
P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

D
DATA ENCRYPTION
STANDARD (DES)

The Data Encryption Standard (DES) [31] has
been around for more than 25 years. During this
time the standard was revised three times: as
FIPS-46-1 in 1988, as FIPS-46-2 in 1993 and
as FIPS-46-3 in 1999. DES was an outcome of a
call for primitives in 1974, which did not result
in many serious candidates except for a prede-
cessor of DES, Lucifer [15, 36] designed by IBM
around 1971. It took another year for a joint IBM–
NSA effort to turn Lucifer into DES. The struc-
ture of Lucifer was significantly altered: since
the design rationale was never made public and
the secret key size was reduced from 128-bit to
56-bits, this initially resulted in controversy, and
some distrust among the public. After some de-
lay, FIPS-46 was published by NBS (National
Bureau of Standards)—now NIST (National In-
stitute of Standards and Technology)—on Jan-
uary 15, 1977 [31] (see [35] for a discussion of the
standardization process).

However, in spite of all the controversy it is hard
to underestimate the role of DES [31]. DES was
one of the first commercially developed (as opposed
to government developed) ciphers whose structure
was fully published. This effectively created a com-
munity of researchers who could analyse it and
propose their own designs. This lead to a wave of
public interest in cryptography, from which much
of the cryptography as we know it today was born.

DESCRIPTION OF DES: The Data Encryption
Standard, as specified in FIPS Publication 46-
3 [31], is a block cipher operating on 64-bit data
blocks. The encryption transformation depends on
a 56-bit secret key and consists of sixteen Feistel
iterations surrounded by two permutation layers:
an initial bit permutation IP at the input, and its
inverse IP−1 at the output. The structure of the
cipher is depicted in Figure 1. The decryption pro-
cess is the same as the encryption, except for the
order of the round keys used in the Feistel iter-
ations. As a result, most of the circuitry can be
reused in hardware implementations of DES.

The 16-round Feistel network, which consti-
tutes the cryptographic core of DES, splits the 64-
bit data blocks into two 32-bit words (denoted by
L0 and R0). In each iteration (or round), the second

word Ri is fed to a function f and the result is
added to the first word Li . Then both words are
swapped and the algorithm proceeds to the next
iteration.

The function f is key-dependent and consists
of four stages (see Figure 2). Their description is
given below. Note that all bits in DES are num-
bered from left to right, i.e., the leftmost bit of a
block (the most significant bit) is bit 1.
1. Expansion (E). The 32-bit input word is first

expanded to 48 bits by duplicating and reorder-
ing half of the bits. The selection of bits is spec-
ified by Table 1. The first row in the table refers
to the first 6 bits of the expanded word, the sec-
ond row to bits 7–12, and so on. Thus bit 41 of
the expanded word, for example, gets its value
from bit 28 of the input word.

2. Key mixing. The expanded word is XORed
with a round key constructed by selecting 48
bits from the 56-bit secret key. As explained be-
low, a different selection is used in each round.

INPUT

INITIAL PERMUTATION

INVERSE INITIAL PERM

LO

L1 = R0

L2 = R1

L15 = R14

L16 = R15

RO

+

R1 = L0 f(RO, K1)+

R2 = L1 f(R1, K2)+

R15 = L14 f(R14, K15)+

R16 = L15 f(R15, K16)+

OUTPUT

PERMUTED
INPUT

PREOUTPUT

K16

Kn

K2

K1

+

+

+

f

f

f

f

Fig. 1. The encryption function

129

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

130 Data encryption standard (DES)

+

E

S1 S2 S3 S4 S5 S6 S7 S8

48 BITS K (48 BITS)

R (32 BITS)

32 BITS

P

Fig. 2. The function f

3. Substitution. The 48-bit result is split into
eight 6-bit words which are substituted in eight
parallel 6 × 4-bit S-boxes. All eight S-boxes,
called S1, S2, . . . , S8, are different but have the
same special structure, as appears from their
specifications in Table 2. Each row of the S-
box tables consists of a permutation of the 4-bit
values 0, . . . , 15. The 6-bit input word is sub-
stituted as follows: first a row is selected ac-
cording to the value of the binary word formed
by concatenating the first and the sixth input
bit. The algorithm then picks the column given
by the value of the four middle bits and outputs
the corresponding 4-bit word.

4. Permutation (P). The resulting 32 bits are re-
ordered according to a fixed permutation spec-
ified in Table 1 before being sent to the output.
As before, the first row of the table refers to the
first four bits of the output.
The selection of key bits in each round is deter-

mined by a simple key scheduling algorithm. The
algorithm starts from a 64-bit secret key which in-
cludes 8 parity bits that are discarded after verifi-
cation (the parity of each byte needs to be odd). The
remaining 56 secret key bits are first permuted

Table 1. Expansion E and permutation P

E P

32 1 2 3 4 5 16 7 20 21
4 5 6 7 8 9 29 12 28 17
8 9 10 11 12 13 1 15 23 26

12 13 14 15 16 17 5 18 31 10
16 17 18 19 20 21 2 8 24 14
20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

according to a permutation PC1 (see Table 4). The
result is split into two 28-bit words C0 and D0,
which are cyclically rotated over 1 position to the
left after rounds 1, 2, 9, 16, and over 2 positions af-
ter all other rounds (the rotated words are denoted
by Ci and Di). The round keys are constructed
by repeatedly extracting 48 bits from Ci and Di
at 48 fixed positions determined by a table PC2
(see Table 4). A convenient feature of this key
scheduling algorithm is that the 28-bit words C0
and D0 are rotated over exactly 28 positions after
16 rounds. This allows hardware implementations
to efficiently compute the round keys on-the-fly,
both for the encryption and the decryption.

CRYPTANALYSIS OF DES: DES has been sub-
ject to very intensive cryptanalysis. Initial at-
tempts [16] did not identify any serious weak-
nesses except for the short key-size. It was noted
that DES has a complementation property, i.e.,
given an encryption of the plaintext P into the
ciphertext C under the secret key K: EK(P) = C,
one knows that the complement of the plaintext
will be encrypted to the complement of the cipher-
text under the complement of the key: EK̄(P) =
C (by complement we mean flipping of all the
bits). Another feature was the existence of four
weak keys, for which the cipher is an involution:
EK(EK(m)) = m (for these keys the contents of the
key-schedule registers C and D is either all zeros
or all ones), and six additional pairs of semi-weak
keys for which EK1(EK2(m)) = m. The complemen-
tation and the weak-key properties are the result
of interaction of the key-schedule, which splits the
key-bits into two separate registers and the Feistel
structure of the cipher. A careful study of the cycle
structure of DES for weak and semi-weak keys has
been given by Moore and Simmons [30]. See the
book of Davies and Price [11] for a more detailed
account on these and other features of DES iden-
tified prior to 1989. The properties of the group
generated by DES permutations have also been
studied intensively. Coppersmith and Grossman
have shown [9] that in principle DES-like com-
ponents can generate any permutation from the
alternating group A264 (all even permutations, i.e.,
those that can be represented with an even num-
ber of transpositions). However, DES implements
only 256 permutations, which is a tiny fraction of
all the even permutations. If the set of 256 DES
permutations was closed under composition, then
multiple encryption as used, for example in Triple-
DES would be equivalent to single encryption and
thus would not provide any additional strength.
A similar weakness would be present if the size
of the group generated by the DES permutations

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Data encryption standard (DES) 131

Table 2. DES S-boxes

S1 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 : 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 : 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 : 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 : 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 : 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 : 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 : 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 : 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 : 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 : 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 : 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 : 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 : 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 : 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 : 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 : 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 : 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 : 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 : 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 : 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 : 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 : 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 : 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 : 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

132 Data encryption standard (DES)

Table 3. Initial and final permutations

IP IP−1

58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 6 38 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37 5 45 13 53 21 61 29
57 49 41 33 25 17 9 1 36 4 44 12 52 20 60 28
59 51 43 35 27 19 11 3 35 3 43 11 51 19 59 27
61 53 45 37 29 21 13 5 34 2 42 10 50 18 58 26
63 55 47 39 31 23 15 7 33 1 41 9 49 17 57 25

Table 4. DES key schedule bit selections

PC1 PC2

57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10

10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55

7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

were small. Using the special properties of the
weak keys it has been shown that DES generates
a very large group, with a lower-bound of 22499

permutations [7, 8], which is more than enough
to make the closure attacks [18] impractical.

In the two decades since its design three impor-
tant theoretical attacks capable of breaking the
cipher faster than exhaustive search have been
discovered: differential cryptanalysis (1990) [5],
linear cryptanalysis (1993) [22], and the improved
Davies’ attack [3, 12]. An interesting twist is that
differential cryptanalysis was known to the de-
signers of DES and DES was constructed in par-
ticular to withstand1 this powerful attack [8]. This
explains why the cipher’s design criteria were kept
secret. Many of these secrets became public with
the development of differential cryptanalysis and
were later confirmed by the designers [33]. Both
differential and linear attacks as well as Davies’
attack are not much of a threat to real-life applica-
tions since they require more than 240 texts for the
analysis. For example: a linear attack requires 243

known plaintexts to be encrypted under the same
secret key. If the user changes the key every 235

blocks the success probability of the attack would

1 Note that DES is strong but not optimal against linear crypt-
analysis or improved Davies’ attack, for example simple re-
ordering of the S-boxes would make the cipher less vulnerable
to these attacks without spoiling its strength against the dif-
ferential attack [24]. This could indicate that the designers of
DES did not know about such attacks.

be negligible. Nevertheless, linear attacks were
tested [23] in practice, run even slightly faster
than theoretically predicted [17], and can poten-
tially use twice less data in a chosen plaintext sce-
nario [20]. In the case of the differential attack 247

chosen plaintexts are required, though the attack
would still work if the data is coming from up to
233 different keys. However, the huge amount of
chosen plaintext makes the attack impractical. In
the case of Davies’ attack the data requirement is
250 known plaintexts, which is clearly impractical.

Although differential and linear attacks are
hard to mount on DES, they proved to be very pow-
erful tools for cryptanalysis; many ciphers which
were not designed to withstand these attacks have
been broken, some even with practical attacks. See
for example the cipher FEAL [28, 29, 34]. In fact
both attacks have been discovered while studying
this cipher [4, 25], which was proposed as a more
secure alternative to DES.

Exhaustive key search currently remains the
biggest threat to the security of DES [31]. It was
clear from the very beginning that a 56-bit key
can be found in practical time by using a practi-
cal amount of resources. In 1977 a design for a
key-search machine was proposed by Diffie and
Hellman [13] with a cost of US$ 20 million and
the ability to find a solution in a single day.
Later Hellman proposed a chosen plaintext time-
memory tradeoff approach, which would allow to
build an even cheaper machine, assuming that

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Data encryption standard (DES) 133

a precomputation of 256 encryption steps is done
once for a single chosen plaintext. An effective and
complete ASIC design for a key-search machine
has been proposed by Wiener in 1993 [38]. It was
shown that the US$ 1 million machine would run
through the full key-space in 7 hours. It became
clear in 1993 that DES had to be upgraded to
triple-DES or be replaced; however NIST decided
to reconfirm the FIPS standard a second time in
1993 for another five years (as FIPS 46-2). In 1998
the Electronic Frontier Foundation (EFF) built a
working dedicated hardware machine which cost
less than US$ 250,000 and could run through the
full key-space in four days [14]. In a parallel de-
velopment it was shown that a network of tens of
thousands of PCs (a computational power easily
available to a computer virus, for example) could
do the same work in several weeks. At that time
the AES competition had been started. As a re-
sult of this effort DES has been replaced by a
successor, AES, which is based on a 128-bit block
128/192/256-bit key cipher Rijndael/AES.

