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ABSTRACT 

Shaw, R.H. and Pereira, A.R., 1982. Aerodynamic roughness of a plant canopy: a numer- 
ical experiment.  Agric. Meteorol.,  26 : 51--65. 

A numerical model based on second-order closure principles was used to evaluate the 
response of the logarithmic wind profile parameters,  the roughness length, z 0 and the dis- 
placement height, d, to changes in the density and vertical structure of an underlying 
canopy of  vegetation. The profile parameters were calculated by forcing the logarithmic 
wind equation to match the computed wind profile over three successive grid points 
used in the numerical model. Both z 0 and d calculated in this manner were functions of 
height but the displacement height calculated from the wind profile at twice the canopy 
height was a good approximation to the center-of-pressure within the canopy over a wide 
range of  densities. The displacement height increased monotonical ly with plant density 
and with the height of  the center of  gravity of  the vegetation. The roughness length was 
a unimodal function of density, increasing with density in sparse canopies but  decreasing 
with density in dense canopies. Vertical structure was important .  The roughest canopies 
were those with a high center of gravity at low plant densities but  those with a low 
center of gravity at high densities. At high densities, a single linear relationship between 
z 0 and d was evident, irrespective of  density or structure. 

Evidence based on the sensitivity of the profile parameters to an arbitrarily set length 
scale suggests that a second-order closure model is superior to the tradit ional  gradient- 
diffusion model in the proximity of  a plant canopy. 

INTRODUCTION 

T h e  a e r o d y n a m i c  d r a g  o n  t h e  l o w e s t  l a y e r s  o f  t h e  a t m o s p h e r e  d e p e n d s  on  
t h e  s t r u c t u r e  a n d  d e n s i t y  o f  t h e  e l e m e n t s  o f  w h i c h  t h e  u n d e r l y i n g  s u r f a c e  is 
c o m p o s e d .  F o r  v e g e t a t e d  s u r f a c e s ,  t h e  r o u g h n e s s  wi l l  be  d e t e r m i n e d  b y  t h e  
h e i g h t  o f  t h e  c a n o p y ,  t h e  s t r u c t u r e  a n d  f l e x i b i l i t y  o f  i n d i v i d u a l  p l a n t s ,  t h e  
s ize a n d  a r r a n g e m e n t  o f  p l a n t  p a r t s ,  a n d  t h e  p l a n t i n g  d e n s i t y .  

R e l a t i o n s h i p s  b e t w e e n  t h e  d r a g  f o r c e  a n d  t h e  s t r u c t u r e  o f  t h e  s u r f a c e  m a y  
be  s o u g h t  b y  d i r e c t  f i e ld  o b s e r v a t i o n ,  b y  w i n d  t u n n e l  m o d e l i n g  in  w h i c h  
a t t e m p t s  a re  m a d e  to  a c h i e v e  s o m e  d e g r e e  o f  g e o m e t r i c  a n d  d y n a m i c  s i m i l a r -  
i t y ,  a n d  b y  c o m p u t a t i o n a l  m o d e l i n g .  Th i s  r e p o r t  c o n t a i n s  r e s u l t s  o f  a n u m e r -  
ical  m o d e l  e m p l o y i n g  s e c o n d - o r d e r  c l o s u r e  p r i n c i p l e s ,  a n d  in w h i c h  r o u g h n e s s  
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was evaluated in terms of  canopy structure and density. A numerical model 
has a clear economic gain over field or wind tunnel experiments, while 
second-order turbulence closure holds definite advantages over the traditional 
gradient-diffusion or mixing length theories in relatively complex flow con- 
figurations such as exist in the proximity of a plant canopy. A numerical 
model has value in the performance of sensitivity analyses and in the inter- 
pretation of actual observations. 

