‘12 + -!- (a, + free) - cro = 0. 
fi 

(3) 

Within the context of small-strain theory of plasticity, the total strain rate tensor can be 
decomposed into an elastic and a plastic part 

i,=i;+i$. (4) 

The elastic strain rate tensor is given by 

i; = M$,ti.k,, (5) 

I =nl 

Fig. 1. Coulomb-type and Mises yield conditions. 
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Fig. 2. Coordinate conventions and finite element model. 

where Miik is a constant elastic positive definite compliance tensor. The plastic strain rate tensor 
is assumed to be normal to the yield surface and the flow rule is given by 

where i is a positive proportionality factor. A detailed discussion on the pressure-sensitive 
constitutive relations can be found in [25,26]. Detailed information on a deformation plasticity 
version of the constitutive law can be found in [19]. 

3. FINITE ELEMENT ANALYSIS 

3.1. Computational model 

In this section, we will present a computational model for the small-scale yielding problem of 
a crack under mode I loading in an elastic-pressure-sensitive plastic material. We consider a crack 
in a circular domain of radius r,. Due to the symmetry of mode I loading, we select the upper half 
of the circular domain as shown in Fig. 2, where x, and x2 are the Cartesian coordinates, and r 
and 8 are the polar coordinates centered at the tip. 

The interior area of the semi-circular domain is entirely discretized by a mesh of eight-node 
serendipity quadrilateral elements. The formulation and numerical integration as well as the 
advantages of this element have been widely discussed and can be found in detail in, for 
example, [271. In the immediate crack-tip region, we use a ring of 18 wedge-shaped elements of 
size ri and we choose a ratio of ri to r. of 10V6 (ri/ro = lo-‘j). Elements in the e-direction are 
equally distributed from 0 to a. The wedge-shaped elements are surrounded by 24 semi- 
circular strips generated by a logarithmic scale in the radial direction. Therefore, there is a 
total of 450 elements in the mesh. For the wedge-shaped elements, the collapsed node technique 
is employed to simulate the l/r singularity needed for the strain in the plastic sectors near the 
tip. 

Along the remote circumferential boundary, the in-plane displacements are prescribed as 

K, r 1’2 
w=zgj 2R 

( > 
w4 VI, (7) 

where G and Ki represent the shear modulus and the far-field mode I stress intensity fac- 
tor, respectively. The dimensionless functions z$(e, v) represent the asymptotic crack-tip dis- 
placements as functions of 8 and Poisson’s ratio v for linear elastic materials (for example, 

see Pfu 
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3.2. Numerical procedure 

A general material nonlinear finite element analysis is performed effectively by use of an 
incremental formulation of the field equations. The finite element equations were derived from the 
principle of virtual work. At a time t + At this takes the form 

s 
a,+,,& dA = 

A s 
T,+,,HJdS, (8) 

JA 

where G, + A, represents the Cauchy stress tensor which satisfies the equilibrium at time t + At, T,, L\, 
is the imposed traction vector on the boundary 8A, 6U represents the virtual displacement vector, 
and 6s is the associated virtual small-strain tensor. 

After linearizing eq. (8) about the equilibrium configuration at time i and introducing the finite 
element approximation, the incremental equilibrium equations are obtained (see e.g. [29]). We 
specialize these equations to be solved by an iterative procedure based on a modified Newton- 
Raphson method. In matrix form, they are 

K’j’ AU@’ = R 
t+At - 

Ft’- 1) 
r+Ar? (9) 

where K(j) is the tangent stiffness matrix that corresponds to one of the previous equilibrium 
iterations (1 <j < i - 1); where AU(‘) is the vector of the nodal point displacement increment at 
iteration (i); where R,+&, is the vector of the externally applied nodal point loads which correspond 
to time t+ At; and where Ff:-$ is the vector of the nodal point forces corresponding to the internal 
element stresses at time E + At and iteration (i - 1) (in the first iteration, i = 1, we use F, of the 
previous converged state). Note here that, for convenience, the discrete time increment Ar denotes 
a load increment. The choice of iterations at which the stiffness matrix would be updated depends 
on the problem under consideration. Without any a priori knowledge of the system behavior, it 
may be efficient to update the stiffness matrix at every iteration for the first run (j = i - 1). 

