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Research Reports 

AN AUTORADIOGRAPHIC STUDY OF THE PROJECTIONS FROM THE 
LATERAL GENICULATE BODY OF THE RAT 

CHARLES E. RIBAK AND ALAN PETERS 

Department of Anatomy, Boston University School of Medtcine, Boston, Mass. 02118 (U.S.A.) 

(Accepted February 3rd, 1975) 

SUMMARY 

The projections from the lateral geniculate body of the rat were followed 
using the technique of autoradiography after injections of [aH]proline into the dorsal 
and/or ventral nuclei of this diencephalic structure. Autoradiographs were prepared 
from either frozen or paraffin coronal sections through the rat brain. The dorsal 
nucleus of the lateral geniculate projected via the optic radiation to area 17 of the 
cerebral cortex. There was also a slight extension of label into the zones of transition 
between areas 17, 18 and 18a. The distribution of silver grains in the various layers 
of the cerebral cortex was analyzed quantitatively and showed a major peak of 
labeling in layer IV with minor peaks in outer layer I and the upper half and lowest 
part of layer VI. The significance of these peaks is discussed in respect to the distribu- 
tion of geniculocortical terminals in other mammalian species. 

The ventral nucleus of the lateral geniculate body had 5 major projections to 
brain stem structures both ipsilateral and contralateral to the injected nucleus. 
There were two dorsomedial projections: (1) a projection to the superior colliculus 
which terminated mainly in the medial third of the stratum opticum, and (2) a large 
projection via the superior thalamic radiation which terminated in the ipsilateral 
pretectal area; a continuation of this projection passed through the posterior commis- 
sure to attain the contralateral pretectal area. The three ventromedial projections in- 
volved: (1) a geniculopontine tract which coursed through the basis pedunculi and 
the lateral lemniscus to terminate in the dorsomedial and dorsolateral parts of the 
pons after giving terminals to the lateral terminal nucleus of the accessory optic 
tract, (2) a projection via Meynert's commissure to the suprachiasmatic nuclei of 
both sides of the brain stem as well as to the contralateral ventral lateral geniculate 
nucleus and lateral terminal nucleus of the accessory optic tract, and (3) a medial 
projection to the ipsilateral zona incerta. The results obtained in these experiments 
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are contrasted with other data on the rat 's central visual connections to illustrate 
the importance of these connections in many subcortical visual functions. 

INTRODUCTION 

Due to its location in the brain stem, study of the projections of  the lateral 
geniculate body in the rat has proved to be a difficult task. Most efforts to produce 
lesions in this nucleus run into the danger of  interrupting either axons in the optic 
tract or in the brachium of the superior colliculus. The use of  the autoradiographlc 
tracing method obviates the problem of causing degeneration of axons of passage 7,21 
and at the light microscope level 16 autoradiographic tracing has been shown to be at 
least as sensitive as the Fink-Heimer  technique in determining axonal projections. 
In a recent study on the retinogeniculate pathways in the cat and the fox 17, auto- 
radiography has been more precise than fiber degeneration studies since it displayed 
an extra layer in the geniculate which received terminals from the retina. 

The lateral geniculate body in the rat is divided into dorsal (dLGN) and ventral 
(vLGN) nuclei by a bundle of  horizontally oriented fibers (Fig. 1A). In a study of the 
lateral geniculate body of the rat, Brauer and Schober 3 have demonstrated two types 
of  neurons in the d L G N  and two in the vLGN.  The type I cell in the d L G N  was 
described as a neuron that functioned as a geniculocortical relay cell. The type II 
cell was smaller and was considered to be an interneuron. These cells are distributed 
equally throughout the dLGN.  The type I I I  and 1V cells found in the v L G N  were 
similar to the type I and II  cells. However, they had a preferential location. The type 
I I I  cells resided in the lateral vLGN whereas the type IV cells were in the medial zone 

of that structure. 
The projechon of the d L G N  to the visual area in the rat cerebral cortex was 

shown by the experiments of  Lashley 22. After destroying parts of the cerebral cortex 
and observing retrograde degeneration in thionln-stained sections, he concluded that 
the field of  termination of the d L G N  was restricted to the area strIata. Following 
such removals of  cortex, the neurons of the v L G N  were not observed to undergo any 
degeneration and it was thus concluded that this subdivision of  the lateral genlculate 
body did not contribute to the optic radiation. Due to the nature of  the methods used 
by Lashley '2, it was not possible to comment on the distribution of thalamocortlcal 
afferents to the different layers of  the visual cortex. Similar results had been obtained 
by both Clark 6 and Waller 4°. 

Krieg ' °  employed the method of lesioning a thalamic nucleus followed by the 
staining of degenerating myelin sheaths with the Marchi method to study the thalamo- 
cortical projections in the rat. However, he did not report data for the d L G N  pro- 
jections to the striate cortex because no lesions included this thalamlc nucleus, in 
fact, there have been no reported studies on the distribution of d L G N  axon terminals 
in the visual cortex of the rat. There have been many studies on the pattern of  de- 
generating terminals in the layers of  visual cortex in other mammals and Polley 31 
found terminals in layers IV and I in the cat and layers IV, Ill  and 1 in the rhesus 
monkey. Most authors1,24, 35 have described the greatest concentration of degener- 
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ating terminals to be in layer IV, although they have also referred to fine pericellular 
degeneration in layers VI, V and I. Further proof  for geniculocortical afferents ending 
in layer VI has recently been demonstrated in the cat using the autoradiographic 
technique for tracing pathways 34. 

The vLGN of the rat was described by Gurdjian 12 as having projections to the 
zona incerta and to contralateral structures via Meynert's commissure, while Tsang a9 
theorized that there is a vLGN projection to the contralateral vLGN and to the 
pretectal area via Meynert's commissure. 