WIND P R O F I L E  P A R A M E T E R S  A N D  S U R F A C E  P R O P E R T I E S  

The surface shear stress, TO, is commonly related to surface properties by 
a drag coefficient C o ,  which is usually defined in meteorological literature 
by 

TO z p C  D U 2 ( 1 )  

where p is the density of  air, and U = U(z) is the mean wind speed at some 
specified height z. To may be written aspu2,, defining a friction velocity u , ,  
in which case 

CD = u2,/U 2 (2) 

The drag coefficient is, in general, only weakly dependent  on  wind speed 
and is not  greatly influenced by thermal stratification if U is measured at a 
relatively small height. On the other hand, CD is a function of height above 
the surface because the reference height at which the wind speed is measured 
resides within the boundary layer of  surface influence, and therefore CD 
loses much of  its appeal. This height dependence can be eliminated if the 
form of  the wind profile is known, although the resulting drag parameter 
will no longer be dimensionless. 

When the only length scale to enter the problem is the distance from the 
solid boundary,  simple dimensional reasonmg leads to the familiar logarith- 
mic profile. In integrated form, this is commonly expressed as 

U = (u , /k )  In (z/z 0) (3) 

where k is yon Karman's constant  and z 0 is an integration constant with the 
dimension of length, z0 relates the friction velocity u ,  to the mean wind 
speed U measured at height z. Combining eqs. 2 and 3 yields 

CD - { k / [ l n ( z / z o ) ] } :  (4) 

Thus, z 0 increases monotonical ly with CD {and vice versa) and, when the 
mean wind profile matches eq. 3, z 0 is independent of  height and becomes 
a useful parameter for expressing the roughness of  the surface, z 0 is called 
the roughness length and is usually interpreted as a length scale that  charac- 
terizes the surface in terms o f  the efficiency of  the process by which momen- 
tum is removed from the air stream. 

As the surface is approached, additional length scales must enter the 
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problem corresponding to the geometrical distribution of the momentum 
sink, and the wind profile will, in general, depart from a logarithmic shape. 
Modifying eq. 3 to compensate for the displacement of the momentum sink 
from the soil surface by introducing the displacement height d, such that  

U = (u . / k ) l n  [ ( z - -d ) / z0 ]  (5) 

does not  totally eliminate the difficulty,  because the vertical distribution of 
the drag force is still excluded from the problem. Equation 5 must be con- 
sidered as an empirical modification and, while it may be made to closely 
match observed wind profiles at relatively small distances above a layer of 
vegetation, profile analysis based on this equation may not  necessarily yield 
the correct value of surface drag. Nevertheless, z 0 and d remain commonly 
used and descriptive parameters for the roughness and effective level of the 
underlying surface. 

The questions considered here concern the relationships between these 
surface parameters, the density and vertical distribution of the foliage, and 
the roughness of the underlying soil surface. A number of workers have 
sought these relationships based on previously published field data on 
different types of vegetation or surface roughness. While providing useful 
information, such reviews are generally limited because details of surface 
structure are usually missing. For example, Tanner and Pelton (1960) found 
for agricultural crops that  z 0 could be related to canopy height as z 0 = ah b , 
where a = 0.13 and b = 1.0. Others have found the constant a to be 0.15 
for an artificial crop in a wind tunnel (Plate and Quraishi, 1965) and 0.10 for 
pliable agricultural crops (Szeicz et al., 1969). This formulat ion fails to pre-  
dict any difference in z 0 between two canopies of the same hiehgt but with 
different density and spatial distribution of  leaves. Let tau (1969) compen- 
sated for this by making z 0/h = 0 . 5 s / S ,  where s is the silhouette area of the 
average obstacle and S is the specific area or lot area on the horizontal plane. 
Let tau suggested that  the numerical factor 0.5 corresponds to the average 
drag coefficient of the individual obstacles. Justification for this relationship 
was provided by comparisons between predicted and experimentally deter- 
mined roughness lengths for arrays of bushel-baskets (Kutzbach, 1961) and 
for fescue grasses. 