We first initiate the loading by a small value so that all the elements remain elastic. Then, 
since we are still in the elastic region, we can scale the load to cause yielding at the inte~ation 
point of the element with the highest generalized effective stress age ( = CT, + ~$a,,,), which belongs 
to, in our case, the wedge-shaped element right in front of the crack. This load for which we obtain 
the initial yielding is called the critical load. From this stage, the load is incremented with a small 
fraction of the critical load. 

For each increment of load, the iterative procedure, described above, is used until the 
equilib~um [eq. (911 is satisfied. We measure the convergence of the incremental equilib~um 
equation by the following ratio: 

IIRt+~t-F’t’~d!ll <6 

llR,+~, II 
1 F> (10) 

where I/ - 11 is the Euclidean norm and t& is the tolerance that we wish to obtain in our calculation. 
When any iterative algorithm is applied to a history dependent problem, the intermediate 

nonconverged solutions obtained during the iteration processes are usually not on the actual 
solution path, and thus the history dependent variables must be performed at the end of the 
converged iteration for each load increment, and not obtained as the sum of integrations associated 
with each iteration. In our program, this is done by integrating the field variable from the previously 
converged state. Then, we need to apply this procedure to the stress field so that the stresses at 
any iteration (i) are computed from the values of the last converged equilibrium state as follows: 

where DeP is the elastic-plastic material constitutive matrix. This eliminates any error accumulation 
during intermediate iterations (see [22,30]). 

3.3. Numerical results 

For engineering materials, the values of p are usually about 0.02406 for steels (see e.g. [5]), 
0.1425 for polymers (see [31]), and 0.55477 for transformation toughened ceramics (see [9, lo]). 
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Therefore, the computations were performed for three values of pressure sensitivity, p = 0 (for 
pressure-insensitive Mises material), 0.4, and 0.8. In all the results reported in the following, the 
ratio of Young’s modulus E to the tensile yield stress co was taken as 500, and Poisson’s ratio v 
was taken as 0.3. 

The crack-tip stress fields are shown in Fig. 3. In these plots, the symbols represent the stresses 
of the Gauss points which form a fan surrounding the crack-tip at a distance defined by r/r, z lo-’ 
(here rp represents the plastic zone size ahead of the tip at 8 = 0). The distance is defined in this 
manner to ensure that these Gauss points in plastic sectors are well inside the plastic zone but on 
the other hand outside the crack-tip region where the finite deformation effects dominate. The solid 
lines in Fig. 3 represent the stresses evaluated by the corresponding asymptotic analysis which will 
be detailed in Section 4. In these figures, bbe represents the generalized effective stress which is equal 

p - 0.0 
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Fig. 3. Angular stress distributions for elastic-perfectly plastic materials with various pressure sensitivity 
parameters. Top: c = 0. Center: p = 0.4. Bottom: p = 0.8. 
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to a, + J3% and all the stresses are normalized by the reference stress Q,,. It is important to 
note that all the components of the stresses, including B,,, are continuous, in contrast to the asymp- 
totic solutions of Hutchinson [12] and Dong and Pan [23] for Mises materials, and Li and Pan [20] 
for pressure-sensitive materials, where the discontinuity of cir appears between two constant stress 
sectors because of the assumption that the material surrounding the crack-tip is fully yielded. 

4. ASYMPTOTIC CRACK-TIP FIELDS 

4.1. Singular plastic sectors 

The outline of the analysis in this section is based on the work by Rice f32]. The analysis is 
valid for an arbitrary anisotropy of homogeneous materials. Its only restriction is the requirement 
of smooth yield surfaces. 