While this work was being prepared for publication three other studies on the 
projections of  the vLGN using the autoradiographic technique have been published. 
In one of them, Edwards, Rosenquist and Palmer 9 described the projections of this 
nucleus in the cat, and in the other two, Graybie111 and Swanson, Cowan and Jones 37 
considered the projections from the vLGN of the rat and the cat. At this point it may 
be stated that, in the present study on the rat, basically the same projections described 
by Swanson, Cowan and Jones a7 were found, but in addition another site of termina- 
tion of the vLGN neurons was encountered in the pons as described by Edwards, 
Rosenquist and Palmer 9 and Graybie111. In the present article, a different interpreta- 
tion of  the mode of termination of projections to some structures is gwen and there is 
a different interpretation of  the pathways taken by some of  the vLGN axons to reach 
these structures. Because of  these differences, it was deemed appropriate to present 
our results. 

MATERIALS AND METHODS 

Injections 
All of  the radioisotope injected was drawn from a concentrated solution of 

L-[2,3-ZH]proline (New England Nuclear, specific activity 37.3 C1/mmole). This 
solution was prepared by evaporating off the 5 ml of  solvent in which the proline was 
delivered and redissolving the residue in 250 #1 of saline. Thus a 20 times concentrated 
solution was prepared. 

The injection system was a hydraulic one consisting of  a Harvard Apparatus 
Peti-pump 1150 which advanced the thumb-piece of  a 10 #1 Hamilton syringe that 
was filled with water and connected to a glass micropipette via a length of Intramedic 
polyethylene tubing (PE 20). The two junctions at either end of  the tubing were sealed 
with vacuum grease. The system was made air-free to ensure that the injection of the 
labeled amino acid would decrease the amount of erratic pressure on the brain tissue 
and thereby lessen the tissue damage. After the entire system was filled with water, 
2 #1 of soybean oil were drawn up into the micropipette which had a tip diameter of  
20/~m to 50/~m. The concentrated proline solution was then drawn up behind this 
oil interphase. 

Albino rats of  150-250 g were placed in a David Kopf  stereotaxic apparatus 
after sedation with chloral hydrate and all injections were made stereotaxically. To 
make an injection the mlcropipette tip was passed into the ipsilateral cortex anterior 
to the L G N  so that it made an angle of from 15 ° to 45 ° with respect to the perpendic- 
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ular to the surface. Total amounts of  isotope injected varied from 0.4/A to 2.0/~ 
and each injection lasted from 1 to 2 h. 

Processing of tissue 
Assuming fast axonal transport  rates of  100-500 mm/day,  survival times of 

5, 24 and 30 h were used to maximize the labeling m the axon terminals of  pathways 
emanating from the LGN. Animals which were to have their brains processed for 
paraffin embedding were perfused through the left ventricle of  the heart with Boum's 
fixative subsequent to a saline washout. Other animals intended for frozen sectioning 
of their brains were perfused with either a 4 ~ paraformaldehyde solution or the two 
perfusion mixtures of  glutaraldehyde and paraformaldehyde as suggested by Bright- 
man and Reese 4. Of  the latter fixative, first the dilute and then the concentrated 
solutions of these mixtures were employed according to the schedule described by 
Peters ~0 m order to gain good fixation for a later series of  electron microscopic 
autoradiographic studies of  the visual cortex. 

Brains were dissected out the day after the fixation. Paraffin-embedded brains 
were sectioned at 10 #m while frozen sectioning was done at 30 #m. In animals used 
for electron microscopic analysis, the visual cortex was taken out separately, post- 
fixed in osmic acid and then embedded in Araldite. 

Autoradtography 
All sections were dipped according to the method of Koprlwa and LeBlond TM 

using the Kodak  NTB-2 emulsion. The paraffin sections were deparaffinlzed in xylene 
prxor to dipping. The frozen sections were prepared for dipping following the proce- 
dure of  Hendrickson, Moe and NoblO ~. Groups of 5 slides were dipped in the melted 
emulsion which was maintained at 40 °C in a water bath and afterwards the slides 
were dried in the air for an hour before being stored in light-tight boxes for an ex- 
posure period which was usually three weeks long. After this time had elapsed slides 
were developed in Dektol for 21/2 min at 17 °C. They were then washed briefly in 
water, immersed for 5 min in rapid fix and washed for an hour in water before being 
stained in a 0.5 ~ solution of toluidine blue for cytoarchltectonic evaluation. 

Anal~'sis 
Following the deposition of [3H]prohne into the neuropil of the L G N  sub- 

sequent to an injection, label was continually acquired by and incorporated into 
protein within each cell, because this was not a pulse label followed by a washout. 
Therefore, a continual flow of labeled proteins down the axon occurred via the fast 
axonal transport  and there was not a flow of one distract band of radioactivity. Thus, 
when examining autoradlographs, any individual silver grain at a distance from the 
injection site could represent radioactivity e~ther in an axon or an axon terminal. 
However, in utilizing short survxval times for the maximization of the fast axonal 
transport, it has been shown that axon terminals are labeled in preference to the axon 
itself 7,17. The methods chosen for the analysis of  autoradiographs have attempted to 
take these considerations into account. 

In area 17 of the cerebral cortex, grams were counted by using a 100 × od 
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immersion lens and a grid reticule in the eyepiece. This reticule was a square composed 
of  100 equal-sized boxes arranged in 10 rows. During the counting of  grains through 
the depth of the cortex, the top bar of  the first row of boxes was aligned over the pial 
surface. The two top rows of boxes (i.e., 20 boxes) outlined a 1125 sq. #m area of  
labeled cortex and the silver grains within this area were counted. The next and deeper 
area of  cortex to be counted was outlined by the middle two rows of the reticule, so 
that the intervening two rows of  boxes were omitted. This alternating pattern of  
counting two rows and skipping the next two rows was continued until the white 
matter  was reached. The background count was obtained by averaging the number 
of  grains present over a similar sized area in an adjacent part  of the cerebral cortex 
which did not show a definite labeling pattern. Similar grain counts were made over 
the superior colliculus. 

For  three animals graphical representation of the distribution of silver grains in 
area 17 was generated f rom raw data obtained in the manner described above. As- 
suming the peak count in layer IV to be 100 ~o, all other counts in the same traverse 
were calculated as a percentage of  this maximum grain count. A number of  traverses 
were carried out in different parts of  area 17 in each animal and the data from each 
traverse were plotted separately. 