Let tau was aware that  the validity of  his proposal is confined to surfaces 
composed of fairly isolated roughness elements. Surfaces formed by densely 
packed elements tend to present a smoother aspect to the air above, and to 
elevate the effective level of drag. One can think of the extreme case of 
arrays of cubes arranged on a plane. Increasing the density of a sparse array 
will increase the effective roughness of  the surface but, eventually, a skim- 
ming flow will be generated in which each cube is 'protected '  by upwind 
obstacles, reducing the total  drag force until a new, smooth surface is created 
at the top of the cubes. There is a range of densities, therefore, in which we 
expect the effective roughness to decrease with increasing density. For the 
case of the cubes, this regime would terminate when s i S  = 1 and the cubes 
fill all the space available, but for vegetation no such limit is imposed. 
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For canopies formed by many agricultural crops or forests, it has been 
observed that  z 0/h decreases with increasing leaf area index (LAI) which is 
the total area of  one side of all leaves per unit ground area, and at a rate 
proportional to (h -- d )/h (Thorn, 1971). Thus, as the density of the canopy 
increases and the 'origin' of the above-canopy wind profile becomes a larger 
fraction of the total height of the vegetation, the effective roughness de- 
creases. The proportionali ty factor ~, defined by z 0 = k(h - -d) ,  has been 
estimated as 0.36 for an artificial crop (Thom, 1971); 0.31 for a wheat crop 
(Legg and Long, 1975); and 0.3 for a pine forest (Hicks et al., 1975). 

Unlike the roughness length, the normalized displacement height d/h 
should be a monotonic  function of  canopy density if it is to represent the 
effective level of drag: Over a wide range of  heights, a first approximation 
to d has been obtained without  considering density. For example, Stanhill 
(1969) fitted the expression d -- ah b to results from 19 different vegetation 
types, mainly agricultural crops. A linear regression of log d on log h resulted 
in a value of b -- 0.9793 and a = 0.702, when d and h were measured in 
centimeters. The coefficient of variation was only 6% and the correlation 
coefficient was equal to 0.97. Because b was close to unity,  the range of 
d/h computed by the above expression was small: e.g., d/h = 0.61 when 
h = 10 m and d/h = 0.70 when h = 0:01m. Meanwhile, other estimates of 
ttm normalized displacement height cover a broader range. For example, 
Legg and Long (1975) measured d = 0.56h for a wheat crop, while Hicks 
et al. (1975) measured d -- 0.89h for a pine forest. 

Assuming Reynolds number  similarity (Reynolds number independence), 
the displacement heights and roughness lengths of canopies of similar geo- 
metric properties but of different total heights should scale with h in an 
identical manner. Only in situations in which boundary layer development 
is incomplete or when thermal stratification is important,  should there be a 
direct dependence on the absolute height of the vegetation. The height 
dependence implied by the departure of b from a value of  1 in Stanhill's 
expression for d results in a dimensional inconsistency, and is surely a con- 
sequence of the particular vegetation types selected for the regression fit. 
Since height is the only variable in Stanhill's expression, differences in d/h 
resulting from differences in canopy structure and density have been re- 
flected in an apparent height dependence. 

COMPUTATIONAL MODELING 

Gradient-diffusion or mixing length models 

Mathematical models of  canopy exchange processes in which the vege- 
tation is treated as the vertically-distributed source or sink of  heat, water 
vapor, CO2, or momentum have almost universally relied on gradient- 
diffusion theory (e.g. Allen, 1975; Inoue, 1977). Solution of  the conser- 
vation equations requires either the direct input of a height-dependent eddy 
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diffusivity, or most often, a method of calculating the diffusivity based on 
mixing length concepts. The mixing length is specified as a function of the 
height above the soil surface and the density of the vegetation. 

In this section, we show two examples of  gradient-diffusion models for 
the purpose of demonstrating the sensitivity of model results, mean vertical 
profiles and flux densities, to the prescribed mixing length. Seginer (1974) 
and Kondo and Akashi (1976) each present results of numerical models of 
the air flow above and within plant canopies for a range of plant densities. 
The second authors also show calculations of the effect of changing vertical 
structure of the canopy. 

Both papers indicate that  d /h  reduces to zero for relatively thin canopies. 
Seginer shows d /h  = 0 for cah ~ 0.125, where a is the leaf area density 
(m 2 m -3) and ~ is the drag coefficient of the individual canopy elements 
defined by drag F = caU 2/2.  [The factor ½ is included here in accordance 
with the convention adopted by Seginer.] Kondo and Akashi show d/h  = 0 
for cab ~ 0.6 in a canopy of vertically uniform density, and cab ~ 0.5 for 
their model B-c canopy which, perhaps, most closely resembles that  of an 
agricultural crop. 