As r-0, for plane stress problems (al3 = ~5~ = rr33 = 0), the equilibrium equations given by 
Rice [14] are 

a,~-o&q+cr~=O (12) 

2a,o + a;, = 0, (13) 

where “I” means differentiation with respect to 0. Combining the differential form of the yield 
condition with the equilibrium equations gives 

(CGl + &?)P,, = 0, (14) 

where 

P =V(fl) 
,T 

da,’ 

There are three equations [eqs (12), (13), and (14)] for three unknown stresses. Therefore, this 
is a statically determinate problem. From eq. (14) 

either P,=O or o;,+a;,=O (15) 

must be true. Let us discuss both cases in the following. 
4.1.1. Centered fan sector. P,r = 0 defines a fan of radial characteristics as follows: 

or 

~(2o,~-~&?)+&T~=o. 
8 

(16) 

Using eq. (16) and the eq~librium equations [eqs (12) and ( 13)] as well as the yield criterion [eq. (3)], 
we can solve for the three stress components. We are interested in solutions for p < 0.8. However, 
two similarly structured solutions arise, depending on the sign of the discriminant of the 
characteristic equation for 0 G p c fi. The first case for 0 G p c ,,6/2 is of periodic nature: 

2&P 
ass=F,cosp(8 -@,)+&sinp(@ -8,)--------o 

3-4$ D 

3+2~2 ]F, 
‘, = 2(3 _ pz) 

2J% 
cosp(8-8,)+FZsinp(8-t&J]--a 

3-4j? O 

@te =+sinp(@ -@,I -~cosp(B - eoh 

(17) 

(18) 

(19) 

where p2 = (3 - 4~*)/(3 - ,u2). Here 0, represents a reference angle. The constants F, and F2 are 
related by 

F:+F:=4 
3-g 

(3 - 4/2y 
a;. (20) 
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When p = d/2, the stress field is quadratic in nature: 

crge = +,(6’ - 8,)’ - 2F,(8 - 0,) + F4 

6,,= +,(e -e,y-2F,(e -e,)+F,-foo 

6ro=$00(e -e,)+F,, 

where F3 and F4 are related by 

F: + ;F,a, = $a;. 

The second case for 312 < p < J? is aperiodic: 

(21) 

(22) 

(23) 

(24) 

2fiP 
a,,=F,coshj@ -8,,)+F,sinhp(8 -&,)--a 

3-4$ O (25) 

2J3c( 
(T,~ = ::_‘$) (F5 cash p(e - e,) + F6 sinh p(e - e,)) - 3 co (26) 

or@= -qsinhy(e -8,)-Fcoshp(e -e,), (27) 

where p2 = (3 - 4~‘2)/(3 - p2). The constants F5 and F, have to satisfy a condition similar to the 
periodic case, namely 

3-j? 
F:-F:=4(3_4p32 a;. P-9 

Note that F,, F2, F,, F4, F5, and F6 are constants which will be determined by the boundary 
conditions. 

The Mises material is a special case of the first set of solutions with p = 0 and p2 = 1. For 
this case the stress field becomes 

oee = F, c0qe - e,) + F2 sin(8 - e,) (29) 

on = {(F, 00qe - e,) + F2 sin@ - e,)) = fdge (30) 

ere = f(F, sin@ - e,) - F2 00s(e - e,)), (31) 

where Ff + F: = $0:. This is consistent with the slip-line solution for Mises materials under plane 
stress conditions. 

4.1.2. Constant stress sector. a;, + 0i2 = 0 leads to G,,, CJ~~, and u,~ being constants. This 
represents a constant stress sector. These constants must be chosen to satisfy the yield function and 
the boundary conditions. 

4.2. Elastic sectors 

The analysis in this section is valid for any elastic isotropic materials under both plane strain 
and plane stress conditions. The compatibility equation for the elastic sectors of finite stresses is [22] 

(0, + aee)n = 07 (32) 

where ““” represents the second differentiation with respect to 8. By integrating the above 
compatibility condition [eq. (32)], we obtain 

qr+o,=4B8+2A. (33) 

Combining eq. (33) with the equilibrium equations gives [22] 

6,,=A +2Be -cc0s2e -D sin28 (34) 

~~=A+2Be+ccos2e+Dsin28 (35) 

6&= -B+csin28-Dcos28, (36) 

where A, B, C and D are constants. 
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4.3. .4ssenzhl~ of crack-tip solution 

In this paper, we only consider mode I symmetric cases, which lead us to the following familiar 
symmetry condition: 

aJO = 0) = 0. (37) 

?I ne stress free boundary conditions are 

a,(8 = n) = o&&9 = n) = 0. (38) 

4.3.1. Elastic-plastic solution. Based on our numerical results, the assembled asymptotic 
solutions should feature the following: 

continuity of the stress field, including 6, 
--elastic sectors bordering the faces of the crack. 