EXTENSIONS OF DES: So where is DES to-
day? DES is not obsolete. Due to substantial
cryptanalytic effort and the absence of any practi-
cal cryptanalytic attack, the structure of DES has
gained public trust. There have been several pro-
posals to remedy the short key size problem plagu-
ing the cipher:
� Triple-DES (Diffie–Hellman [13]). The idea

is to multiple encrypt the block using DES three
times with two or three different keys. This
method gains strength both against cryptan-
alytic attacks as well as against exhaustive
search. It is weak against related key attacks,
however, and the speed is three times slower
than single DES [31]. A two-key variant in the
form of Encrypt-Decrypt-Encrypt (E-D-E), i.e.,
EK1 (DK2 (EK1 (m))) has been proposed by IBM
(Tuchman, 1978) and is still in wide use by the
banking community. The convenience of this op-
tion is that it is backward compatible with a sin-
gle DES encryption, if one sets K1 = K2.

� Independent subkeys (Berson [1]). The idea
is to use independently generated 48-bit sub-
keys in each round. The total key-size is 768 bits,
which stops the exhaustive search attack. How-
ever, the cryptanalytic attacks like differential
or linear do work almost as good as for DES [31].
The speed of this proposal is as for single DES,
but it has a slower key-schedule.

� Slow key-schedule (Quisquater et al. [32]
or Knudsen [10]). Exhaustive search is
stopped by loosing key-agility of a cipher.

� DES-X (Rivest, 1984). The idea is to XOR addi-
tional 64-bits of secret key material at the input
and at the output of the cipher. See the article
on DES-X for more details. This is very effective
against exhaustive search, but does not stop old
cryptanalytic attacks on DES, and allows new
related key attacks. This approach allows the
reuse of old hardware. The speed is almost the
same as that of a single DES.

� Key-dependent S-boxes (Biham-
Biryukov [2]). The idea is similar to DES-X,
but the secret key material is XORed before
and after the S-boxes. S-boxes are reordered to
gain additional strength. The result is secure
against exhaustive search and improves the
strength against cryptanalytic attacks (with
the exception of related key attacks). This
approach applies to software or to hardware
which permits the loading of new S-boxes.
The speed is the same as that of a single
DES.
As of today two-key and three-key triple DES

is still in wide use and is included in NIST
(FIPS 46-3, the 1999 edition [31]) and ISO stan-
dards. However, two-key triple DES variants are
not recommended for use due to dedicated meet-
in-the-middle attack by Oorschot and Wiener [37]
with complexity 2120−log n steps given O(n) known
plaintexts and memory. For example, if n = 240,
complexity of attack is 280 steps. This attack
is based on an earlier attack by Merkle and
Hellman [27] which required 256 chosen plain-
texts, steps, and memory. These attacks are hard
to mount in practice, but they are an important
certificational weakness.

The recommended usage mode for triple-DES
is Encrypt-Encrypt-Encrypt (E-E-E) (or Encrypt-
Decrypt-Encrypt (E-D-E)) with three indepen-
dently generated keys (i.e. 168 key bits in to-
tal), for which the best attacks are the classical
meet-in-the-middle attack with only three known
plaintexts, 256 words of memory and 2111 analysis
steps; and the attack by Lucks [21] which requires
2108 time steps and 245 known plaintexts. These
attacks are clearly impractical.

The DES-X alternative is also in popular use due
to its simplicity and almost no speed loss. Thor-
ough analysis of a generic construction is given
in [19] and the best currently known attack is a
slide attack [6] with complexity of n known plain-
texts and 2121−log n analysis steps (for example: 233

known plaintexts and memory and 287 analysis
steps).

Alex Biryukov
Christophe De Cannière

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

134 Data encryption standard (DES)

References

[1] Berson, T.A. (1983). “Long key variants of DES.”
Advances in Cryptology—CRYPTO’82, Lecture
Notes in Computer Science, eds. D. Chaum, R.L.
Rivest, and A.T. Sherman. Plenum Press, New
York, 311–313.

[2] Biham, E. and A. Biryukov (1995). “How to
strengthen DES using existing hardware.” Ad-
vances in Cryptography—ASIACRYPT’94, Lec-
ture Notes in Computer Science, vol. 917, eds.
J. Pieprzyk and R. Safavi-Naini. Springer-Verlag,
Berlin, 395–412.

[3] Biham, E. and A. Biryukov (1997). “An improve-
ment of Davies’ attack on DES.” Journal of Cryp-
tology, 10 (3), 195–206.

[4] Biham, E. and A. Shamir. “Differential cryptanal-
ysis of DES-like cryptosystems.” In Menezes and
Vanstone [26], 2–21.

[5] Biham, E. and A. Shamir (1993). “Differential
cryptanalysis of the data encryption standard.”
Advances in Cryptology—CRYPTO’90, eds. A.J.
Menezes and S.A. Vanstone. Lecture Notes in Com-
puter Science, vol. 537. Springer-Verlag, Berlin, 2–
21.

[6] Biryukov, A. and D. Wagner (2000). “Ad-
vanced slide attacks.” Advances in Cryptology—
EUROCRYPT 2000, Lecture Notes in Computer
Science, vol. 1807, ed. B. Preneel. Springer-Verlag,
Berlin, 589–606.

[7] Campbell, K.W. and M.J. Wiener (1993). “DES
is not a group.” Advances in Cryptology—
CRYPTO’92, Lecture Notes in Computer Science,
vol. 740, ed. E.F. Brickell. Springer-Verlag, Berlin,
512–520.

[8] Coppersmith, Don (1994). “The data encryption
standard (DES) and its strength against attacks.”
IBM Journal of Research and Development, 38 (3),
243–250.

[9] Coppersmith, D. and E. Grossman (1975). “Gen-
erators for certain alternating groups with appli-
cations to cryptography.” SIAM Journal Applied
Math, 29 (4), 624–627.

[10] Damgard, I. and L.R. Knudsen (1998). “Two-key
triple encryption.” Journal of Cryptology, 11 (3),
209–218.

[11] Davies, D.W. and W.L. Price (1989). Security for
Computer Networks (2nd ed.). John Wiley & Sons,
New York.

[12] Davies, D.W. and S. Murphy (1995). “Pairs and
triplets of DES S-Boxes.” Journal of Cryptology, 8
(1), 1–25.

[13] Diffie, W. and M. Hellman (1997). “Exhaustive
cryptanalysis of the NBS data encryption stan-
dard.” Computer, 10 (6), 74–84.

[14] Electronic Frontier Foundation (EFF) (1998). “DES
cracker.” http://www.eff.org/DEScracker/

[15] Feistel, H. (1973). “Cryptography and computer
privacy.” Scientific American, 228, 15–23.

[16] Hellman, M.E., R. Merkle, R. Schroppel, L.
Washington, W. Diffe, S. Pohlig, and P. Schweitzer

(1976). “Results of an initial attempt to cryptana-
lyze the NBS Data Encryption Standard.” Techni-
cal report, Stanford University, USA.

[17] Junod, P. (2001). “On the complexity of Matsui’s at-
tack.” Selected Areas in Cryptography, SAC 2001,
Lecture Notes in Computer Science, vol. 2259, eds.
S. Vaudenay and A.M. Youssef. Springer-Verlag,
Berlin, 199–211.

[18] Kaliski, B.S., R.L. Rivest, and A.T. Sherman (1988).
“Is the data encryption standard a group?” Journal
of Cryptology, 1 (1), 3–36.

[19] Kilian, J. and P. Rogaway (1996). “How to protect
DES against exhaustive key search.” Advances in
Cryptology—CRYPTO’96, Lecture Notes in Com-
puter Science, vol. 1109, ed. N. Koblitz. Springer-
Verlag, Berlin, 252–267.

[20] Knudsen, L.R. and J.E. Mathiassen (2001). “A
chosen-plaintext linear attack on DES.” Fast Soft-
ware Encryption, FSE 2000, Lecture Notes in Com-
puter Science, vol. 1978, ed. B. Schneier. Springer-
Verlag, Berlin, 262–272.

[21] Lucks, S. (1998). “Attacking triple encryption.”
Fast Software Encryption, FSE’98, Lecture Notes
in Computer Science, vol. 1372, ed. S. Vaudenay.
Springer-Verlag, Berlin, 239–257.

[22] Matsui, M. (1993). “Linear cryptanalysis method
for DES cipher.” Advances in Cryptology—
EUROCRYPT’93, Lecture Notes in Computer
Science, vol. 765, ed. T. Helleseth. Springer-Verlag,
Berlin, 386–397.

[23] Matsui, M. (1994). “The first experimental crypt-
analysis of the data encryption standard.” Ad-
vances in Cryptology—CRYPTO’94, Lecture Notes
in Computer Science, vol. 839, ed. Y. Desmedt.
Springer-Verlag, Berlin, 1–11.

[24] Matsui, M. (1995). “On correlation between the
order of S-boxes and the strength of DES.” Ad-
vances in Cryptology—EUROCRYPT’94, Lecture
Notes in Computer Science, vol. 950, ed. A. De San-
tis. Springer-Verlag, Berlin, 366–375.

[25] Matsui, M. and A. Yamagishi (1992). “A new
method for known plaintext attack of FEAL ci-
pher.” Advances in Cryptology—EUROCRYPT’92,
Lecture Notes in Computer Science, vol. 658, ed.
R.A. Rueppel. Springer-Verlag, Berlin, 81–91.

[26] Menezes, A. and S.A. Vanstone (eds.) (1991). Ad-
vances in Cryptology—CRYPTO’90, Lecture Notes
in Computer Science, vol. 537, eds. A.J. Menezes
and S.A. Vanstone. Springer-Verlag, Berlin.

[27] Merkle, R.C. and M.E. Hellman (1981). “On the se-
curity of multiple encryption.” Communications of
the ACM, 14 (7), 465–467.

[28] Miyaguchi, S. (1990). “The FEAL-8 cryptosystem
and a call for attack.” Advances in Cryptology—
CRYPTO’89, Lecture Notes in Computer Science,
vol. 435, ed. G. Brassard. Springer-Verlag, Berlin,
624–627.

[29] Miyaguchi, S. “The FEAL cipher family.” In
Menezes and Vanstone (26), 627–638.

[30] Moore, J.H. and G.J. Simmons (1987). “Cycle struc-
tures of the DES with weak and semi-weak keys.”

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Data remanence 135

Advances in Cryptology—CRYPTO’86, Lecture
Notes in Computer Science, vol. 263, ed. A.M.
Odlyzko. Springer-Verlag, Berlin, 9–32.