The reduction of d to zero for sparse canopies was, in these models, a 
consequence of the manner in which the mixing length was specified. In 
both cases, the mixing length l was made to increase linearly with height 
above the soil surface but was restricted within the canopy to a maximum 
value imposed by an intrinsic mixing length I i determined by canopy density. 
For example, Seginer (1974) assumed that  increasing canopy density causes 
a decrease in l i and imposed the relationship ( [ i / h )  2 (cab) = constant. Kondo 
and Akashi (1976) set their intrinsic mixing length in a manner that  was only 
slightly different, such that  ( l i /h) (cah)  - - c o n s t a n t .  In sparse canopies, the 
calculated l i was large enough that  no restriction was imposed on the mixing 
length, which then increased from the soil surface at a rate determined by 
l = kz. Seginer presented the seemingly plausible argument that  in dense 
canopies, the mixing length increases with decreasing vegetation density due 
to the increased distance between canopy elements, but when the canopy is 
progressively thinned, a point is reached beyond which the mixing length 
is totally controlled by the underlying ground and remains constant. K- 
theory then predicts a logarithmic wind profile above the canopy but with 
origin at the soil surface (d = 0). The point at which d reduces to zero on 
progressive thinning coincides with the point  at which I i no longer restricts 
the mixing length profile. The differences between the two reports with 
respect to d /h ,  identified in the previous paragraph, result entirely from 
differences in the methods by which I i was specified. 

The displacement height d is, in fact, predetermined for all canopy den- 
sities since it equates with the level at which the above-canopy mixing length 
extrapolates to zero. Further,  the results presented by Seginer show that  the 
displacement height estimated from mixing length concepts is not  compatible 
with the proposition by Thorn (1971) that  d be identified with the effective 
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level of  the mean drag on the canopy elements, the center-of-pressure, such 
that 

ro)Yo~zF (z)dz 
d = Th ~ f 2 F ( z )  dz (61 

where T h and T O are the stresses at the top of  the vegetation and at the soil 
surface, respectively. The term in brackets corrects for  the stress at the 
ground. For  example,  while the displacement height calculated for the 
above-canopy logarithmic wind profile reduced to zero at cah = 0.125 in 
Seginer's calculations, the level of  the resultant drag on the canopy,  with 
shear at the underlying soil surface taken into account,  was approximately 
0.6h. 

Because of  the arbitrary nature with which d is determined within a 
gradient-mixing length model,  the concept  of  the coincidence of  d with the 
centre-of-pressure cannot  be rejected on the basis of  the results by Seginer or 
by Kondo  and Akashi (1976).  

The predicted forms of  the relationship between z 0/h and cah are also 
strongly dependent  on the manner  in which the mixing length is specified. 
When the mixing length is made to increase linearly with height above the 
soil surface but  restricted within the height of  the vegetation by an intrinsic 
mixing length li, and when li is fixed, independent  of  canopy density, zo/h 
increases monotonical ly  with cah (Seginer, 1974). However, when it is 
assumed that  increasing canopy density causes a decrease in li, as previously 
described, z 0/h reaches a maximum value and decreases with fur ther  increases 
in cah in accordance with the expected unimodal shape. 

Seginer's results exhibit  a maximum in z0 of  ca. 0.14h at cah ~ 0.15 for 
canopies in which plant material is uniformly distributed throughout  the 
canopy height. Kondo and Akashi's results for  an equivalent canopy differ 
considerably. They show z 0 to reach a peak of  about  0.31h, more than twice 
that  calculated by Seginer, and at a value of  cah -~ 0.6, an aerodynamic 
density 4 times that  of  the o ther  work. 