To determine the paths of  axons projecting from the neurons of  the vLGN,  
and to assess the sites of  termination of these axons, structures were assumed to be 
labeled when the number of  grains covering them was significantly above that of  the 
neighboring structures. When fiber tracts contained label it was found that the silver 
grains overlying them were arranged in, and confined to, distinct bands. This appear- 
ance was so characteristic that labeled fiber bundles could even be distinguished in the 
areas of high background grain counts close to the site of  injection. 

To more definitely identify the brain stem structures showing labeling, the sites 
of  high activity in the autoradiographic sections were studied secondarily in sections 

of  control brains stained by Klfiver-Barrera and silver techniques. 

RESULTS 

In this study, 7 rats exhibited labeled injection sites in the L G N  complex. 
Another 14 rats had labeling in other parts of  the thalamus or in the overlying 
hippocampus. Three different injections into the L G N  are illustrated in Fig. 1 which 
also shows a Kliiver-Barrera stained section through approximately the same level 
of  the brain stem. Rats numbered 98 and 100 (Fig. 1D) had injections confined 
to the vLGN.  Rats 66 (Fig. 1C) and 69 had injections which included portions of  
both the dorsal v L G N  and the ventral dLGN.  The injection site of  rat 102 included 
the lateral aspect of  each of the subdivisions of  the L G N  while in rat 56 (Fig. 1B) 
the injection site included the entire d L G N  and a dorsal portion of the vLGN.  Rat  
101 had a large injection that labeled the entire L G N  complex as well as the medial 
geniculate nucleus, the lateral posterior nucleus and the ventrobasal complex of the 
thalamus. In the process of labeling the LGN,  some label invariably diffused into the 
adjacent parts of  the hippocampal formation and dentate gyrus, but the projections 
from these latter areas are not discussed here. 
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Fig. 1 Low power photomicrographs of coronal sections through the lateral gemculate body of the 
rat brain stem. Fig. IA is a Kluver-Barrera-stamed preparation showing the relationship of neigh- 
boring structures to the lateral gemculate body (dLGN and vLGN) These structures are the zona 
lncerta, ZI, the ventral nucleus of the thalamus, NV, and the lateral posterior nucleus, LP. Fxg. 1 B 
is a Nlssl-stamed section showing the mject~on sLte of rat 56 m an autorad~ograph at about the same 
level as Fig IA. Notice that the entire dLGN Is labeled as well as a small dorsal portion of the vLGN. 
The amount  of radioisotope reJected was 1.0/~1 Fig 1C, from rat 66, illustrates the site of reJection 
which includes parts of the dLGN and vLGN. The rejected amount  in this case was 0 4 / d. Fig. 1D 
is a hghtly stained frozen section showing the heavy labehng of the vLGN of rat 100 The center of 
the rejection is located laterally to the vLGN in this experiment where 2.0/~1 of [3H]proline was 
rejected Shrinkage for this brain was less than for brains of rats 56 and 66 because they were process- 
ed for paraffin embedding. The cahbrat~on line can be apphed to all photomicrographs in this figure 
For explanation of abbreviations used m this and following figures see pp. 366-367. 
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Another aspect of these injections was the effect produced as the glass micro- 
pipette passed through brain structures to reach the LGN. The injections made at 
45 ° to the pial surface usually leaked labeled amino acid into the cerebrospinal fluid- 
filled space anterior to the LGN. This caused some labeling of ependymal cells lining 
the ventricular system. 

dLG N projections 
Although no injections were strictly confined to the neurons in this subdivision, 

rat 56 will be used to illustrate the projection from this dorsal part of  the nucleus to 
the visual cortex via the optic radiation. A series of drawings from selected autoradio- 
graphs from this experimental animal is depicted in Fig, 2. The injection site diagram- 
med in Fig. 2E is shown in the low power photomicrograph of  Fig. lB. Labeling due 
to axonal transport was not found in the visual cortex of animals such as 98 and 100, 
in which injections were limited to the vLGN. 

Following labeling of the dLGN, the course of the broad projection of the optic 
radiation appeared to leave the dLGN rostrolaterally and to course ventral to the 
stria terminalis in front of the hippocampal flexure (Fig. 2F and G). Labeled axons 
in the caudal limb of the internal capsule coursed through the caudate nucleus as far 
anterior as the level of the optic chiasm and from here the labeled axons were located 
in the white matter underlying neocortex either anterior or lateral to the visual 
cortex, the site of their termination. 

Counterstained autoradiographs of  the visual cortex were examined to assess 
which areas of the cortex received the gemculocortical projection. Krieg 19 parceled 
the occipital region of the cortex of the albino rat into visual areas 17, 18 and 18a. 
In differentiating between these areas, it may be briefly stated that in Nissl preparations 
area 17 was characterized by having a prominent layer IV consisting of small and 
densely packed granule cells. The thickness of layer 1V was equal to that of the com- 
bined thickness of layers II and IlL Layer V of  area 17 was characterized by the pres- 
ence of medium- and large-sized pyramidal cells that were scattered somewhat 
randomly in this thin and, compared to layers III and IV, sparsely cellular layer. 

A quite sharp border could be discerned between area 17 and area 18, which 
lies medial to 17. Compared to area 17, layer I in area 18 was thicker while layer IV 
was severely reduced in thickness, and layer V seemed to contain more densely 
packed cells. 

Krieg described the more laterally and caudally placed area 18a as having a less 
well defined border with area 17. In area 18a, he described a decrease in the con- 
centration of granule cells in layer IV. Meanwhile, layer V was more granular than 
its counterpart in area 17. In the caudal part of Krieg's area 18a, where it occupies 
the medial border of area 17, it appeared from our observations that cytoarchitectur- 
ally this portion of the cortex was quite similar to area 17. Here, layer IV remained 
thick and packed with granule cells, but, because of the curvature of the cerebral 
hemisphere, layers II and III were relatively thinner, so that layer IV moved closer 
to the surface of the cortex. 