[31] National Institute of Standards and Technol-
ogy (1979). “FIPS-46: Data Encryption Standard
(DES).” Revised as FIPS 46-1:1988, FIPS 46-
2:1993, FIPS 46-3:1999, available at http://csrc.nist
.gov/publications/fips/fips46-3/fips46-3.pdf

[32] Quisquater, J.-J., Y. Desmedt, and M. Davio (1986).
“The importance of “good” key scheduling schemes
(how to make a secure DES scheme with ≤ 48 bit
keys).” Advances in Cryptology—CRYPTO’85, Lec-
ture Notes in Computer Science, vol. 218, ed. H.C.
Williams. Springer-Verlag, Berlin, 537–542.

[33] sci.crypt (1992). “Subject: DES and differen-
tial cryptanalysis.” Unpublished, http://www.esat.
kuleuven.ac.be/∼abiryuko/coppersmith letter.txt

[34] Shimizu, A. and S. Miyaguchi (1998). “Fast
data encipherment algorithm FEAL.” Advances
in Cryptology—EUROCRYPT’87, Lecture Notes in
Computer Science, vol. 304, eds. D. Chaum and
W.L. Price. Springer-Verlag, Berlin, 267–278.

[35] Smid, M. and D. Branstad (1998). “The data en-
cryption standard: past and future.” Proceedings
of the IEEE, 76 (5), 550–559.

[36] Smith, J.L. (1971). “The design of Lucifer: A crypto-
graphic device for data communications.” Technical
Report, IBM T.J. Watson Research Center, York-
town Heights, NY, USA.

[37] van Oorschot, P.C. and M.J. Wiener (1990). “A
known plaintext attack on two-key triple encryp-
tion.” Advances in Cryptology—EUROCRYPT’90,
Lecture Notes in Computer Science, vol. 473, ed.
I. Damgård. Springer-Verlag, Berlin, 318–325.

[38] Wiener, M. (1996).“Efficient des key search.” Prac-
tical Cryptography for Data Internetworks, pre-
sented at the rump session of CRYPTO’93, 31–79.

DATA REMANENCE

Data remanence is the ability of computer memory
to retain previously stored information beyond its
intended lifetime. With many data storage tech-
niques, information can be recovered using spe-
cialized techniques and equipment even after it
has been overwritten. Examples:
� Write heads used on exchangeable media (e.g.,

floppy disks, magstripe cards) differ slightly in
position and width due to manufacturing toler-
ances. As a result, one writer might not over-
write the entire area on a medium that had
previously been written to by a different de-
vice. Normal read heads will only give access to
the most recently written data, but special high-
resolution read techniques (e.g., magnetic-force
microscopy) can give access to older data that
remains visible near the track edges.

� Even with a perfectly positioned write head,
the hysteresis properties of ferromagnetic me-
dia can result in a weak form of previous data
to remain recognizable in overwritten areas.
This allows the partial recovery of overwrit-
ten data, in particular with older low-density
recording techniques. Protection measures that
have been suggested in the literature against
such data remanence include encryption, mul-
tiple overwriting of sensitive data with alter-
nating or random bit patterns, the use of spe-
cial demagnetization (“degaussing”) equipment,
or even the physical destruction (e.g., shred-
ding, burning) of media at the end of its life
time.

� The CMOS flip-flop circuits used in static RAM
have been observed to retain data for minutes,
at low temperatures in some cases even for
hours, after the supply voltage has been re-
moved [4]. The data remanence of RAM can po-
tentially be increased where memory cells are
exposed to constant data for extended periods
of time or in the presence of ionizing radia-
tion (“burn in”). Protection measures that are
used in some commercial security modules in-
clude sensors for low temperature and ioniz-
ing radiation. These have to be connected to
battery-powered alarm circuits that purge se-
curity RAM instantly in unusual environments.
Another protection technique inverts or rotates
bit patterns every few seconds, to avoid long-
term exposure of memory cells to a constant
value (“RAM saver”).

� File and database systems do not physically
overwrite (“purge”) data when it is deleted by
the user, unless special data purging functions
designed for security applications are used.
When objects are deleted, normally their stor-
age area is only marked as available for real-
location. This leaves deleted data available for
recovery with special undelete software tools,
until the time when the respective memory lo-
cation is needed to store new data.

Markus Kuhn

References

[1] A guide to understanding data remanence in au-
tomated information systems. National Computer
Security Center, NCSC-TG-025, United States De-
partment of Defense, September 1991.

[2] Gutmann, Peter (2001). “Data remanence in semi-
conductor devices.” Proceedings of the 10th USENIX
Security Symposium, Washington, DC, USA, 13–17.

[3] Gutmann, Peter (1996). “Secure deletion of data
from magnetic and solid-state memory.” Sixth

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

136 Davies–Meyer hash function

USENIX Security Symposium Proceedings, San
Jose, CA, 77–89.

[4] Skorobogatov, Sergei (2002). “Low temperature
data remanence in static RAM.” Technical Report
UCAM-CL-TR-536, University of Cambridge, Com-
puter Laboratory.

DAVIES–MEYER
HASH FUNCTION

The Davies–Meyer hash function is a construction
for a hash function based on a block cipher, where
the length in bits of the hash result is equal to the
block length of the block cipher. A hash function
is a cryptographic algorithm that takes input
strings of arbitrary (or very large) length and
maps these to short fixed length output strings.
The Davies–Meyer hash function is an unkeyed
cryptographic hash function which may have the
following properties: preimage resistance, second
preimage resistance and collision resistance;
these properties may or may not be achieved de-
pending on the properties of the underlying block
cipher.

In the following, the block length and key length
of the block cipher will be denoted with n and k
respectively. The encryption with the block cipher
E using the key K will be denoted with EK(·).

The Davies–Meyer scheme is an iterated hash
function with a compression function that maps
k + n bits to n bits:

Hi = EXi (Hi−1) ⊕ Xi . (1)

By iterating this function in combination with
MD-strengthening (see hash functions) one can
construct a hash function based on this compres-
sion function; this hash function is known as the
Davies–Meyer hash function. It has been shown
by Black and Rogaway [1] that in the black-box
cipher model, if k ≥ n finding a (second) preim-
age requires approximately 2n encryptions and
finding a collision requires approximately 2n/2

encryptions.
In order to achieve an acceptable security level

against (2nd) preimage attacks, the block length
n needs to be at least 80 bits (in 2004); for collision
resistance, the block length should be at least
160 bits (in 2004). This means that this scheme
should not be used with 64-bit block ciphers (e.g.,
CAST-128, Data Encryption Standard (DES),
FEAL, GOST, IDEA, KASUMI/MISTY1); it
should only be used for (2nd) preimage resistance
with 128-bit block ciphers (e.g., Rijndael/AES,
Camellia, CAST-256, MARS, RC6, TWOFISH,

and SERPENT). Very few 256-bit block ciphers
exist; one exception is the 256-bit version of RC6.

It is also important to note that a block cipher
may have properties which pose no problem at all
when they are used only for encryption, but which
may result in the Davies–Meyer construction of
the block cipher to be insecure [3, 4]. A typical
example are the complementation property and
weak keys of DES; it is also clear that the Davies–
Meyer construction based on DES-X is highly inse-
cure. The fact that the key is known to an opponent
may also result in security weaknesses (e.g., differ-
ential attacks of Rijmen and Preneel [5]). Hirose
defines a block cipher secure against a known
plaintext attack for which the Davies–Meyer hash
function is not 2nd preimage resistant [2].

Since there are very few block ciphers with a
256-bit block length, the Davies–Meyer construc-
tion is rarely used to obtain collision resistant
hash functions. However, this construction is very
popular in custom designed hash functions such
as MD4, MD5, and the SHA family. Indeed, the
compression functions of these hash functions are
designed using an internal block cipher struc-
ture; the compression functions are made non-
invertible by applying the Davies–Meyer construc-
tion to these internal block ciphers.

Bart Preneel

References

[1] Black, J., P. Rogaway, and T. Shrimpton (2002).
“Black-box analysis of the block-cipher-based hash-
function constructions from PGV.” Advances in
Cryptology—CRYPTO 2002, Lecture Notes in Com-
puter Science, vol. 2442, ed. M. Yung. Springer-
Verlag, Berlin, 320–355.

[2] Hirose, S. (2002). “Secure block ciphers are not suf-
ficient for one-way hash functions in the Preneel-
Govaerts-Vandewalle model.” Selected Areas in
Cryptography, Lecture Notes in Computer Science,
vol. 2595, eds. K. Nyberg and H.M. Heys. Springer-
Verlag, Berlin, 339–352.

[3] Preneel, B. (1993). “Analysis and design of cryp-
tographic hash functions.” Doctoral Dissertation,
Katholieke Universiteit Leuven.

[4] Preneel, B., R. Govaerts, and J. Vandewalle (1994).
“Hash functions based on block ciphers: A synthetic
approach.” Advances in Cryptology—CRYPTO’93,
Lecture Notes in Computer Science, vol. 773, ed. D.
Stinson. Springer-Verlag, Berlin, 368–378.

[5] Rijmen V. and B. Preneel (1995). “Improved char-
acteristics for differential cryptanalysis of hash
functions based on block ciphers.” Fast Software En-
cryption, Lecture Notes in Computer Science, vol.
1008, ed. B. Preneel. Springer-Verlag, Berlin, 242–
248.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

DC Network 137

DC NETWORK
The DC-Network is a synchronous network pro-
tocol by which the participants can broadcast
messages anonymously and unobservably (see
anonymity). A DC-Network can achieve sender
and recipient anonymity even against computa-
tionally unrestricted attackers. The DC-Network
protocol itself requires a network with a broad-
cast service. It was invented by David Chaum in
1984 [2–4] (hence the name DC-Network) and was
somewhat re-discovered by Dolev and Ostrovsky
in [5]. Messages can be addressed to one or more
intended participants by encrypting them with
their respective public encryption keys.

The basic DC-Network protocol allows one par-
ticipant at a time to broadcast a message. In or-
der to allow each participant to send at any time,
the broadcast channel of the basic DC-Network
needs to be allocated in a randomized fashion to
all requesting senders. This can be achieved by
well known contention protocols such as (slotted)
ALOHA [8].

Consider the basic DC-Network protocol of n
participants: P1, P2, . . . , Pn. Messages are strings
of k bits. As a preparation, all participants agree
on pairwise symmetric keys, i.e., randomly chosen
bitstrings of k bit length. Let us denote the key
between Pi and Pj as ki, j. Assume participant P1
wants to send a message m anonymously to all
other participants (anonymous broadcast). This
can be achieved by the basic DC-Network proto-
col, which works as follows:
Compute partial sums: Each participant Pi (1 ≤

i ≤ n) computes the XOR sum si of all the keys
ki, j (1 ≤ j ≤ n) it has exchanged with each other
participant Pj (j �= i), such that si = ∑

j�=i ki, j.
Participant P1 also adds his message m into his
partial sum such that s1 = m + ∑

j�=1 ki, j.
Broadcast partial sums: Each participant Pi

broadcasts its partial sum si .
Compute global sum: Each participant Pi

computes the global sum s = ∑n
i=1 si = m +∑n

i=1
∑

j�=i ki, j = m in order to recover the mes-
sage m. Note that because ki, j = kj,i , all the keys
cancel out leaving only m standing out of the
global sum.