The studies are consistent though in that  z 0 reaches its maximum value 
with progressive thinning of  the canopy,  close to the point at which the 
calculated displacement height has decreased to zero. Again, this relation- 
ship is predetermined by the specification of  the mixmg length. For all 
(sparse) canopies in which the mixing length is assumed to be determined 
only by the height above the soil surface and not  restricted by a calculated 
intrinsic mixing length, l increases according to l = kz for all z > 0. The sur- 
face is, therefore,  the origin of  the above-canopy logarithmic wind profile 
and d = 0. Within this range, increasing leaf density will result in increased 
drag for  constant  mean wind speed at some fixed height z ~ > h, and this will 
be represented by an increase in z o (see eq. 3}. Short ly after the mixing 
length starts to become limited by the intrinsic mixing length, the effect  on 
z 0 is reversed by the increase in d. For  a fixed U(zl ), u ,  must  continue to 
increase as additional plant material is introduced into the canopy (at least 
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computat ional ly) ,  but  this is overcompensated by the reduct ion in z -- d and 
z 0 decreases thereaf ter  (see eq. 5). 

While there are differences in the computed  roughness lengths in the 
Seginer (1974) and Kondo and Akashi (1976) models, these differences are 
due, primarily, to the manner  in which the mixing length is prescribed. Up to 
cab = 0.125, the two models match closely with z 0 increasing with cab. At 
this point,  the mixing length in the Seginer model becomes limited by the 
intrinsic canopy value, d increases from zero, z 0 reaches a peak and declines 
upon further  increases in cah. The mixing length of  the Kondo and Akashi 
model is not  limited by the intrinsic mixing length until cah = 0.64 because 
of  the manner  in which l i is prescribed, and z0 continues to increase to this 
point  before reaching a peak with a magnitude approximately  twice that  of  
the other  model.  

Second-order closure model and procedures 

The examples presented in the previous section demonstra te  the short- 
comings of  gradient-diffusion theory  in the relatively complicated environ- 
ment  of the plant canopy.  Some of  the problems inherent  in gradient- 
diffusion theory  are absent or less critical with second-order closure in which 
some aspects of turbulence are treated explicitly. In second-order closure 
models, the mean m omen t um equation is solved in conjunct ion with con- 
servation equations for the Reynolds stress u'w' and for the velocity vari- 

ances u '2 , v '2 , and w '2 . This procedure was applied to the air flow through a 
uniform stand of  vegetation in the belief tha t  computed  wind profiles would 
be less sensitive to model assumptions when the equations are closed at a 
higher order than when the Reynolds stress is parameterized directly. The 
numerical canopy flow model was described by Wilson and Shaw (1977), 
and was used by Pereira and Shaw (1980) to calculate the mean wind pro- 
file within the canopy layer for  different  densities of  vegetation and for a 
range of  vertical distribution of  leaves. This paper reports the extension of 
the later s tudy to the above-canopy wind profile. 

The equation set and the schemes used to obtain closure are described in 
Wilson and Shaw (1977), and briefly reviewed in Pereira and Shaw (1980). 
The closure schemes require the specification of  a length scale similar to the 
canopy mixing lengths adopted by Seginer (1974) and Kondo and Akashi 
(1976). In the present case, the length scale is used in the parameterizat ion 
of  third moments  in the conservation equations such as the triple velocity 
products,  the viscous dissipation, and certain pressure--velocity correlations. 

Wind profiles were computed  over 80 equally spaced grid intervals from 
the ground to 4 times the height of  the vegetation. At the soil surface, the 
velocity was set to zero while the stress was calculated from the wind vel- 
ocity at the first grid point  above the surface for a range of  surface rough- 
nesses specified by z 0 (soil) f rom 0.001h to  0.0016h,  which could probably 
be classified as moderate ly  smooth to moderate ly  rough, respectively. 
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Wind profiles were calculated for a range of  foliage area indices from 0.25 
to 10. In an aerodynamic sense, the density of  the vegetation is specified by 
the product  of  the amount  of  plant material and its drag coefficient, and the 
plant area density A (previously referred to as the leaf area density a) is 
always multiplied by the element drag coefficient Cd in any of  the governing 
equations (we have used the convention Cd = c/2). 