Guided by the perfect-plasticity asymptotic solution assembled by Hutchinson [ 121, 
by the elastic-plastic solution assembled by Dong and Pan [23], and by our numerical results, 
we clearly note the formation of three distinct sectors: a centered fan sector in front of 
the crack-tip bordered by a constant stress sector which is in turn bordered by an elastic 
sector leading to the traction free face of the crack. These sectors are plotted in a schematic 
form in Fig. 4, where C.F. denotes a centered fan sector and C.S. denotes a constant stress 
sector. 

Fig. 4. Asymptotic crack-tip structures for elastic-perfectly plastic materials with various pressure 
sensitivity parameters. Top: p = 0. Center: p = 0.4. Bottom: p = 0.8. 
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In front of the crack-tip at 0 = 0, we use the fact that our loading is symmetric [eq. (37)] and 
we take a,, = CC,,, where c is a function of cc. Using the latter assumption in the yield function [eq. 
(311, we can solve for bgg as follows (see [20]): 

6&v= 
[ 
(2-c + 1)1’2+J& + 1) 

-I 
fi 1 60. 

Now using eq. (16) we can solve for the proportionality constant c 

(39) 

1 
c=- I+ P 

2 

(( ,) 

2 112 - 

l-5 
WI 

Note that, based on the condition of eq. (16) and the fact that a, is positive, 20,, - see has to be 
negative which implies that c has to be less than l/2. Then, we should use only the negative sign 
in eq. (40). The formula for the constant c becomes 

c=’ l- P 
2 

(( ,i 

2 I/2 * 

l-5 
(41) 

Note that when p = J3/2, c = 0. This implies that the radial stress a, is 0 at 0 = 0. When p 
is in the second interval ($12 < p < fi), c is less than zero. This indicates that a,r is 
negative. 

Using eq. (39) eq. (41), and the symmetry of the centered fan sector ahead of the tip which 
requires 0, = 0 and F2 = 0, we can solve for the constant F, in eqs (17)-(19). The stress field for 
the centered fan sector becomes 

I (42) 

(43) 

Again the stress field for Mises materials would be the limit of the above system when p goes to 
zero. When p = d/2, the stress field for the centered fan in front of the tip is 

aBB = -$a,(e2 - 1) (45) 

a, = -$7002 (46) 

arB = fa0e2. (47) 

Note that we can also get the solutions for d/2 < ~1 < fi by just replacing p by p and the 
trigonometric functions by their hyperbolic counterparts in eqs (42)-(44). 

For the elastic region, being extended to the face. of the crack, we need to use the boundary 
conditions at 8 = n [eq. (38)]. Applying these boundary conditions to eqs (34X36), the stress field 
in the elastic region becomes 

a,, = A(1 + cos 28) + B(20 + 2x cos 28 + sin 20) 

a88 = A(1 - cos 20) + I?(28 - 271 cos 28 - sin 28) 

a, = -A sin 28 - B(l + 27~ sin 28 - cos 28). 

(48) 

(49) 

(50) 
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We can express the stress field in the constant stress sector in terms of the angle a defined in 
Fig. 3: 

fs , , = f~,,(a)cos~ a + oe,(a)sin2 a - 2a,(a)sin a cos a (51) 

0 22 = cr,,(a)sin2 a + ueO(a)cos2 a + 2a,(a)sin a cos a (52) 

~7,~ = (a,,(a) - oee(a))sin a cos a + a,,(a)(cos2 a - sin2 a), (53) 

where a,(a), or,(a), and a&(a) are the stresses of the centered fan region evaluated at 8 = a in eqs 
(42)-(44). 