The basic DC-Network protocol is computationally
efficient but requires n reliable broadcasts for each
message, and even more in case of resolving mes-
sage collisions where two or more participants are
sending their messages in the same round.

The basic DC-Network protocol runs on any
network architecture. If all participants are hon-
est, everyone obtains the message m. Chaum
[4] has proved that the basic DC-Network pro-

tocol achieves sender anonymity and recipient
anonymity even against computationally unre-
stricted attackers. However, the proof for recipi-
ent anonymity implicitly assumes that the partial
sums are broadcast reliably, i.e., each message of
an honest participant is broadcast to all partici-
pants without being modified [9].

DC-Network is the continued execution of the
basic DC-Network protocol. In this case, uncondi-
tional sender anonymity can be maintained only
by using fresh pairwise keys in each round, which
is a similar situation as for the one-time pad (see
key). Waidner has proposed to choose the pairwise
keys for each round of the basic DC-Network pro-
tocol based on a pseudo-random number generator
seeded with a selection of messages exchanged in
previous rounds of the basic DC-Network proto-
col. This is more practical, but results in sender
anonymity that holds only against computation-
ally restricted attackers [9].

The core idea behind the DC-Network is to sub-
stantially involve more participants in each com-
munication than just the intended sender and
recipient in order to conceal their sending and
receiving within the set of participants. This ap-
proach introduces an inevitable vulnerability in
case not all of the participants honestly follow the
protocol. In fact, the service of a DC-Network can
be easily disrupted by one or more cheating par-
ticipants, who either stop sending their partial
sums or sending wrong partial sums or sending too
many messages (denial-of-service attack). Disrup-
tions of the DC-Network have been considered by
Chaum [1], Bos and den Boer [4] and Waidner [9].

The key graph of a DC-Network is the graph
where each participant is represented by a vertex
and each pairwise key ki, j is represented by an
edge connecting the vertices representing Pi and
Pj. If the key graph is complete as in the exam-
ple above, no coalition of non-senders except all
of them together gains any information about who
sent m. Less complete key graphs can be used in or-
der to reduce the amount of pairwise keys. On the
other hand, the less complete the key graph is cho-
sen, the more vulnerable the basic DC-Network
protocol is against cheating participants who may
collude and exchange their views in and after the
basic DC-Network protocol in order to strip away
the honest participants’ anonymity. Collusions of
cheating participants can be represented in the
key graph by eliminating their mutual pairwise
keys. That is if Pi, Pj are cheating, then we re-
move the key ki, j from the key graph, which may
lead to an unconnected graph. Any participant
represented by an unconnected vertex is entirely
stripped of its anonymity. Such a participant is

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

138 DeBruijn sequence

fully observable by the collusion of cheating partic-
ipants. It is worth noting that the key graph can be
chosen independently of the underlying network
topology (ring, star, bus, etc.).

Waidner points out in [9] that reliable broadcast
is probably an unrealistic assumption because it
cannot be achieved by cryptographic means alone
as there is no byzantine agreement against compu-
tationally unrestricted active attackers who may
arbitrarily control many participants [6]. Further-
more, Waidner has shown how to achieve recipient
anonymity against computationally unrestricted
active attackers by replacing the reliable broad-
cast by a fail-stop broadcast, where honest partic-
ipants stop as soon as they receive inconsistent in-
puts. Fail-stop broadcast can be realized by O(n)
messages, each signed by an unconditionally se-
cure authentication code, or more efficiently by a
fail-stop signature [10].

Interestingly, no widely accepted formal defi-
nitions of sender and recipient anonymity in a
network, i.e., continued transmission service, has
come up yet. Thus, a fully formal treatment of DC-
Network protocols is not possible to date. A new
approach in this direction was proposed by Schnei-
der and Sidiropoulos [7] based on the CSP process
algebra (Communicating Sequential Processes).

Compared to MIX-Networks, DC-Networks
achieve sender anonymity even against computa-
tionally unrestricted active attackers, while MIX
networks only achieve sender anonymity against
computationally restricted attackers.

Gerrit Bleumer

References

[1] Bos, Jurjen and Bert den Boer (1990). “Detec-
tion of disrupters in the DC protocol.” Advances
in Cryptology—EUROCRYPT’89, Lecture Notes in
Computer Science, vol. 434, eds. J.-J. Quisquater
and J. Vandewalle. Springer-Verlag, Berlin, 320–
327.

[2] Chaum, David (1981). “Untraceable electronic
mail, return addresses, and digital pseudonyms.”
Communications of the ACM, 24 (2), 84–88.

[3] Chaum, David (1986). “Showing credentials with-
out identification—signatures transferred be-
tween unconditionally unlinkable pseudonyms.”
Advances in Cryptology—EUROCRYPT’85, Lec-
ture Notes in Computer Science, vol. 219, ed. F.
Pichler. Springer-Verlag, Berlin, 241–244.

[4] Chaum, David (1988). “The dining cryptographers
problem: Unconditional sender and recipient un-
traceability.” Journal of Cryptology, 1 (1), 65–75.

[5] Dolev, Shlomi and Rafail Ostrovsky (1997).
“Efficient anonymous multicast and reception.”

Advances in Cryptology—CRYPTO’97, Lecture
Notes in Computer Science, vol. 1294, ed. B.S.
Kaliski. Springer-Verlag, Berlin, 395–409.

[6] Lamport, Leslie, Robert Shostak, and Marshall
Pease (1982). “The Byzantine Generals problem.”
ACM Transactions on Programming Languages
and Systems, 4 (3), 382–401.

[7] Schneider, Steve and Abraham Sidiropoulos,
(1996). “CSP and anonymity.” ESORICS’96 (4th
European Symposium on Research in Computer Se-
curity), Rome, Lecture Notes in Computer Science,
vol. 1146, ed. V. Lotz. Springer-Verlag, Berlin, 198–
218.

[8] Tanenbaum, Andrew S. (1988). Computer networks
(2nd ed.). Prentice-Hall, Englewood Cliffs.

[9] Waidner, Michael (1990). “Unconditional sender
and recipient untraceability in spite of active at-
tacks.” Advances in Cryptology—EUROCRYPT’89,
Lecture Notes in Computer Science, vol. 434,
eds. J.-J. Quisquater and J. Vandewalle. Springer-
Verlag, Berlin, 302–319.

[10] Waidner, Michael and Birgit Pfitzmann (1990).
“The dining cryptographers in the disco: Uncon-
ditional sender and recipient untraceability with
computationally secure serviceability.” Advances
in Cryptology—EUROCRYPT’89, Lecture Notes in
Computer Science, vol. 434, eds. J.-J. Quisquater
and J. Vandewalle. Springer-Verlag, Berlin, 690.

DEBRUIJN SEQUENCE

A k-ary deBruijn sequence of order n is a se-
quence of period kn which contains each k-
ary n-tuple exactly once during each period.
DeBruijn sequences are named after the Dutch
mathematician Nicholas deBruijn. In 1946 he dis-
covered a formula giving the number of k-ary de-
Bruijn sequences of order n, and proved that it
is given by ((k − 1)!)kn−1 · kkn−1−n. The result was,
however, first obtained more than 50 years ear-
lier, in 1894, by the French mathematician C. Flye-
Sainte Marie.

For most applications binary deBruijn se-
quences are the most important. The number of
binary deBruijn sequences of period 2n is 22n−1−n.
An example of a binary deBruijn sequence of pe-
riod 24 = 16 is {st } = 0000111101100101. All bi-
nary 4-tuples occur exactly once during a period
of the sequence. In general, binary deBruijn se-
quences are balanced, containing the same num-
ber of 0’s and 1’s in a period, and they satisfy many
randomness criteria, although they may be gen-
erated using deterministic methods. They have
been used as a source of pseudo-random num-
bers and in key-sequence generators of stream
ciphers.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

DeBruijn sequence 139

A deBruijn sequence can be generated by a
nonlinear feedback function in n-variables. From
the initial state (s0, s1, . . . , sn−1) and a nonlinear
Boolean function f (z0, z1, . . . , zn−1) one can gener-
ate the sequence

st+n = f (st , st+1, . . . , st+n−1), for t = 0, 1, 2,

This can be implemented using an n-stage non-
linear shift register. For example the binary de-
Bruijn sequence above of period 16 = 24 can be
generated by st+4 = f (st , st+1, st+2, st+3), using the
initial state (0000) and the Boolean function

f (z0, z1, z2, z3) = 1 + z0 + z1 + z1z2z3.

The binary deBruijn graph Bn of order n is a
directed graph with 2n nodes, each labeled with
a unique binary n-tuple and having an edge from
node S = (s0, s1, . . . , sn−1) to T = (t0, t1, . . . , tn−1) if
and only if (s1, s2, . . . , sn−1) = (t0, t1, . . . , tn−2). The
successive n-tuples in a deBruijn sequence there-
fore form a Hamiltonian cycle in the deBruijn
graph, meaning that a full cycle visits each node
exactly once.

There are many algorithms for constructing de-
Bruijn sequences. The following is perhaps one of
the easiest to describe. Start with n zeros and ap-
pend a one whenever the n-tuple thus formed has
not appeared in the sequence so far, otherwise ap-
pend a zero. The sequence of length 24 = 16 above
is an example of a deBruijn sequence constructed
in this way. It is known that the decision of which
bit to select next can be based on local considera-
tions and storage requirements can be reduced to
only 3n bits.

Any Boolean function f such that the mapping

(z0, z1, . . . , zn−1) → (z1, z2, . . . , zn−1,

f (z0, z1, . . . , zn−1))

is a permutation of the set of binary n-tuples is
called a nonsingular Boolean function. It can be
written in the form,

f (z0, z1, . . . , zn−1) = z0 + g(z1, z2, . . . , zn−1)
(mod 2).

The truth table of a Boolean function f (z0,

z1, . . . , zn−1) is a list of the values of f (z0, z1, . . . ,

zn−1) for all binary n-tuples. The weight of the
truth table of f is the number of ones in this list.

Large classes of deBruijn sequences can be con-
structed by starting with a nonsingular Boolean
function f that decomposes the deBruijn graph
into several shorter disjoint cycles and then join-
ing the cycles one by one until one arrives at a de-
Bruijn sequence. To join two cycles one can find an
n-tuple (z0, z1, . . . , zn−1) on a cycle (where we have

(z1, z2, . . . , zn−1, f (z0, z1, . . . , zn−1)) on the same cy-
cle) and (z1, z2, . . . , zn−1, 1 + f (z0, z1, . . . , zn−1)) on
a different cycle. Then the two cycles will be joined
after changing(complementing) g(z1, z2, . . . , zn−1)
(leading to two changes of the truth table of f).