In the autoradiographs of  the visual cortex from rat 56, the label was heavily 
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concentrated in layer IV of cytoarchitectural area 17. In this layer, the labeling was 
rather homogeneous and there was no tendency for it to form any type of pattern. 
However, there was some extension of label toward the adjacent and cytoarchitectur- 
ally defined areas 18 and 18a. This extension was slight (Fig. 2C, D and E), but 
indicated that the geniculocortical terminals extend into the zone of  transition between 
areas 17, 18 and 18a. 

On the medial side of  the cerebral hemisphere near the caudal part  of  area 17 
(Fig. 2B), there was an extension of the geniculocortical terminals in a portion of  the 
cortex that Krieg z0 defined cytoarchitecturally as part  of  area 18a. However, as 

discussed above on the basis of  our observations of  Nissl-stained sections, this por- 
tion of the cortex should be included in area 17. In autoradiographs it displayed 
heavy labeling of layer IV and consequently it seems that both on the basis of  its 
connections and its morphological features, this portion of the cerebral cortex is part  
of  the pr imary visual cortex. 

The cortical map generated from these geniculocortical projections correlated 
well with the pr imary visual area as determined by microelectrode mapping of the 
retinotopic organization of the visual cortex in the albino rat 26. The cytoarchitectonic 
map of  striate cortex of the mouse as defined by Rose 33 also showed a caudal portion 
which extended into the medial side of  the cerebral hemisphere. Krieg z0 even observed 

a gradual modification of the cytoarchitecture at the occipital pole where a possible 
interruption occurred in the ring that areas 18 and 18a form around area 17, even 
though he did not indicate the modification in his summary drawing. 

The distribution of silver grains within the various layers of  area 17 is illustrated 
graphically in Fig. 3 which shows the relative grain counts made on sections from three 
different animals. The number of  traverses used to obtain the averages for each graph 
for animals 56, 66 and 69 were 15, 8 and 5 respectively. To combine these data the 
depth of  the cortex from the pial surface to the junction between layer VI and the 
white matter  was arbitrarily divided into 40 equally spaced intervals. At each of these 
intervals the grain counts expressed as a percentage of  the layer IV maximum were 
read off from the individual graph and the data for separate traverses of  the cortex 
of  each animal were combined into this single representation. 

A major  peak of labeling appeared in layer IV in all of  the animals cited in 
Fig. 3. This peak of labeling extended over the deeper part  of  layer I I I  suggesting the 
presence of geniculocortical terminals in this layer. Other minor peaks coincided 
with the outer part  of  layer I and with the upper half and lowest part  of  layer VI. 

Fig. 2. A series of tracings from autoradtographs from the brain of rat 56 from levels that were labeled 
caudally (A) to those that were labeled rostrally (I). The pathway of the micropipette is illustrated 
by the arrows in Figs. 1E, F and G. The boundaries of area 17 in Figs. 1B, C, D and E are based 
upon the cytoarchltectural characteristics that are discussed m the text of the paper. The stippling 
represents relative densities of silver grains in the autoradiographs. The broken hnes represent the 
labeling found within the optic radiation. Although some of the sites of termination from the projec- 
tions of the vLGN were labeled in thin experiment, the fiber pathways were not labeled clearly so 
these data are represented in Fig. 5 for another experimental animal. The abbreviations used are 
given in the accompanying list on pp. 366--367. 
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L a y e r  I 1 

L a y e r s  II and IH 

L a y e r  IV 

L a y e r  V 

L a y e r  VI 
KEY 

Animal  Code Survival Time 
56 = = : 2 0 5  Hours 
66 ~ -- ~ 2 2 5  Hours 
69 ~ 5 0 Hours 

10 7'0 30 40 50 60 70 80 90 I00 

R e l a t i v e  N u m b e r  of Gra ins  / 1125p z 

Fig. 3. A graph of the relative distribution of sdver grains per umt area through the depth of area 17 
of the cerebral cortex in the rat. See text for the details on the preparation of this graph. A major 
density peak occurs in layer IV w~th other minor peaks in upper layer I and m the upper half and lowest 
part of layer VI. 

While  the peak  in layer I suggested the presence o f  axon terminals ,  the smal ler  and  

b roade r  peak  in upper  layer  VI can p robab ly  be a t t r ibuted  to an accumula t ion  o f  label 

in axon terminals  or  in the specific tha lamocor t ica l  axons as they turned  f rom a 

hor izonta l  to a vertical  direct ion in this layer. A no the r  explana t ion  for this b r o a d  

peak  may  be a branching  o f  the tha lamocor t i ca l  axons which would  effectively in- 

crease the total  cross-sect ional  area  o f  the axonal  branches  as compared  to the cross- 

sectional  area  o f  the unbranched  segment. The  label found in the lowest  pa r t  o f  

layer VI was p robab ly  due to the hor izonta l  organiza t ion  of  the geniculocor t ica l  
fibers before  they entered into the cort ical  substance 23. In  traverses made  th rough  

lateral  par t s  o f  area  17, more  label  was present  in the  lowest  pa r t  o f  layer VI than  in the 

more  medial  par t s  o f  this area. Final ly ,  the gra in  counts  in the cont ra la te ra l  visual 

cor tex were not  above  the backg round  level, so there was no indica t ion  o f  a cont ra -  
la teral  cort ical  p ro jec t ion  f rom the d L G N .  

Some raw da ta  f rom one traverse made  th rough  the middle  of  area  17 in animal  

56 is as follows. The layer IV peak  reading was 233 grains/1125 sq. #m,  while the 
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peaks in layer I and upper layer VI were in the range of 80-100 grains/1125 sq./~m. 
The average background level in non-visual cortex was 3 grains/l125 sq. /zm. As 
indicated above, the grain counts in the contralateral visual cortex were not significant- 
ly above this background level. 

vLG N projections 
Five major projections were found to emanate from the vLGN. Of these two 

were dorsomedial and three were ventromedial (see summary diagram, Fig. 4). Rat 
100 will be used to demonstrate the basic results although these projections were also 
apparent in other animals with less complete labeling of the vLGN. The slight varia- 
tions that occurred in different animals will be mentioned at the appropriate points. 