Since the drag coefficient is difficult to specify because of  problems 
imposed by aerodynamic shading and leaf orientation, it is most  general to 
classify the canopy according to the non-dimensional quanti ty CdAh. The 
integral of  this over the depth z/h = 0 to 1, is equal to the product  of  the 
drag coefficient and the plant area index, PAI (total area of  one side of  all 
plant material per unit ground area). For convenience, however, an effective 
drag coefficient of  0.2 was selected as typical for corn (Zea mays L.) (Uchi- 
jima and Wright, 1964; den Hartog and Shaw, 1975) and results are expressed 
both in terms of  PAI (assuming C d = 0.2) and, more generally, in terms of  
this quanti ty multiplied by Cd, over the range 0.05 to 2. 

The vertical distribution of  leaf area in many agricultural crops can be 
described approximately by a triangular shape. For example, Fig. l a  illus- 
trates that an observed area density profile for corn (Shaw et al., 1974) 
approaches a simple triangular form quite closely. A wind profile calculated 
with this triangular distribution was virtually indistinguishable from that 
calculated using the observed distribution. Other leaf density distributions fit 
this description to varying degrees; examples of sunflower, wheat,  maize, 
and rice were presented by Monteith (1976). 

In consequence, computat ions  presented here are based on a triangular 
distribution of canopy elements with the exception that the density at the 
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Fig. 1. (a) Plant area density as a f u n c t i o n  of  height for corn (data points ) ,  and a tri- 
angular distribution wi th  the  same total area. (b) Non-dimermionai  plot  o f  selected plant 
area densities as funct ions  o f  height.  The area under each curve is equal to 1. 
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surface was one-tenth of the maximum density. The level, Zm~, at which 
the maximum density occurred, was made to vary over the range 0.2h to 
0.8h as shown in Fig. l b  in non-dimensional form, in an at tempt to mimic 
leaf density profiles of corn at other stages of morphology and of other 
crop stands. No a t tempt  was made to represent stands of more vertically 
homogeneous density, or of forest-like stands with a relatively open trunk 
space. 

Computed mean wind velocity profiles from above the canopy were 
analyzed in the usual manner for the displacement height and the rough- 
ness length, using eq. 5 but replacing wind speed U by velocity ft. u , / k  
was treated as ~m unknown quantity.  Profiles of z o and d could be calculated 
locally from three consecutive grid points. Both were found to vary with 
height reflecting the fact that  the computed wind profile was not  logarithmic 
immediately above the vegetation. For this reason, d was also calculated as 
the center-of-pressure according to eq. 6, and z 0 was calculated using this 
value of d and the normalized wind velocity fi /u,  computed at z / h  = 2. 

R E S U L T S  AND DISCUSSION 

Comparisons of  displacement heights calculated from: (a) the computed 
wind profile at twice the canopy height; (b) a gradient-diffusion or length 
model; and (c) the center-of-pressure from the computed in-canopy wind 
profile, are shown in Fig. 2 over a range Of plant area indices for canopies of 
vertically uniform density and for canopies with a triangular distribution of 
leaves with maximum density at 0.5h. 

In each case, the displacement height calculated by analysis of the com- 
puted wind profile was a fairly close match for the center-of-pressure within 
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Fig. 2. Displacement height calculated from the computed wind profile at  2h ( d a s h / d o t  
curve) ;  a g r ad i en t - d i f f u s i on / m i x i ng  length model (dashed curve); and from the center- 
of-pressure (solid curve) as a function of  Cd " P A I  ( and  against  PAI assuming  t h a t  C d = 
0 .2)  for  (a)  canop ies  o f  vertically uniform density, and (b)  a t r i angula r  d i s t r i bu t i on  of  leaf  
area w i th  m a x i m u m  dens i ty  a t  h/2. All curves  are h a n d - d r a w n  t h r o u g h  the computed 
points .  
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the canopy, while gradient-diffusion theory results in a value of d that  pro- 
gressively diverges from the other two values, with decreasing canopy density, 
until reaching zero at C d • P A I  ~-- 0.16 in each case. This aerodynamic density 
is equivalent to cah ~ - 0 . 3 2 ,  a value intermediate between those of  the 
Seginer (1974) and Kondo and Akashi (1976) models discussed earlier. 