One common starting function is the non-
singular function corresponding to g = 0, i.e.,
f (z0, z1, . . . , zn−1) = z0, that is known to decom-
pose Bn into the Pure Circulating Register(PCR),
consisting of all cycles of period dividing n.
This is known to contain Z(n) = 1

n

∑
d|n φ(d)2n/d

cycles. For n = 4 the PCR consists of the cycles
(0), (1), (01), (0001), (0011), and (0111). Another
popular starting function is the Complemen-
tary Circulating Register(CCR) correspond-
ing to g = 1, i.e., f (z0, z1, . . . , zn−1) = z0 + 1
(mod 2). This is known to contain Z∗(n) =
1
2 Z(n) − 1

2n

∑
2d|n φ(2d)2n/2d cycles.

Another method to construct deBruijn se-
quences is to use recursive algorithms. There exist
algorithms that take as input two deBruijn se-
quences of period 2n−1 and produce a deBruijn se-
quence of period 2n.

The linear complexity of a deBruijn sequence is
defined as the length of the shortest linear shift
register that can be used to generate the sequence.
The linear complexity L of a binary deBruijn se-
quence of period 2n, n ≥ 3, satisfies the double in-
equality,

2n−1 + n ≤ L ≤ 2n − 1.

There exist deBruijn sequences that meet the
upper and lower bounds with equality.

The quadratic complexity of a deBruijn sequence
is the length of the shortest shift register that gen-
erates the sequence where the feedback function f
is allowed to have quadratic terms. The quadratic
complexity Q of a binary deBruijn sequence of pe-
riod 2n, n ≥ 3, satisfies the double inequality

n + 2 ≤ Q ≤ 2n −
(

n
2

)
− 1.

It is known that for any nonsingular Boolean
function f, the number of cycles that it decomposes
Bn into has the same parity as the weight of the
truth table of g. Therefore for a deBruijn sequence
the truth table of g has odd weight. It is further
known that for a deBruijn sequence, the weight w
of the truth table of g obeys,

Z(n) − 1 ≤ w ≤ 2n−1 − Z∗(n) + 1.

The lower bound can be achieved by starting
with the PCR and joining cycles one at a time un-
til we arrive at a deBruijn sequence. Each joining
step will in this case increase the weight of the
truth table of g by 1. Similarly we can construct

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

140 Decisional Diffie–Hellman assumption

deBruijn sequences of maximal weight by start-
ing with the CCR and joining the cycles one by
one, each joining step will in this case reduce the
weight of the truth table of g by 1. For values n < 7
the number of deBruijn sequences of each possible
weight of the truth table of g is known.

Tor Helleseth

References

[1] Fredricksen, H. (1982). “A survey of full length
nonlinear shift register cycle algorithms.” SIAM
Review, 24 (2), 195–221.

[2] Golomb, S.W. (1982). Shift Register Sequences.
Aegean Park Press, Laguna Hills, CA.

DECISIONAL DIFFIE–
HELLMAN ASSUMPTION

The difficulty in computing discrete logarithms in
some large finite groups has been the basis for
many cryptographic schemes and protocols in the
past decades, starting from the seminal Diffie–
Hellman key agreement protocol [8], and continu-
ing with encryption and digital signature schemes
with a variety of security properties, as well as
protocols for numerous other applications. Ideally,
we would have liked to prove unconditional state-
ments regarding the computational difficulty in
computing discrete logarithms. However, since the
current state of knowledge does not allow us to
prove such claims, we formulate instead mathe-
matical assumptions regarding the computational
difficulty of this set of problems, and prove prop-
erties of the protocols we develop based on these
assumptions.

A first assumption that is closely related to
the Diffie–Hellman key exchange is the Compu-
tational Diffie–Hellman assumption (see Diffie–
Hellman problem for more detail):
The Computational Diffie–Hellman (CDH)

Problem: Given a group G, a generator g of G,
and two elements a = gx, b = gy ∈ G, where x
and y are unknown, compute the value c = gxy ∈
G.

The Computational Diffie–Hellman (CDH)
Assumption: Any probabilistic polynomial
time algorithm solves the CDH problem only
with negligible probability.

Notes:
(1) The probability is taken over the random

choices of the algorithm. The probability is

said to be negligible if it decreases faster than
any inverse polynomial in the length of the
input.

(2) As usual, the algorithm must run in time that
is polynomial in the length of its input, namely
in time that is polylogarithmic in the size of G.
Also, a solution to the CDH problem is an al-
gorithm that works for all inputs. Thus, the
CDH assumption implies that there exists an
infinite sequence of groups G for which no poly-
time algorithm can solve the CDH problem
with probability that is not negligible. (Still,
it is stressed that there exist infinite families
of groups for which the CDH problem is in fact
easy.)

(3) The assumption can be made with respect
either to uniform-complexity or non-uniform
complexity algorithms (i.e., circuit fami-
lies.)

Indeed, the CDH assumption is very basic in
cryptography. However, in many cases researchers
were unable to prove the desired security prop-
erties of protocols based on the CDH assumption
alone. (A quintessential example is the Diffie–
Hellman key exchange protocol itself.) Further-
more, it appears that, at least in some groups, the
CDH assumption captures only a mild flavor of
the intractability of the Diffie–Hellman problem.
Therefore the Decisional Diffie–Hellman assump-
tion was formulated, as follows:
The Decisional Diffie–Hellman (DDH) Prob-

lem: Given a group G, a generator g of G, and
three elements a, b, c ∈ G, decide whether there
exist integers x, y such that a = gx, b = gy, and
c = gxy.

The Decisional Diffie–Hellman (DDH) As-
sumption (Version I): Any probabilistic poly-
nomial time algorithm solves the DDH problem
only with negligible probability.
The above formulation of the DDH assumption

treats the problem as a worst-case computational
problem (that is, an algorithm that solves the prob-
lem must work on all inputs. This formalization
provides a useful comparison with the CDH prob-
lem. A much more useful alternative formulation
of the DDH assumption only discusses the case
where the inputs are taken from certain distribu-
tions. It is stated as follows:
The Decisional Diffie–Hellman (DDH) As-

sumption (Version II): The following two dis-
tributions are computationally indistinguish-
able:
� G, g, gx, gy, gxy

� G, g, gx, gy, gz

where g is a generator of group G and x, y, z are
chosen at random from {1, . . . , |G|}.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Decisional Diffie–Hellman assumption 141

Note: More formally, the above two distributions
are actually two distribution ensembles, namely
two families of distributions where each distribu-
tion in a family is parameterized by the group G
and the generator g. Recall that two distribution
ensembles are computationally indistinguishable
if, given a set of parameters (in our case, given G
and g), no polytime algorithm can tell whether its
input is drawn from the first ensemble or from the
second. See more details in [10].

This version is useful since it asserts that, even
when gx and gy are known, the value gxy appears
to be a “freshly chosen” random and indepen-
dent number for any computationally bounded at-
tacker. This holds in spite of the fact that the value
gxy is uniquely determined by gx and gy, thus its
“entropy” (in the information-theoretic sense) is in
fact zero. As shown in [12,14], the two versions of
the DDH assumption are equivalent. (Essentially,
equivalence holds due to the random self reducibil-
ity property of the discrete logarithm problem.)

Clearly, the DDH assumption implies the CDH
assumption. Furthermore, it appears to be consid-
erably stronger. In fact, there are groups where
DDH is clearly false, but CDH may still hold. Still,
there exist groups where DDH is believed to hold,
for instance multiplicative groups of large prime
order. A quintessential example is the subgroup
of size q of Z∗

p (see modular arithmetic) where p =
2q + 1 and p, q are primes. (In this case the larger
prime p is called a safe prime, and the smaller
prime q is called a Sophie-Germain prime.)

Note: To see an example of a family of groups
where DDH does not hold but CDH may still
hold, consider a group G where it is easy to check
whether an element is a quadratic residue (e.g., let
G = Z∗

p where p is prime and |Z∗
p| = p− 1 is even).

Here, the CDH assumption may hold, yet DDH is
false: If the input is drawn from G, g, gx, gy, gxy

then it is never the case that the last element is
a quadratic non-residue but the preceding two el-
ements are quadratic residues. In contrast, if the
input is taken from G, g, gx, gy, gz then the above
event happens with significant probability. Other
examples of such groups also exist. Here let us
mention in particular the case of bilinear and mul-
tilinear pairings in Elliptic-Curve groups, which
have been recently shown to be useful in cryptog-
raphy. See identity based cryptosystem and for ex-
ample [3].

SOME APPLICATIONS OF DDH: The DDH as-
sumption proves to be very useful in cryptographic
analysis of protocols. It is immediate to show based

on DDH that the Diffie–Hellman key exchange
results in a “semantically secure” key, i.e., a key
that is indistinguishable from random. (It is not
known how to prove this statement based on CDH
alone.) Similarly, it implies the semantic security
of ElGamal public key encryption. In addition, it
is used in proving the security of efficient pseudo-
random functions [12], chosen-ciphertext-secure
encryption [6], commitment and zero-knowledge
protocols [7,13], and many more.

VARIANTS OF DDH: The DDH assumption is
only one of many assumptions that can be made on
the intractability of the discrete logarithm prob-
lem. Several variants have been considered in
the literature, some of which are stronger (allow-
ing to prove stronger security properties of pro-
tocols), and some are weaker (and are believed to
hold even in cases where DDH does not). Of the
stronger ones, let us mention variants that allow
the exponents x, y to be chosen from distributions
other than uniform (or even in a semi-adversarial
way) [5]. Other stronger variants are formalized
in [3,9,11]. Of the weaker ones, we mention vari-
ants that give the distinguisher access only to a
hashed version of the last element (either gxy or
gz) e.g., [1].

BIBLIOGRAPHIC NOTE: The DDH assumption is
implicit in many early works based on the Diffie–
Hellman problem (starting with [8]). To the best of
our knowledge, it was first formalized by Brands
in [4] (in the context of undeniable signatures). It
was further studied in [12, 14] and is widely used
since. For further reading, see Boneh’s survey [2].

Ran Canetti

References

[1] Abdalla, M., M. Bellare, and P. Rogaway (2001).
“DHIES: An encryption scheme based on the
Diffie–Hellman problem.” Topics in Cryptology—
CT-RSA 2001, Lecture Notes in Computer Science,
vol. 2020, ed. D. Naccache. Springer-Verlag, Berlin,
143–158.

[2] Boneh, Dan (1998). “The decision Diffie–Hellman
problem.” Proceedings of the Third Algorithmic
Number Theory Symposium, Lecture Notes in
Computer Science, vol. 1423, ed. J.P. Buhler.
Springer-Verlag, Berlin, 48–63.

[3] Boneh, Dan and Alice Silverberg (2002). “Appli-
cations of multilinear forms to cryptography.”
Proceedings of the Conferences in memory of
Ruth Michler, Contemporary Mathematics,
American Mathematical Society. Cryptology
ePrint Archive, Report 2002/080. Available on
http://eprint.iacr.org/

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

142 Decryption exponent

[4] Brands, S. (1993). “An efficient off-line electronic
cash system based on the representation problem.”
CWI TR CS-R9323.