One dorsomedial projection coursed caudally from the vLGN through the 
brachium of the superior colliculus to terminate in the ipsilateral superior colliculus 
(Fig. 5A, B and C). The most strongly labeled portion of the superior colliculus 
was the stratum opticum. However, this stratum was not labeled homogeneously, 
since the medial one-third showed the highest density of silver grains (Fig. 6A). The 
strata griseum superficiale and intermediale were also labeled at levels above the 
background, but no labeling was found either in the commissure of the superior 
colliculus or in the contralateral superior colliculus. 

The second dorsomedial projection seemed to course medially and terminate 
in the ipsilateral and contralateral pretectal areas (Fig. 5C and D). The presence of 
bands of silver grains overlying the superior thalamic radiation suggested that this 
fiber bundle represented the pathway taken by this projection. It could not be as- 
certained whether there were axons which traversed the lateral posterior nucleus 
(Fig. 5C and D) to attain the pretectal area because any labeled fibers in the lateral 

CONTRALATERAL I P S I L A T E R A L  

M I D L I N E  

Fig. 4. A summary diagram of  the project lon of  the v L G N  to major  brain stem nuclei. Specific 
detalls on the mode of  terminat ion of  these projections in their  respective terminal sites are given in 
the text. Note that, for thls diagram only, SC refers to the superlor colliculus. 
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Fig. 5. A series of drawings of the brain stem of animal 100 after labeling the injection site in the 
ventral lateral geniculate nucleus (arrows). The stippling represents relative densities of the silver 
grains as seen in the autoradiographs. The broken hnes are used to represent groupings of sdver 
grains that are suggestive for labeled fiber tracts. The most caudal section depicted is 5A and the 
most rostral in this series is 5H. 
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pos ter ior  nucleus were masked  by label which diffused from the nearby site o f  in- 

ject ion.  Af te r  giving te rmina t ions  to the lpsJlateral  pretectal  area,  labeled fibers 

were seen to cont inue into the dorsa l  pa r t  o f  the rostral  pos te r ior  commissure  and to 

extend into the cont ra la te ra l  pretectal  area (Fig.  5D). 

It was dlffficult to de termine  which o f  the specific pretectal  nuclei as descr ibed 

by Scal ia  36 had  te rminal  project ions  f rom the v L G N  neurons.  On the side ips i la teral  

to the mjected v L G N ,  it appeared  that  te rminal  label ing was p r imar i ly  located in the 

ol ivary pretectal  nucleus, with some addi t iona l  label ~n the anter ior  pretectal  nucleus 

and the nucleus o f  the optic tract.  There were also some grains  over the pos te r io r  

pretectal  nucleus, but  again  this could not  be dis t inguished f rom labeling caused by 

[3H]proline which had diffused away f rom the rejection site. Since some o f  the label ing 

o f  the ipsi lateral  medtal  pretectal  nucleus was in the form of  rows o f  grains,  it  was 

p r o b a b l y  due to axons which t raversed this nucleus to pass through the pos te r io r  

commissure .  

On the cont ra la te ra l  side, the label ing of  te rminals  m the pretectal  area  was 

l imited to the nucleus o f  the optic t rac t  as well as to the pars  orahs  and pars  ret lcularls  

o f  the ohvary  pretectal  nucleus. On this contra la tera l  side some label was found in the 

media l  pretectal  nucleus, but  from the nature  of  the grain d is t r ibut ion  it appeared  

that  it was p robab ly  due to axons o f  passage. N o  label above  background  was present 

over the an te r ior  and pos te r ior  pretectal  nuclei 

The shortest  o f  the vent romedla l  project ions  was to the lpsflateral  zona incerta 

(Fig. 5D, E and F). Whi le  a project ion was clearly directed towards  the ent i re  an ter ior  

extent  of  this subtha lamic  structure,  it was difficult to assess if there was a projec t ion  

to the par t  of  the zona incerta adjacent  to the v L G N ,  because of  its p rox imi ty  to the 

inject ion site (Fig. 5D). 

A caudal ly  directed vent romedla l  p ro jec t ion  passed th rough  the lateral  t e rmina l  

nucleus of  the accessory optic t rac t  (Fig. 5B) and cont inued m its caudal  t ra jec tory  

to terminate  in the dorsomedia l  and dorsola tera l  par ts  o f  the pont ine  gray (Fig.  

5A and B). This labeled gemculopont ine  t ract  passed ventral ly  a long the medial  side 

o f  the basis peduncul i  (Fig. 6B) and cont inued  a long the outer  face o f  the lateral  

lemnlscus to enter  the lateral  por t ion  o f  the caudal  pons.  A labeled t ract  cont inued  

across  the dorsa l  aspect  o f  the pyramida l  t ract  so tha t  it passed ~n a medial  direct ion 

th rough  the nucleus tegmentl  pont ls  to te rminate  in the dorsomedia l  par t  of  the 

rostral  and  middle  pons (Fig. 7A). 

Rg. 6 Terminal labeling m the superior colhculus and axonal labeling m the genlculopontme tract 
following injection of the lpsllateral vLGN Fig 6A is a high power photomicrograph from ammal 
100 taken from the medial part of the superior colhculus at about the level of Fig. 5A Sliver grains 
are found in the three layers (SGS, SO, SGI) included m the autoradlograph, however, the highest 
density of grains is m the stratum optlcum (SO). The labeling, although present in the entire superior 
coUiculus in these three layers (Fig 5A, B and C), showed the highest density of silver grams m the 
medial third of this structure. Fig 6B is an autoradlograph of a frozen section through the basis 
peduncuh (BP) lpsllateral to the reJected vLGN of ammal 100 showing a labeled fiber tract In Its 
medial part adjacent to the substant~a mgra (SN). The organization of the silver grams in a linear 
array suggests the labeling of the gemculopontme tract The section depicted in F~g. 5B dlustrates 
the level through the brain stem at which this photomicrograph was taken 
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The last  vent romedta l  p ro jec t ion  was the longest  and p roduced  the most  sites 

o f  termanat ion a long its route  (Fig. 4). In  corona l  sections anter ior  to the inject ion s~te 

in the v L G N ,  there were dist inct  and  paral le l  rows o f  salver g rams  cours ing in the 

opt ic  tract.  The pro jec t ion  fibers were quite appa ren t  even though the background  in 

this area  showed a high gra in  count  because o f  its p rox imi ty  to the v L G N .  U p o n  

app roach ing  the opt ic  chiasm in more  an te r io r  sectaons, the label was in the medial  

pa r t  o f  the opt ic  t rac t  (Fig. 5E and F) and abou t  0.5 mm caudal  to the opt ic  chiasm, 

there were silver grains  crossing the midl ine (Fig. 5G). Shghtly an te r ior  to this cross- 

mg site, label appea red  in the ventral  regions o f  the suprachiasmatac nuclea on both  

sides o f  the bra in  stem. Al though  it was not  quantified,  it appea red  that  the label was 

abou t  twice as dense over  the ipsi la teral  than  over  the cont ra la te ra l  po r t ion  o f  thas 
hypo tha lamic  nucleus (Fig. 5H). 

