On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species

https://doi.org/10.1016/0003-9861(90)90589-QGet rights and content

Abstract

Electron spin resonance (ESR) measurements on solutions and isolated powders provide direct evidence for the involvement of Cr(V) species in the reduction of Cr(VI) by NAD(P)H. ESR analysis of an isolated Cr(V)-NAD(P)H solid yields g = 1.9831 and g = 1.9772, indicating that the unpaired electron occupies the dz2 orbital of the Cr(V) ion, with square-pyramidal geometry. Addition of hydrogen peroxide (H2O2) to the NAD(P)H-Cr(VI) reaction mixtures suppresses the Cr(V) species and generates hydroxyl (.OH) radicals. The .OH radicals were detected via ESR spin trapping, employing 5,5-dimethyl-1-pyrroline-N-oxide and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin traps. The dependence of Cr(V) and .OH radical formation on the H2O2 and Cr(VI) concentrations indicates that the Cr(V) species react with H2O2 to generate the .OH radicals. Similar results were obtained by using various diols (arabinose, cellobiose, FAD, fructose, glyceraldehyde, ribose, and tartaric acid), α-hydroxycarboxylic acids, and glutathione. Investigations with superoxide dismutase showed no significant participation of O2 in the generation of .OH radicals. These results thus indicate that the Cr(V) complexes, produced in the reduction of Cr(VI) by cellular reductants, react with H2O2 to generate .OH radicals, which might be the initiators of the primary events in the Cr(VI) cytotoxicity.

References (77)

  • V. Bianchi et al.

    Mutat. Res

    (1983)
  • A. Leonard et al.

    Mutat. Res

    (1980)
  • M.J. Tsapakos et al.

    Chem.-Biol. Interact

    (1983)
  • J.E. Gruber et al.

    Biochem. Biophys. Res. Commun

    (1978)
  • J.D. Garcia et al.

    J. Inorg. Biochem

    (1981)
  • D.M.L. Goodgame et al.

    Polyhedron

    (1982)
  • D.M.L. Goodgame et al.

    Inorg. Chim. Acta

    (1987)
  • D.M.L. Goodgame et al.

    Inorg. Chim. Acta

    (1987)
  • M. Branca et al.

    Inorg. Chim. Acta

    (1988)
  • P. Arslan et al.

    Biochim. Biophys. Acta

    (1987)
  • D.M.L. Goodgame et al.

    J. Inorg. Biochem

    (1986)
  • X. Shi et al.

    Biochem. Biophys. Res. Commun

    (1988)
  • X. Shi et al.

    Biochem. Biophys. Res. Commun

    (1989)
  • P. O'Brien et al.

    Inorg. Chim. Acta

    (1989)
  • A. Kortenkamp et al.

    Mutat. Res

    (1989)
  • M. Sugiyama et al.

    Biochem. Biophys. Res. Commun

    (1989)
  • S. Kawanishi et al.

    J. Biol. Chem

    (1986)
  • S. Liochev et al.

    Biochim. Biophys. Acta

    (1987)
  • D.M. Reif et al.

    Arch. Biochem. Biophys

    (1989)
  • S.I. Liochev et al.

    Free Radical Biol. Med

    (1989)
  • P.R. Bontchev et al.

    Inorg. Chim. Acta

    (1972)
  • M. Mitewa et al.

    Inorg. Chim. Acta

    (1974)
  • P.R. Bontchev et al.

    Inorg. Nucl. Chem. Lett

    (1975)
  • S. Kitagawa et al.

    Chem.-Biol. Interact

    (1982)
  • M. Mitewa et al.

    Inorg. Chim. Acta

    (1974)
  • G.R. Buettner

    Free Radical Biol. Med

    (1987)
  • E.G. Janzen et al.

    J. Magn. Reson

    (1973)
  • E.G. Janzen et al.

    J. Magn. Reson

    (1973)
  • S. Liochev et al.

    Arch. Biochem. Biophys

    (1989)
  • P.H. Connett et al.

    Struct. Bonding

    (1983)
  • K.W. Jennette

    Biol. Trace Elem. Res

    (1979)
  • K.W. Jennette

    J. Amer. Chem. Soc

    (1982)
  • S. DeFlora et al.

    Cancer Res

    (1985)
  • R.B. Banks et al.

    Biochem. Biophys. Res. Commun

    (1986)
  • D.Y. Cupo et al.
  • K.E. Wetterhahn et al.

    Trace Subst. Environ. Health

    (1984)
  • P. O'Brein

    Inorg. Chim. Acta

    (1985)
  • X. Shi et al.
  • Cited by (0)

    Part of this work has been supported by the Department of the Interior's Mineral program administered by the Bureau of Mines through the Generic Mineral Technology Center for Respirable Dust under Grant G1135142.

    View full text