[5] Canetti, R. (1997). “Toward realizing random
oracles: Hash functions that hide all partial
information.” Advances in Cryptology—
CRYPTO’97, Lecture Notes in Computer Science,
vol. 1294, ed. B.S. Kaliski Jr. Springer-Verlag,
Berlin, 455–469.

[6] Cramer, R. and V. Shoup (1998). “A practical
public-key cryptosystem provably secure against
adaptive chosen ciphertext attack.” Advances
in Cryptology—CRYPTO’98. Lecture Notes in
Computer Science, vol. 1462, ed. H. Krawczyk.
Springer-Verlag, Berlin, 13–25.

[7] Damgård, I. (2000). “Efficient concurrent zero-
knowledge in the auxiliary string model.” Ad-
vances in Cryptography—EUROCRYPT 2000, Lec-
ture Notes in Computer Science, vol. 1807, ed. B.
Preneel. Springer-Verlag, Berlin, 418–430.

[8] Diffie, W. and M. Hellman (1976). “New directions
in cryptography.” IEEE Trans. Info. Theory, IT-22,
644–654.

[9] Dodis, Yevgeniy (2002). “Efficient construction of
(Distributed) verifiable random functions.” Cryp-
tology ePrint Archive, Report 2002/133. Available
on http://eprint.iacr.org/

[10] Goldreich, O. (2001). Foundations of Cryptogra-
phy: Volume 1—Basic Tools. Cambridge University
Press, Cambridge.

[11] Lysyanskaya, Anna (2002). “Unique signatures
and verifiable random functions from the DH-DDH
separation.” Advances in Cryptology—CRYPTO
2002, Lecture Notes in Computer Science, vol.
2442, ed. M. Yung. Springer-Verlag, Berlin, 597–
612.

[12] Naor, Moni and Omer Reingold (1997). “Number-
theoretic constructions of efficient pseudo-random
functions.” Extended abstract in Proc. 38th IEEE
Symp. on Foundations of Computer Science, 458–
467.

[13] Pedersen, T.P. (1991). “Distributed provers with ap-
plications to undeniable signatures.” Advances in
Cryptography—EUROCRYPT’91, Lecture Notes
in Computer Science, vol. 547, ed. D.W. Davis.
Springer-Verlag, Berlin, 221–242.

[14] Stadler, M. (1996). “Publicly verifiable se-
cret sharing.” Advances in Cryptography—
EUROCRYPT’96, Lecture Notes in Computer
Science, vol. 1070, ed. U. Maurer. Springer-Verlag,
Berlin, 190–199.

DECRYPTION EXPONENT

The exponent d in the RSA private key (n, d). See
RSA public key encryption.

Burt Kaliski

DENIABLE ENCRYPTION

Suppose Alice sends a message to Bob in an
informal chat conversation. If a typical encryp-
tion scheme as the ElGamal public key encryption
scheme or Rijndael/AES is used, an authority can
ask Alice to reveal what she sent Bob. Indeed, in
the case of ElGamal, when Alice sends (C1, C2) =
(gr , myr) and is forced to reveal her randomness r
used, anybody can obtain m. So, one can view the
ciphertext as some commitment to the message. In
the case of AES, when Alice is forced to reveal the
key she shares with Bob, the authority again can
obtain the message. (Using zero-knowledge, Alice
is not required to reveal the key.)

The goal of deniable encryption [1] is that Alice
can send a private message to Bob, without hav-
ing the ciphertext result in a commitment. This
can be viewed as allowing her to deny having sent
a particular message. A scheme satisfying this
condition is called a sender-deniable encryption
scheme.

There is a similar concern from Bob’s viewpoint.
Can Bob be forced to open the received cipher-
text? Again if the ElGamal public key encryption
scheme is used, then using his secret key, Bob can
help the authority to decipher the message. So,
Bob “cannot deny” having received the message.
A scheme that solves this issue is called a receiver-
deniable encryption scheme.

An example of a sender-deniable scheme ex-
plained informally, works as follows. Suppose
the sender (Alice) and the receiver (Bob) have
agreed on some pseudorandomness, such that
both can distinguish it from true randomness.
When Alice wants to send a message bit 1, she
will send some pseudorandom string, otherwise
she sends true randomness. Since the authority
cannot distinguish the pseudorandom from the
real random, Alice can pretend she sent the op-
posite bit of what she did. For further details,
see [1].

Canetti–Dwork–Naor–Ostrovsky demonstrated
that a sender-deniable encryption scheme can
be transformed into a receiver-deniable one, as
follows:
Step 1. The receiver (Bob) sends the sender (Alice)

a random r using a sender-deniable encryption
scheme.

Step 2. The sender Alice sends Bob the ciphertext
r ⊕ m, where ⊕ is the exor.

A receiver-deniable scheme can also be trans-
formed into a sender deniable one, as explained
in [1].

Yvo Desmedt

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Denial of service 143

Reference

[1] Canetti, R., C. Dwork, M. Naor, and R. Ostrovsky
(1997). “Deniable encryption.” Advances in Crypto-
logy—CRYPTO’97, Proceedings Santa Barbara, CA,
USA, August 17–21 (Lecture Notes in Computer
Science vol. 1294), ed. B.S. Kaliski, Springer-Verlag,
Berlin, 90–104.

DENIAL OF SERVICE

In the most literal sense, whenever a legitimate
principal is unable to access a resource for any
reason, it can be said that a denial of service has
occurred. In common practice, however, the term
Denial of Service (DoS) is reserved only to refer to
those times when an interruption in availability is
the intended result of a deliberate attack [3]. Of-
ten, especially in the press, DoS is used in an even
more narrow sense, referring specifically to remote
flooding attacks (defined below) against network
services such as web servers. When attempting
to prevent access to a target service, the target
itself can be attacked, or, equally effectively, an-
other service upon which the target depends can
be attacked. For example, to cause a DoS of a web
server, the server program could be attacked, or
the network connection to the server could be at-
tacked instead.

DoS attacks can be categorized as either lo-
cal Denial of Service attacks or remote Denial of
Service attacks. Local DoS attacks are a type of
privilege escalation, where a principal with legit-
imate access to a service is able to deny others
access to it. In many older UNIX-like operating
systems, for example, when a user goes to change
their password, the system first locks the global
password file before asking the user for their new
password; until the user enters their new pass-
word, the file remains locked and no other users
are able to change passwords. Remote DoS at-
tacks, on the other hand, often require no spe-
cial rights for the attacker, or are against ser-
vices which do not require any authentication at
all. Flooding a web server with millions of re-
quests is an example of a common remote DoS
attack.

Some DoS attacks, referred to as logic attacks
in [7], work by exploiting programming bugs in
the service being attacked, causing it to immedi-
ately exit or otherwise stop responding. Examples
of these types of attacks include the Windows 95
Ping-of-Death, BIND nameserver exit-on-error at-
tacks, and countless buffer overflow attacks which

crash, but do not compromise,1 services. These
kinds of DoS attacks are the easiest to prevent,
since the attack is caused by invalid behavior that
would not be expected from legitimate principals.
By fixing bugs and more carefully filtering out bad
input, these types of DoS attacks can be prevented.
The attacks are also very asymmetric however,
making them very dangerous until all vulnerable
services have been upgraded. With these attacks,
very little effort on the part of the attacker (a sin-
gle malformed message typically) leads to a com-
plete Denial of Service. An attacker with limited
resources is able to quickly cause a great deal of
damage with these attacks.

In contrast, flooding DoS attacks work by con-
suming limited resources on the server. Resources
commonly targeted by these attacks include mem-
ory, disk space, CPU, and network bandwidth.
Simple local DoS attacks such as acquiring and
never releasing a shared lock also fall into this
group. With these attacks, the problem lies in the
rate the attacker does something, not in what they
do. These attacks take a normal, acceptable activ-
ity such as forking a new process or requesting a
web page, and raise it to an attack by performing
the activity to excess.

Because these attacks involve behavior that
would normally be perfectly acceptable, there is
typically no way to tell with certainty that a re-
quest to a service is part of an attack. In some
cases, particularly local DoS attacks, the consump-
tion of resources can be limited by placing caps
on how much of the resource any single user can
consume. Limits can be placed on how much mem-
ory, disk space, or CPU a single user can use, and
timeouts can be set whenever an exclusive lock
is given out. The difficulty with using limits to
prevent these attacks is that if a user needs to
exceed one of these caps for legitimate purposes,
they are unable to; the solution to the first DoS
attack causes a Denial of Service of a different
kind. Because most solutions to flooding attacks
rely on some heuristic to determine when behavior
is malicious, there are always some false positives
which cause the prevention to be a DoS itself.

As with logic attacks, some flooding attacks are
also highly asymmetric. In particular, many stan-
dard protocols (such as IP, TCP (see firewall) and
SSL/TLS (see Secure Socket Layer and Transport
Layer Security)) allow for asymmetric attacks be-
cause they require the service to keep state or
perform expensive computations for the attacker.

1 Technically, if an attack’s primary purpose is to compromise
a service, and, as a side effect, it crashes the service, this is not
considered a DoS attack [3].

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

144 Derived key

If an attacker begins many protocol sessions but
never completes them, resources can quickly be
exhausted. TCP SYN flood and incomplete IP
fragment attacks both work by exhausting avail-
able buffers within the server’s networking stack.
When beginning SSL/TLS sessions the server
must perform CPU-intensive public key crypto-
graphy operations which take orders of magni-
tude longer than it takes an attacker to send a re-
quest. To remove the asymmetry of these attacks,
techniques that reduce or remove the state the
server must keep [6] or force the client to perform a
comparable amount of computation [1] have been
proposed.

Flooding attacks which have similar resource
requirements for the attacker and victim comprise
the final group of common DoS attacks. While the
previous attacks described have had an element
of skill to them, finding and exploiting some pro-
gramming error or imbalance in protocol design,
these attacks are nothing more than a shoving
match, with the participant with the most of the
resource in question winning. Smurf attacks and
DNS flooding are well known examples of these
brute-force DoS attacks.

Often, the attacker does not have an excess of
the resource (usually network bandwidth) them-
selves. Instead, to carry out their attack they first
compromise a number of other hosts, turning them
into zombies, and then have their zombies attack
the service simultaneously. This type of attack is
known as a Distributed Denial of Service (DDoS)
attack, and has proven very effective in the past
against a number of popular and very well con-
nected Internet servers such as Yahoo! and eBay.

With all types of remote flooding attacks, if the
source of the flood can be identified, it can be
blocked with minimal disruption to non-attack
traffic. With DDoS attacks, this identification is
the main difficulty, since no single zombie pro-
duces an exceptionally large number of requests.
Blocking the wrong source results in a DoS it-
self. Further complicating identification, many at-
tackers mask themselves by forging, or spoofing,
the source of requests. Traceback techniques [2,8]
can be used to identify the true source, but their
accuracy degrades as more sources are present.
Egress filtering, which blocks packets from leaving
edge networks if they claim to have not originated
from that network, can prevent spoofing. Unfortu-
nately, all networks must employ egress filtering
before it is an adequate solution. Since most DoS
attacks employ spoofing, Backscatter analysis [7]
actually takes advantage of it, looking at replies
from victims to the spoofed sources to determine
world-wide DoS activity.