The mixing length of  the gradient-diffusion model and the length scale of 
the second-order model were defined in an identical fashion as a linear 
function of height above the ground but restricted so as not  to exceed an 
intrinsic value within the canopy. Yet, the results are quite different. The 
gradient-diffusion model automatically creates a logarithmic wind profile 
above the canopy with a displacement height equal to the height at which 
the above-canopy mixing length extrapolates to zero. On the other hand, the 
second-order model allows the profile to deviate from the logarithmic shape 
near the canopy, but calculations of d made at twice the canopy height are 
close to the center-of-pressure over a wide range of  aerodynamic densities. 

Thom (1971) asserts that  the displacement height can be identified with 
the center-of-pressure of the drag force within the canopy but this has not  
been verified experimentally over a wide range of plant densities. A major 
problem is the difficulty of determining d from measured mean wind pro- 
files since d depends primarily on the second derivative of wind speed with 
respect to height (the curvature of the profile) and is thus very sensitive to 
experimental error. 

There is logic to Thom's proposition, however, and the current results 
lend additional support. Meanwhile, it is difficult to defend the gradient- 
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Fig. 3. Ratio o f  the stress at the soil surface ~0 to the total stress Th for a range of  soil 
roughness l e ~ s  i n d i c t e d  a s z 0  (sofl/h on the diagram, and as a function Of Cd "PAI 
(and against PAI assuming that C d = 0.2). All curves are hand-drawn through the com- 
puted points. 
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diffusion model conclusion that the origin of  the logarithmic wind profile 
descends to the surface for relatively sparse canopies, when the center of  the 
drag force is at mid-canopy and the soil surface still plays a minor role in the 
overall drag. The center of  the drag force is shown as the center-of-pressure 
in Fig. 2 and the relative contr ibut ion of the surface to the above-canopy 
shear stress is illustrated in Fig. 3 based on calculations from the second- 
order closure model. The latter diagram shows that for rough soil surfaces 
and very thin canopies, the soil accounted for as much as 30% of  the total 
drag, but  that normally the stress at the soil is a minor contribution. 

In its present form, the second-order closure model  is not  capable of  
predicting the height to which a significant departure from the logarithmic 
profile should be observed. The model does illustrate that  such a departure 
will occur. The problem appears to lie with the parameterization of  the 
third-order transport  terms in the second-moment  equations, to which the 
height of  the canopy influence and the calculated profile of  displacement 
height appear to be particularly sensitive. For  this reason, the displacement 
height shown in the remaining diagrams is the center-of-pressure calculated 
from computed  wind profiles according to eq. 6. 

Figure 4 shows that calculated displacement heights increased mono- 
tonically with increasing density of  the vegetation, and as the level of  maxi- 
mum leaf density (z~/h)  moved upward in the canopy. Both results are to 
be expected;  as the density of  the vegetation increases and as the bulk of  the 
material is oriented towards the top of  the canopy,  the vertical profile of  the 
drag force should be displaced towards the upper part of  the canopy. 
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The relationship between roughness length and canopy density is shown in 
Fig. 5. Each curve is unimodal. At low area indices, z 0 increased with increas- 
ing density as predicted by the Lettau (1969) relationship, and the roughest 
surfaces were those in which plant material was skewed towards the top of 
the canopy. This result indicates that when the vegetation is relatively sparse, 
the greatest drag is achieved when plant material is projected to the upper 
part of  the canopy where wind speeds are greatest. 

The roughness length reached a peak value at an aerodynamic density 
(Cd •PAI) which depended on the vertical structure of  the canopy but which 
was in the range 0.1 to 0.24 (cah in the range 0.2 to 0.48}. Further increases 
in density produced a decrease in the calculated roughness length. For these 
denser canopies, z0 was very dependent  on canopy structure and largest 
when leaf area was skewed toward the bot tom of  the canopy. In this range 
of canopy density, the surface of  the vegetation is least rough when most of 
the plant material is near the top of  the canopy, tending to seal the canopy 
aerodynamically and to present a smoother surface to the air flow above. 
On the other hand, when the canopy is relatively open at the top, momen- 
tum penetrates more easily and a greater leaf area is presented to the force 
of  the wind producing an effectively greater roughness. 