We can solve for /?, defined in Fig. 3, by assuming the continuity of crt, and CT~ between the 
constant stress sector and the elastic sector and forcing the stress field of the elastic region to satisfy 
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Fig. 5. Fully-yielded angular stress distributions for perfectly plastic materials with various pressure 
sensitivity parameters. Top: p = 0. Center: p = 0.4. Bottom: p = 0.8. 
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the yield function [eq. (3)] at 8 = 8. Note that the continuity of err is guaranteed because the yield 
function as well as the continuity of or0 and a@ are satisfied at 0 = j?. These conditions form a system 
of three equations for the three unknowns A, B, and /?. To solve it, we use a solution procedure 
based on Newton’s method routine to satisfy the yield function. This results in a uniquely 
determined angle p as well as a unique set of constants A and B as functions of u which is estimated 
from the finite element solutions. Thus, we can fully determine the stress field in all sectors. As 
expected, the asymptotic solution resulted in a continuous stress field throughout the region as 
shown by solid lines in Fig. 3. The asymptotic solutions agree well with the computational results 
shown as the symbols in Fig. 3. 

0 O8 y-dir&Ion p - 0.0 

0:04J 

Fig. 6. Fully-yielded asymptotic crack-tip structures for 
Perfectly plastic materials with various pressure sensitivity 
parameters. Top: p = 0. Center: p = 0.4. Bottom: p = 0.8. 
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4.3.2. Fully-yielded perfectly plastic solutions. For comparison, we present the corresponding 
fully-yielded solutions for perfectly plastic materials. These plane-stress asymptotic solutions were 
given by Li and Pan [20]. The assembled crack-tip fields consist of a centered fan sector in front 
of the crack-tip and two adjacent constant stress sectors between the centered fan sector and the 
face of the crack. The stress fields normalized by the reference stress q, for /J = 0, 0.4, and 0.8 are 
plotted in Fig. 5 and the corresponding asymptotic crack-tip structures are shown in Fig. 6 (where 
C.F. denotes a centered fan sector, and C.S., and C& represent two constant stress sectors). 

Although the f~ly-yielded solutions are not supported by our finite element results, they can 
still be a good case for comparison. The regions near which the fully-yielded solutions predict the 
discontinuities of grr, as shown in Fig. 5 (note the increasing discontinuity as ,u increases), are 
actually replaced by elastic regions and all the stresses are continuous as shown in the elastic-plastic 
solutions in Fig. 3. Note that, for each CL, the stress states ahead of the tip at 0 = 0 are the same 
for both elastic-plastic and fully plastic fields. However, the angular spans of the centered fan and 
constant stress sectors are different for both fields. On the other hand, we notice similar 
characteristics such as the decrease of the span of the centered fan region c1 as well as the increase 
of the span of the constant stress sector (bordering the centered fan sector) and the total yielded 
angular span B, when p increases. These features are shown in Figs 3 and 5 for the stress 
distributions as well as for the values of a and fi and in Figs 4 and 6 for the actual sector spans. 

5. DISCUSSION 

In this paper, we have studied the plane-stress crack-tip fields for the elastic-plastic 
pressure-sensitive materials. We have shown in our numerical studies the existence of elastic sectors 
bordering the face of the crack (see Figs 3 and 4). The issue of the existence of the elastic sector 
for elastic-perfectly plastic materials was raised by Gao [33], Nemat-Nasser and Obata [34], Saka 
et al. [35], Dong and Pan [22,23] for Mises materials and Dong and Pan [21] for pressure-sensitive 
materials. In the analysis of the pure mode I plane-stress case, Dong and Pan [23] overlooked the 
existence of the constant stress sector that we have noticed clearly in our study especially at a large 
pressure-sensitivity parameter. 

The plastic zones from the finite element solutions in steady state, normalized by JE/a: (here 
J = @/II), are shown in Fig. 7 for p = 0, 0.4, and 0.8, The dots in these plots represent Gauss 
points in their plastic state. In these figures, we can see the extension of the angular span of the 
plastic region as seen earlier in Figs 3 and 4. We also notice that the normalized plastic zone 
enlarges as p increases. Also, as ~1 increases, the crack-tip stresses ahead of the crack decrease. This 
may partially explain the toughening effect due to an increase of macroscopic pressure sensitivity 
by introducing microvoids, microcracks, and phase transformation. 
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