Once the true source of a flood has been iden-
tified, filters can be installed to block the attack.
With bandwidth floods in particular, this block-
ing may need to occur close to the attacker in the
network in order to fully block the DoS. This can
either be arranged manually, through cooperation
between network administrators, or automatically
through systems like Pushback [5].

As seen above, many Denial of Service attacks
have no simple solutions. The very nature of
openly accessible services on the Internet leaves
them vulnerable from these attacks. It is an inter-
esting and rapidly evolving type of security attack.
The list of resources at [4] is updated periodically
with pointers to new attacks and tools for protect-
ing services, and makes a good starting point for
further exploring the causes and effects of DoS at-
tacks, and the state of the art techniques in dealing
with them.

Eric Cronin

References

[1] Aura, T., P. Nikander, and J. Leiwo (2000). “DoS re-
sistant authentication with client puzzles.” Proc. of
the Cambridge Security Protocols Workshop 2000.

[2] Bellovin, S. (2002). “ICMP traceback messages.” In-
ternet Draft. draft-ietf-itrace-02.txt

[3] CERT Coordination Center (2001). “Denial of
service attacks.” http://www.cert.org/tech tips/
denial of service.html

[4] Dittrich, D. “Distributed denial of service (DDoS)
attacks/tools.” http://staff.washington.edu/dittrich/
misc/ddos/

[5] Ioannidis, J. and S.M. Bellovin (2000). “Implement-
ing pushback: Router-based defense against DDoS
attacks.” Proc. of NDSS 2002.

[6] Lemon, J. (2001). “Resisting SYN flood DoS at-
tacks with a SYN cache.” http://people.freebsd
.org/∼jlemon/papers/syncache.pdf

[7] Moore, D., G.M. Voelker, and S. Savage (2001). “In-
ferring internet denial-of-service activity.” Proc. of
the 10th USENIX Security Symposium.

[8] Savage, S., D. Wetherall, A. Karlin, and T. Anderson
(2000). “Practical network support for IP traceback.”
Proc. of ACM SIGCOMM 2000.

DERIVED KEY

A derived key is a key, which may be calculated
(derived) by a well-defined algorithm from a in-
put consisting of public as well as secret data. As
an example, the initial secret data might be a ran-
dom seed, i.e., a string of random bits (see modular
arithmetic), which is then exponentiated modulo,

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Designated confirmer signature 145

e.g., an RSA-modulus (say both of length 1024; see
RSA public key encryption), after which the de-
rived key may be the lower 128 bits of the result
R (current seed), which is kept and exponentiated
again for the derivation of the next key. The advan-
tage is that if two parties share the same initial
seed, they may independently of each other calcu-
late identical derived keys by keeping track of the
number of iterations.

Peter Landrock

DESIGNATED CONFIRMER
SIGNATURE

Designated confirmer signatures (or sometimes
simply ‘confirmer signatures’) are digital signa-
tures that can be verified only by some help of a
semi-trusted designated confirmer. They were in-
troduced by Chaum in [3] as an improvement of
convertible undeniable signatures. Unlike an or-
dinary digital signature that can be verified by
anyone who has access to the public verifying key
of the signer (universal verifiability), a designated
confirmer signature can only be verified by engag-
ing in a—usually interactive—protocol with the
designated confirmer. The outcome of the protocol
is an affirming or rejecting assertion telling the
verifier whether the signature has originated from
the alleged signer or not.

The main difference to (convertible) undeni-
able signatures is that the capabilities to pro-
duce signatures and to confirm signatures are laid
into different hands, which has several advan-
tages. Designated confirmer signatures improve
the availability and reliability of the confirma-
tion services for verifiers. Verifiers can rely on
a designated confirmer instead of having to rely
on the signers themselves. The designated con-
firmer can be organized as one or more author-
ities with a higher availability than each signer
can afford to provide, and the designated con-
firmer can provide confirmation services according
to a clearly stated confirmation policy, which can
also be subject to independent audit on a regular
basis. In practice, a designated confirmer would
conceivably contract multiple signers and provide
confirmation services to all their respective veri-
fiers. Another way of increasing the availability of
the confirmation services is by using an undeni-
able signature scheme with distributed provers as
proposed by Pedersen [7]. Another advantage of
designated confirmer signatures is that they alle-
viate the problem of coercable signers. In undeni-

able signature schemes, the signer may be black-
mailed or bribed to confirm or disavow an alleged
signature. This may be harder to accomplish with
a designated confirmer organized as an authority
with proper checks and balances.

Designated confirmer signatures are a useful
tool to construct protocols for contract signing [1].
The trusted third party in contract signing takes
the role of a designated confirmer. Each partici-
pant produces a designated confirmer signature
of his statement and distributes it to all other par-
ticipants and to the trusted third party. After the
trusted third party has collected the statements
and corresponding designated confirmer signa-
tures from all participants, it converts them into
ordinary digital signatures and circulates them to
all participants according to a predefined policy.
Designated confirmer signatures are also useful to
construct verifiable signature sharing schemes [4].

A designated confirmer signature scheme has
three operations: (i) An operation for generating
double key pairs, one key pair of a private signing
key with a public verifying key and another key
pair of a private confirmer key with a public con-
firmer key, (ii) an operation for signing messages,
and (iii) a confirming operation for proving signa-
tures valid (confirmation) or invalid (disavowal).
The private signing key is known only to the
signer, the private confirmer key is known only to
the confirmer, and the public verifying key as well
as the public confirmer key are publicly accessi-
ble through authenticated channels, e.g., through
a public key infrastructure (PKI). The signing op-
eration is between a signer using the private sign-
ing key and a verifier using the public verifying
key. The verifying operation is between the des-
ignated confirmer using its private confirmer key
and a verifier using the public confirmer key. Fur-
thermore, there is (iv) an individual conversion op-
eration for converting individual designated con-
firmer signatures into ordinary digital signatures,
and (v) a universal verifying operation to verify
such converted signatures.

The characteristic security requirements of a
designated confirmer signature scheme are sim-
ilar to those of a convertible undeniable signature
scheme [2]:
Unforgeability: Resistance against existential

forgery under adaptive chosen message attacks
by computationally restricted attackers.

Invisibility: A cheating verifier, given a signer’s
public verifying key, public confirmer key, a
message, a designated confirmer signature and
oracle access to the signer, cannot decide with
probability better than pure guessing whether
the signature is valid for the message with

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

146 DES-X (or DESX)

respect to the signer’s verifying key or not. (This
implies non-coercibility as described above.)

Soundness: A cheating designated confirmer
cannot misuse the verifying operation in order
to prove a valid signature to be invalid (non-
repudiation), or an invalid signature to be valid
(false claim of origin).

Non-transferability: A cheating verifier obtains
no information from the confirming operation
that allows him to convince a third party that
the alleged signature is valid or invalid, regard-
less if the signature is valid or not.

Validity of Conversion: A cheating designated
confirmer with oracle access to a signer cannot
fabricate a converted signature valid for a mes-
sage m with respect to the signer’s public veri-
fying key unless that signer has produced a des-
ignated confirmer signature for m before.

Practical constructions have been proposed by
Chaum [3], Okamoto [6], Michels and Stadler [5],
and by Camenisch and Michels [2]. All of them pro-
pose an individual conversion operation, but none
of them discusses a universal conversion opera-
tion analogous to that of convertible undeniable
signatures. Michels and Stadler [5] have dis-
cussed designated confirmer signatures that can
be converted into well known ordinary signatures
such as RSA digital signatures, Schnorr digital
signatures, Fiat and Shamir signatures, or ElGa-
mal digital signatures.

Designated confirmer signatures are a rela-
tively young concept, which have not yet been
blended with other interesting types of sig-
nature schemes such as threshold signatures,
group signatures, or fail-stop signatures.

Gerrit Bleumer

References

[1] Asokan, N., Victor Shoup, and Michael Waidner
(1998). “Optimistic fair exchange of digital signa-
tures.” Advances in Cryptology—EUROCRYPT’98,
Lecture Notes in Computer Science, vol. 1403, ed.
K. Nyberg. Springer-Verlag, Berlin, 591–606.

[2] Franklin, Matthew K. and Michael K. Reiter
(1995). “Verifiable signature sharing.” Advances
in Cryptology—EUROCRYPT’95, Lecture Notes in
Computer Science, vol. 921, eds. L.C. Guillou and
J.-J. Quisquater. Springer-Verlag, Berlin, 50–63.

[3] Chaum, David (1995). “Designated confirmer signa-
tures.” Advances in Cryptology—EUROCRYPT’94,
Lecture Notes in Computer Science, vol. 950, ed. A.
De Santis. Springer-Verlag, Berlin, 86–91.

[4] Camenisch, Jan and Markus Michels (2000). “Con-
firmer signature schemes secure against adaptive
adversaries.” Advances in Cryptography—

EUROCRYPT 2000, Lecture Notes in Computer
Science, vol. 1807, ed. B. Preneel. Springer-Verlag,
Berlin, 243–258.

[5] Michels, Markus and Markus Stadler (1998). “Gene-
ric constructions for secure and efficient confirmer
signature schemes.” Advances in Cryptology—
EUROCRYPT’98, Lecture Notes in Computer Sci-
ence, vol. 1403, ed. K. Nyberg. Springer-Verlag,
Berlin, 406–421.

[6] Okamoto, Tatsuaki (1994). “Designated confirmer
signatures and public-key encryption are equiva-
lent.” Advances in Cryptology—CRYPTO’94, Lec-
ture Notes in Computer Science, vol. 839, ed. Y.G.
Desmedt. Springer-Verlag, Berlin, 61–74.

[7] Pedersen, Torben Pryds (1991). “Distributed
provers with applications to undeniable signatures
(Extended abstract).” Advances in Cryptology—
EUROCRYPT’91, Lecture Notes in Computer
Science, vol. 547, ed. D.W. Davies. Springer-Verlag,
Berlin, 221–242.

DES-X (OR DESX)

DES-X is a 64-bit block cipher with a 2 × 64 +
56 = 184-bit key, which is a simple extension of
DES (see Data Encryption Standard). The con-
struction was suggested by Rivest in 1984 in or-
der to overcome the problem of the short 56-
bit key-size which made the cipher vulnerable
to exhaustive key search attack. The idea is just
to XOR a secret 64-bit key K1 to the input of
DES and to XOR another 64-bit secret key K2
to the output of DES: C = K2 ⊕ DESK(P ⊕ K1).
The keys K1, K2 are called whitening keys and
are a popular element of modern cipher design.
The construction itself goes back to the work of
Shannon [6, p. 713], who suggested the use of a
fixed mixing permutation whose input and out-
put are masked by the secret keys. This construc-
tion has been shown to have provable security by
Even–Mansour [2] if the underlying permutation
is pseudorandom (i.e., computationally indistin-
guishable from a random permutation). A thor-
ough study of DES-X was given in the work of
Kilian–Rogaway [3], which builds on [2] and uses a
blackbox model of security. Currently, the best at-
tack on DES-X is a known-plaintext slide attack
discovered by Biryukov–Wagner [1] which has
complexity of 232.5 known plaintexts and 287.5 time
of analysis. Moreover the attack is easily con-
verted into a ciphertext-only attack with the same
data complexity and 295 offline time complexity.
These attacks are mainly of theoretical interest
due to their high time complexities. However, the
attack is generic and would work for any cipher F
used together with post- and pre-whitening with

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Differential cryptanalysis 147

complexity 2(n+1)/2 known plaintexts and 2k+(n+1)/2

time steps (here n is the block size, and k is the key-
size of the internal cipher F). A related key-attack
on DES-X is given in [4]. Best conventional at-
tack, which exploits the internal structure of DES,
would be a linear cryptanalysis attack, using 261

known plaintexts [3].