Figure 6 shows the relationship between the displacement heights and 
roughness lengths calculated from computed wind profiles. The aerodynamic 
density and the canopy structure (zm~/h) are i d e n t i f i e d  w h e r e  possible but 
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Fig. 6. Plot of roughness length against displacement height. C d " P A I  and height of maxi- 
mum density are identified where possible. 

generally, when Cd " P A I  exceeded about  0.2 (cah ~ 0.4) the calculated 
points fell close to a straight line. This line does not  appear to pass through 
the origin but  has a y-intercept of  about  0.01 and a slope of  about  0.26. 
A line forced through the origin to satisfy the equation zo /h  = X ( 1 - - d / h )  
and passing through intermediate values of  d /h  of about  0.7 has a slope 
X ~-- 0.29. This is close to the experimental value quoted earlier for real and 
artificial crops and for a forest. 

SUMMARY AND CONCLUSIONS 

A second-order closure model has been used to compute  wind profiles 
within and above plant canopies of  different density and structure to observe 
effects on the roughness length and the displacement height. The belief that 
the computed  wind field will be less sensitive to the parameterization of  the 
third moments  in the governing equations, than to the parameterization of  
the momentum flux directly, is supported by the present results. This 
support  is illustrated by the comparison made between results of  models 
based on gradient-diffusion theory (Seginer, 1974; Kondo and Akashi, 1976) 
and the second-order model  described by Wilson and Shaw (1977). It was 
shown that the form of the relationships between z0, d, and the aerodynamic 
density of  the vegetation is strongly dependent  on the manner in which the 
mixing length is prescribed in a gradient-diffusion model. In fact, the dis- 
placement height is forced to zero when canopy density decreases to a point  
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where the mixing length is thought  to be determined only by the distant(  
from the soil surface. This occurs when the effective level of the drag force~ 
(the center-of-pressure) is still a relatively large fraction of the canopy heighl, 
and when the soil surface is playing a very minor role in the overall drag. 

The closure schemes of  the second-order model also utilized a length scale 
that  was restricted within the canopy according to canopy density. Para- 
meterizations using the prescribed length scale were applied only to third- 
order terms in the governing equations and did not  force the displacement 
height to zero for sparse canopies when the length scale was assumed to 
increase linearly from the soil surface. In fact, calculated values of the dis- 
placement height approximated the center-of-pressure over the complete 
range of  densities examined. 

Based on the assumption that, ideally, calculated results should be inde- 
pendent  of input variables that  can be assigned arbitrarily, we interpret the 
results discussed above to indicate that  the second-order model represents 
the canopy flow situation to a better approximation than does a gradient- 
diffusion model. 

Displacement height and roughness length were examined by analyzing 
computed wind profiles for a range of aerodynamic densities and for differ- 
ent  vertical distributions of  vegetation density throughout  the depth of the 
canopy. Increasing density resulted in a monotonic  increase in displacement 
height while roughness length exhibited a unimodal relationship with plant 
density. Roughness length initially increased with increasing density, reached 
a peak, and then declined. The form of  this relationship was dependent  on 
canopy structure since, for sparse canopies, greatest roughness occurred 
when the center of gravity of  the canopy was near the top of  the canopy 
while, in dense canopies, greatest roughness occurred when the center of 
gravity was near the bot tom of  the canopy. Growing crop canopies will, in 
general, pass through this maximum in z 0/h during their growth cycle, but 
whether or not  the absolute value of z 0 peaks and then declines will depend 
on the particular growth pattern of the crop and the relationship between 
increase in height and increase in leaf area density with time. 

Within the range in which z 0 decreased with increasing density, there was 
a unique relationship between z 0 and d. When z o / h  was plotted against 
1 --  d / h ,  calculated points fell close to a straight line, regardless of  the struc- 
ture or density of the canopy. 

This straight line did not  pass through the origin as expected, but  crossed 
the z 0/h axis at a value o f  about 0.01. A line forced through the origin to pass 
through points having a displacement height approximately 70% of the 
canopy height had a slope of  about 0.29 which agrees well with experimental 
values quoted elsewhere. 
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