F r o m  their  an te r ior  level a t  the suprachmsmat ic  nucleus, labeled axons turned  

caudal ly  in a dorso la te ra l  d i rect ion to a t ta in  the cont ra la te ra l  optac t ract  which had 

silver grains  a r ranged  in rows immedia te ly  adjacent  to its medial  surface (Fig. 7B). 

The te rmina t ion  o f  this t rac t  was m the cont ra la te ra l  v L G N  and the lateral  terminal  

nucleus o f  the accessory optic t rac t  (Fig. 5C and D). The cons tan t  posation of  the 

labeled fibers included in this long pa thway  o f  project ions  cor responds  to the descrap- 

t ion of" the ventral  supraopt ic  commissure  or  Meyner t ' s  commassure 39. 

The extent  o f  labeling found an the cont ra la te ra l  v L G N  varied from one anamal 

to another .  In rats  in which an entire v L G N  was injected, for example  rats  98 and 100, 

the contra la tera l  v L G N  was labeled throughout .  However ,  m rat  56, in which only 

the dorsa l  pa r t  o f  the v L G N  was included in the mjectaon, the label in the cont ra -  

la teral  v L G N  was confined to the dorsal  and  medial  por t ions  (Fag. 2E). 

As stated earlier,  injections which approached  the bra in ' s  surface at  a 45 ~ 

angle leaked more  label into the cerebrospinal  fluid-filled space anter ior  to the LG N 

than those made  at a 15 ° angle  off the perpendicu la r  to the surface, with a resul tant  

heavier  l abehng  o f  the ependymal  cells l ining the ventricles. This former  app roach  also 

caused a bi la tera l  labehng o f  the medial  habenula r  nucleus (Fig. 5E and F). Because 

the label ing o f  this la t ter  s t ructure was not  dependent  on the site of  injection but  was 

dependent  on the pa thway  o f  the micropipet te ,  at was decaded that  this was not  a sate 

o f  t e rmina t ion  f rom the v L G N .  However ,  this label ing might  have been b rough t  

here f rom more  anter ior  s tructures that  project  to the habenula  via the str ia  medul lar is  

Fig. 7. Terminal labeling m the dorsomedlal pontme gray and axonal labehng in Meynert's com- 
missure Fig. 7A ts a high power photomicrograph of terminal labehng m the dorsomedlal part of 
the pontme gray of ammal 56 taken from a section at the same level as Fig 2A. The labehng is heavy 
in two areas on either side of the blood vessel and seems to be locahzed over the neuropd of the 
pontine nucleus (PN) Notice that the dorsally located pyramidal tract (PY) is not labeled above 
background Although not dlustrated In this figure, there was also terminal labehng 111 the dorso- 
lateral part of the pontme gray Fig. 7B is taken from an autoradlograph of amma1100 at the level of 
the section depicted m Fig 5F The label extending diagonally across the field is present m the ventral 
part of the supraoptic commissure (SC), also known as Meynert's commissure, on the s~de contra- 
lateral to the rejection sate The optzc tract (OT) on the lateral aspect of the supraopt~c commissure 
(SC) Js not labeled above background levels. The labeled axons have their terminations m the vLGN 
and the lateral terminal nucleus on this contralateral s~de of the brain stem 
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thalami. The possibility exists that the medial habenular nucleus might be a structure 
with extreme permeability to tracers or ions m the cerebrospinal fluid similar to the 
area postrema 38. 

No other labeled fiber tracts or sites of  termination projecting from the vLGN 
were observed. No |abel above the background level was found in the medml terminal 
nucleus of  the optic tract on either side or in the area between the vLGN and the 
pretectal area on the contralateral side. In the ipsdateral dLGN and lateral posterior 
nucleus the label was well above the background but neither fiber tracts nor terminals 
were d~scerned because of the masking produced by label that had d~ffused away from 
the site of  injection. 

DISCUSSION 

In assessing the results obtained following injections into the dorsal and 
ventral lateral genlculate nuclei, it is essential to understand that the labeling of a 
structure does not necessarily indicate the presence of axon terminals. Even when 
short survival times are used, it is apparent from our preparations that axons are also 
heavily labeled. It is important to consider the distance between a labeled structure 
and the injection site because the radioactive amino acid can diffuse great distances, 
depending on the rate of delivery and the amount of isotope rejected. Part of  this 
diffusion problem can be overcome by varying the pathway of the micropzpette to- 
wards the injection site Also, the morphology of a labeled area should be studied 
before deciding upon the significance of the label. Thus, Jt is essential to study Kltiver-- 
Barrera-stained slides to observe the existence of fiber tracts that are not readily 
apparent in Nlssl-stalned autoradlographs. Another procedure which aids in the 
analysis of  autoradlographac results is the use of  multiple traverses in counting 
silver grains in a labeled, stratified structure. By giving adequate considerations to 
these points, the autoradiographic tracing method can be used successfully in tracing 
projections from structures deep in the central nervous system. 

Following rejections into the dLGN,  the resultant labeling m area 17 of the 
rat reconfirmed the results of  Lashley 22 that the area striata in the rat receives a 
direct input from the dLGN. However, as stated earlier, the reception area for the 
gemculocortical fibers extends onto the medial surface of the caudal part  of  the 
cerebral hemisphere beyond Krieg's 20 area 17 into an area that he defined as area 
18a. This area has cytoarchitectural characteristics similar to the rest of  area 17, 
namely a thick layer IV densely packed with granule cells. It was this latter feature 
that allowed Rose 33 to describe a medial boundary for the caudal part of  the striate 
area in the mouse that closely approximates the border found in this study on the 
rat. 

Montero, Rojas and Torrealba 27 deterlmned the size and location of the primary 
visual cortex in the rat by using microelectrode recording. In position and extent, 
the primary visual cortex which they defined corresponds to the part  of the occipital 
cortex that we found to receive geniculocortical afferents. In the portion of the cortex 
slightly medial to the caudal boundary of Krleg's area 17, they defined receptwe 
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fields from the superior temporal visual quadrant of  the eye. They placed lesions at the 
physiological boundaries of this primary visual cortex and noticed that in histological 
preparations these boundaries coincided with the limits of the densely packed granular 
cell layer, layer IV. In this same study, a number of secondary visual areas were 
mapped in the lateral and anteromedial peristriate cortices which correspond to areas 
18a and 18 respectively. 

The restriction of geniculocortical afferents to area 17, as defined here for the 
rat, has a parallel in studies of other mammals such as the opossum 2, the tree shrew 8, 
and the monkey 41. In contrast, the cat has been shown to have projections from its 
dLGN to both areas 17 and 1834, the primary and secondary visual cortices. 

The course described for the geniculocortical tract or the optic radiation seems 
to be simdar to that in other mamme.lian species. It is interesting that the course seems 
to coincide with that taken by the projection fibers from the striate cortex back to the 
dLGN as reported m the ratl0,Z2, 29. 

From the quantitative counts of  the distribution of silver grams in the primary 
visual area, ~t is clear that as in other mammalian species the bulk of the thalamic 
input is to layer IV1,24,31,34, B~. The existence of a smaller peak of labeling in layer I 
correlates well with findings in other mammals of the presence of  some degenerating 
terminals in this layer after lesions have been made in the dLGN. The small density 
peak in the upper half of layer VI presents more of a problem in interpretation. This 
small peak may represent a locus of axon terminals, but is most probably due to an 
accumulation of  label in the geniculocortical axons as they either change their direc- 
tion or branch. The existence of a peak of radioactivity in layer VI of  areas 17 and 
18 of  the cat following dLGN injections with [3H]proline has been shown by Rosen- 
quist, Edwards and Palmer z4. In their preparations the density of  grains is roughly 
30 ~ that of  layer IV and is interpreted as a site of termination of geniculocortical 
afferents since ~t is present with both long and short survival times. Because of the 
possibility of layer VI endings, electron microscopic autoradiographic experiments 
are being conducted to obtain answers to this and other questions pertaining to the 
distribution and mode of termination of the geniculocortical tract. 

As these results were being prepared for publication, three papers concerned 
with the projections of the vLGN as visualized in autoradiographic preparations have 
appeared in the literature. Swanson, Cowan and Jones 87 and Graybie111 examined 
the projections of  the vLGN of both the rat and the cat, while Edwards, Rosenquist 
and Palmer 9 examined the cat. The results of two of  these studies as well as those 
presented here are summarized in Table I. 

With the exception that they found no projection to the pons in their study of 
the rat, Swanson, Cowan and Jones a7 found terminations identical to those encounter- 
ed in this study. Such a projection has, however, been reported for the rat more 
recently by GraybiellL There are also differences in both the layer of termination and 
the extent of labeling in the superior colliculus; in the extent of the projection to the 
contralateral vLGN; and in the axonal pathway of the projection to the supra- 
chiasmatic nuclei of  the hypothalamus, to the contralateral vLGN and to the lateral 
terminal nucleus of the accessory optic tract. 
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TABLE I 

vLGN PROJECTtONS 

T e r m i n a l  s t tes  R a t  

P r e s e n t s t u d y  

Ca t  

S w a n s o n  S w a n s o n  E d w a r d s  

e t  al. 3t et  a l  a~ e t  al. ° 

Pretectal area 
Ipsllateral 
Anterior n. present present present present 
Medial n. not present not present present not reported 
Nucleus of the optic tract present present present not reported 
Ohvary n. present present not reported present 
Contralateral 
Anterior n. not present not present not present not present 
Medial n. not present not present present not reported 
Nucleus of the optic tract present present present present 
Ohvary n. present present not present not present 

Superior colhculus entire extent rostral third 
Stratum griseum superficlale present present present present 
Stratum opticum medial third present present present 
Stratum gnseum mtermedmle present lateral half present present 

Z o n a  lncerta 
lpsllateral present present present present 
Contralateral not present not present present not reported 

Pons dorsal portions not reported not reported rostrodorsal 
of medial and part of para- 
lateral parts medial gray 

Lateral terminal n. of the accessory 
optic tract 
Ipsllateral present present present not reported 
Contralateral present present present not reported 

Medial terminal n of the accessory 
optic tract not present not present not reported present 

Contralateral vLGN entire vLGN limited to present not reported 
dorsal port ton 

Suprachiasmatic n. 
Ipsilateral present present present not reported 
Contralateral present present present not reported 

In the present study an injection o f  the v L G N  resulted m a heavy project ion 

to the s tratum opt icum o f  the superior colliculus, especially to its medial one-third.  

In rat  56, where the injection site was similar m size and locat ion to rat R49 in the 

article by Swanson, Cowan and Jones 37, the project ion was not  so apparent ,  but  on 

the basis o f  our grain counts there was a distinct density peak in the s tratum opticum. 

In contrast ,  Swanson, Cowan and Jones a7 found a heavily labeled project ion to the 

lateral par t  o f  the s t ra tum griseum intermediale.  They also reported silver grains only 
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in the rostral one-third to one-half of  the superior colliculus, whereas our observations 
have demonstrated labeling throughout the entire rostrocaudal extent of  this structure. 

A second difference between this work and that of Swanson, Cowan and Jones 37 
involves the vLGN projection to the contralateral vLGN. When the vLGN was 
entirely injected in our material, there was a complete labeling of the contralateral 
vLGN. If only the dorsal part of the vLGN was labeled as in rat 56 of  this report, 
and R49 of  Swanson, Cowan and Jones 37, there was label only in the dorsal and medial 
parts of the contralateral vLGN. Taken together these results seem to indicate an 
organized commissural projection, although small and more localized injections must 
be employed to conclusively demonstrate this point. 

In our rat 100 Meynert's commissure was labeled, as it was in three other animals 
with large injections of the vLGN. However, Meynert's commissure did not show any 
appreciable labeling in two cases in which only the dorsal part of  the vLGN was 
included in the injection site. This evidence taken in conjunction with the results of  
the unique study of Tsang 39 give adequate support for this long ventromedial com- 
missural connection for the vLGN. In order to study the pathway of the axons in the 
supraoptic and postoptic commissures alongside the optic tract and at the optic 
chiasm, Tsang blinded young rats so that the optic tract would degenerate and give a 
less complicated picture of  these specific areas in Golgi-Cox stained material. From 
his observations, he suggested the following. 'The commissural bundle diminishes in 
size after its entrance into the LGB. This suggests that some of its fibers terminate 
(or originate) in this structure, especially its ventral nucleus'. The existence of  this 
commissural pathway in the rat must give some hint of a similar one in other mammals 
especially the cat where it is now known that a projection exists to the contralateral 
vLGN11,37. 

Comparatively, the three studies of  the vLGN projections, as summarized in 
Table I, as well as that of Graybie111, demonstrate that the projections of this nucleus 
are similar in the rat and the cat. Both have ipsilateral projections to the superior 
colliculus, the zona incerta and the pons; bilateral projections to the pretectal area, 
lateral terminal nuclei of the accessory optic tract and the suprachiasmatic nuclei of 
the hypothalamus; and a contralateral projection to the vLGN. In the cat, there is a 
slight difference in the projection to the pons, for only a medial projection was ob- 
served. A major difference between these two mammals is that the cat vLGN has 
two projections that are lacking in the rat. These are projections to the ipsilateral 
medial terminal nucleus of the accessory optic tract and to the contralateral zona 
incerta. In this study no projection to the ipsilateral or contralateral medial terminal 
nucleus was observed. This nucleus, however, is a site of termination for retinal 
ganglion cells 14. A contralateral projection to the zona incerta was only observed in 
rat 101. However, the injection site in this experiment included the ipsilateral zona 
incerta and therefore the results of  this injection cannot be construed to indicate a 
projection from the vLGN. 

In conclusion, the vast range of projections from the vLGN shows that this 
nucleus is important in many subcortical visual functions. The fact that the vLGN 
projects to many of  the same sites as the retina and visual cortex underscores its 
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Importance in the processing of visual st imuh encoded m the nervous system In the 

rat, both the retinal3,14,16,28, ~6 and the vLGN have overlapping bilateral inputs  to the 

suprachiasmatic nuclei, the lateral terminal  nuclei and certain pretectal nuclei and 

contralateral  inputs to the vLGN.  The visual cortex 29 and the v L G N  share ipsilateral 

projections to certain pretectal nuclei, the zona incerta and the lateral dorsum of  the 

pons. It is known that  the three most  superficial layers of the superior colhculus 

receive afferents from the retina and the visual cortex. Now, a third, and suspected ~5, 

source of  visual informat ion has been demonstrated to come from the vLGN.  Also, 

the visual cortex projects mainly to the lateral two-thirds of the superior colhculus 

which complements  the projection of the vLGN to the medial one-third 

It has become apparent  from these results, as well as the work of Graybxel I ' ,  

that there is a vast amoun t  of interaction in the various brain stem nuclei associated 

with the visual pathways There is a strong possibility that these converging projections 

allow spatial and temporal  summat ion  in some of these terminal  structures. Recent 

physiological recordings from single units of  the vLGN of the cat and the pregeniculate 

nucleus of the monkey have shown the responsiveness of cells in these nuclei to 

head rotat ion and eye movements,  respectively~, 32. Future  physiological recordings 

may determine the nature  of the summat ion  in other nuclei receiwng visual informa- 

tion 

ABBREVIATIONS 

A cerebral aqueduct ML medial lemmscus 
BIC brachmm of the inferior colhculus MPN medml pretectal nucleus 
BP basis peduncull NAM anterior medial nucleus of the 
BSC brachmm of the superior colhculus thalamus 
CC corpus callosum NL lateral nucleus of the thalamus 
DG dentate gyrus NOT nucleus of the opnc tract 
H h,ppocampus NV ventral nucleus of the thalamus 
HA antertor nucleus of the hypothala- OC opnc chlasm 

mus OCN oculomotor nucleus 
HBL lateral habenular nucleus OT opnc tract 
HBM medial habenular nucleus P pineal body 
HSC - suprach,asmanc nucleus of the PA anterior pretectal nucleus 

hypothalamus PC posterior commissure 
HSO -- supraopncnucteus of the PG penventncular gray 

hypothalamus PN pontlne nucleus 
HVM -- ventromedial nucleus of the PO ohvary pretectal nucleus 

hypothalamus PP posterior pretectal nucleus 
INF inferior colheulus PTA : pretectalarea 
I P mterpedunculans nucleus PY pyramidal tract 
IC internal capsule RN red nucleus 
LGN lateral gemculate nucleus SC supraopnc commissure 
dLGN - -  dorsal lateral gemculate nucleus SG1 stratum gnseum mtermedmle of the 
vLGN ventral lateral gemeulate nucleus superior colhculus 
LL lateral lemniscus SGS stratum gnseum superficmle of the 
LP lateral posterior nucleus superior colliculus 
LTN lateral terminal nucleus of the SM stria medullans thalami 

accessory opnc tract SN substanna mgra 
M B mammdlary body complex SO stratum opncum of the superior 
MCP middle cerebeUar peduncle colhculus 
MGB medial gemculate body ST stria termmahs 
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STR = superior thalamic radiation VL -- lateral ventricle 
SUP = superior colhculus VT = third ventricle 
TN = trochlear nucleus ZI = zona mcerta 
TST = tectosplnal tract 
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