Alex Biryukov

References

[1] Biryukov, A. and D. Wagner (2000). “Advanced slide
attacks.” Advances in Cryptology—EUROCRYPT
2000, Lecture Notes in Computer Science, vol. 1807,
ed. B. Preneel. Springer-Verlag, Berlin, 589–606.

[2] Even, S. and Y. Mansour (1997). “A construction of
a cipher from a single pseudorandom permutation.”
Journal of Cryptology, 10 (3), 151–161. Springer-
Verlag.

[3] Kaliski, B. and M. Robshaw (1996). “Multiple
encryption: Weighing security and performance.”
Dr. Dobb’s Journal, 243 (1), 123–127.

[4] Kelsey, J., B. Schneier, and D. Wagner (1997).
“Related-key cryptanalysis of 3-WAY, Biham-DES,
CAST, DES-X, NewDES, RC2, and TEA.” Proceed-
ings of ICICS, Lecture Notes in Computer Science,
1334, eds. Y. Han, T. Okamoto and S. Qing. Springer,
Berlin, 233–246.

[5] Kilian, J. and P. Rogaway (1996). “How to pro-
tect against exhaustive key search.” Advances in
Cryptology—CRYPTO’96, Lecture Notes in Com-
puter Science, vol. 1109, ed. N. Koblitz. Springer-
Verlag, Berlin, 252–267.

[6] Shannon, C. (1949). “Communication theory of se-
crecy systems. A declassified report from 1945.” Bell
Syst. Tech. J. (28), 656–715.

DICTIONARY ATTACK (I)

Dictionary attack is an exhaustive cryptanaly-
sis approach in which the attacker computes
and stores a table of plaintext–ciphertext pairs
(P, Ci = EKi (P), Ki) sorted by the ciphertexts Ci .
Here the plaintext P is chosen in advance among
the most often encrypted texts like “login:”, “Hello
John”, etc. and the key runs through all the pos-
sible keys Ki . If P is encrypted later by the user
and the attacker observes its resulting ciphertext
Cj, the attacker may search his table for the corre-
sponding ciphertext and retrieve the secret key Kj.

The term dictionary attack is also used in the
area of password guessing, but with a different
meaning.

Alex Biryukov

DICTIONARY ATTACK (II)

A dictionary attack is a password [1] guessing
technique in which the attacker attempts to de-
termine a user’s password by successively trying
words from a dictionary (a compiled list of likely
passwords) in the hope that one of these pass-
word guesses will be the user’s actual password.
In practice, the attacker’s dictionary typically is
not restricted to words from a traditional natural-
language dictionary, but may include one or more
of the following:
� variations on the user’s first or last name, ini-

tials, account name, and other relevant per-
sonal information (such as address and tele-
phone number, pet’s name, and so on);

� words from various databases such as male and
female names, places, cartoon characters, films,
myths, and books;

� spelling variations and permutations of the
above words, such as replacing the letter “o”
with the number “0”, using random capitaliza-
tion, and so on;

� common word pairs.
Dictionary attacks can be quite successful in many
environments because of the tendency of users to
make poor password choices (unfortunately, pass-
words that are easily memorized by a legitimate
user are also easily guessed by an attacker). These
attacks can be performed in online mode (trying
successive passwords until a login is successful) or
offline mode (hashing or encrypting a dictionary of
words and looking for any matches in a copied sys-
tem file of hashed or encrypted user passwords).
Server limits on the number of unsuccessful login
attempts can help to thwart online attacks and the
use of “salt” [see salt] can help to thwart offline
attacks.

Carlisle Adams

References

[1] Schneier, B. (1996). Applied Cryptography: Proto-
cols, Algorithms, and Source Code in C (2nd ed.).
John Wiley & Sons, New York.

[2] Stallings, W. (1999). Cryptography and Network Se-
curity: Principles and Practice (2nd ed.). Prentice
Hall.

DIFFERENTIAL
CRYPTANALYSIS

Differential cryptanalysis is a general technique
for the analysis of symmetric cryptographic

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

148 Differential cryptanalysis

primitives, in particular of block ciphers and hash
functions. It was first publicized in 1990 by Biham
and Shamir [3, 4] with attacks against reduced-
round variants of the Data Encryption Standard
(DES) [14], and followed in 1991 by the first attack
against DES which was faster than exhaustive
key search [6].

Let P be a plaintext, and let C be the cor-
responding ciphertext encrypted under the (un-
known) key K, such that C = EK(P). Let P∗ be a
second plaintext, and let C∗ be the corresponding
ciphertext under the same (unknown) key K, C∗ =
EK(P∗). We define the difference of the plaintexts
as P′ = P ⊕ P∗, and the difference of the cipher-
texts as C′ = C ⊕ C∗. Also for any intermediate
data X during encryption (for example, the data
after the third round, or the input to some opera-
tion in the fifth round), let the corresponding data
during the encryption of P∗ be denoted by X∗, and
let the difference be X′ = X ⊕ X∗.

Differential cryptanalysis studies the differ-
ences, usually by means of exclusive-or (XOR), as
they evolve in the various rounds and various oper-
ations of the cipher. Linear and affine operations
do not affect the differences, or affect the differ-
ences in a predictable way: bit-permutation op-
erations (that reorder the bits of the data X to
P(X)) reorder the differences in the same way (i.e.,
to P(X′) = P(X) ⊕ P(X∗)); selections (that select
some of the bits of the data) also select the bits
of the differences; and XOR operations of two val-
ues X ⊕ Y, also XOR the differences of the values
to X′ ⊕ Y′ = (X ⊕ Y) ⊕ (X∗ ⊕ Y∗). An important ob-
servation is that mixing subkeys into the data
may be discarded by means of differences: if the
mixing of subkeys to the data is performed us-
ing an XOR operation by Y = X ⊕ K, then in the
second encryption it is Y∗ = X∗ ⊕ K, and the out-
put difference of the key mixing is Y′ = Y ⊕ Y∗ =
(X ⊕ K) ⊕ (X∗ ⊕ K) = X′, which is independent of
the subkey. Key mixings may thus be ignored in
the predictions of the differences.

For non-linear operations (such as S boxes) we
can also study the evolvement of the differences.
Certainly, when the difference of the input is 0,
the two inputs are equal, and thus also the two
outputs are equal, having a difference 0 as well.
When the input difference is nonzero, we cannot
predict the output difference, as it may have many
different output differences for any input differ-
ence. However, it is possible to predict statistical
information on the output difference given the in-
put difference. Take for example S box S1 of DES.
This S box has 6 input bits and 4 output bits.
For each input difference X′ there are 64 possi-
ble pairs of inputs with this difference (for any

possible input X, the second input is computed
by X∗ = X ⊕ X′). These 64 pairs may have vari-
ous output differences. The main observation is
that the output differences are not distributed uni-
formly. For example, for the input difference 34x
(the subscript x denotes that the number is in
hexadecimal notation), no pair has output differ-
ence 0, nor 5 nor 6, and several other output dif-
ferences; two pairs have output difference 4, eight
pairs have output difference 1, and 16 of the 64
pairs with this input difference have output dif-
ference 2. For this input difference, a cryptanalyst
can thus predict with probability 1/4 that the out-
put difference is 2. A difference distribution table
of an S box (or operation) is a table that lists the
number of pairs which fulfill the input and out-
put differences for each possible input and output
differences, where the rows denote all the possi-
ble input differences, the columns all the output
differences, and each entry contains the number
of pairs with the corresponding differences. In the
example above, the difference distribution table of
S1 of DES has value 16 in row 34x column 2.

Differential cryptanalysis defines characteris-
tics that describe possible evolvements of the dif-
ferences through the cipher. Each characteristic
has a plaintext difference for which it predicts the
differences in the following rounds. A pair of plain-
texts for which the differences of the plaintexts
and the intermediate data (when encrypted under
the used key) are exactly as predicted by the char-
acteristic are called right pairs (all other pairs are
called wrong pairs). The probability that a char-
acteristic succeeds to predict the differences (i.e.,
that a random pair is a right pair, given that the
plaintext difference is as required by the charac-
teristic) depends on the probabilities induced by
the input and output differences for each S box
(or each operation), where the total probability is
the product of the probabilities of the various op-
erations (assuming that the probabilities are inde-
pendent, which is usually the case; otherwise the
product is usually a good approximation for the
probability).

Given the expected difference for the intermedi-
ate data before the last round (or more generally
in some round near the end of the cipher), it may
be possible to deduce the unknown key by a sta-
tistical analysis. The attack is a chosen plaintext
attack that is performed in two phases: In the data
collection phase the attacker requests encryption
of a large number of pairs of plaintexts, where the
differences of all the plaintext pairs are selected
to have the plaintext difference of the character-
istic. In the data analysis phase the attacker then
recovers the key from the collected ciphertexts.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Differential cryptanalysis 149

Assume that the probability of the characteristic
is p (i.e., a fraction p of the pairs are expected to
be right pairs). It is then expected that for a frac-
tion pof the pairs, the difference of the data before
the last round is as predicted by the characteristic.
An (inefficient) method for deriving the subkey of
the last round is then to try all the possibilities
of the subkey of the last round. For each possible
subkey partially decrypt all the ciphertexts by one
round, and for each pair compute the differences
of the data before the last round, by XORing the
data resulting from the partial decryptions. For
wrong guesses of the subkey it is expected that
the difference predicted by the characteristic ap-
pears rarely, and for the correct value of the sub-
key it is expected that this difference appears for
a fraction p or more of the pairs (as there is a frac-
tion of about p of right pairs that are assured to
suggest this difference, and as wrong pairs may
also suggest this difference). In particular, if the
probability p is not too low, it is expected that the
correct subkey is the one which gives the expected
difference most frequently. It should be noted that
the derivation of the last subkey is usually much
more efficient than (but equivalent in results to)
this described algorithm, using the information of
the input and output differences for each S box
(or operation) in the last round. It should also be
noted that in many cases characteristics shorter
by more than one round than the cipher (usually
up to three rounds shorter) can also be used for
differential attacks.

Differential cryptanalysis usually requires a
small multiple of 1/p pairs of chosen plaintexts,
when using a characteristic with probability p,
in order to ensure that sufficiently many right
pairs appear in the data. This amount of encrypted
data may be very large (about 247 chosen plaintext
blocks in the case of DES), making the complexity
of the data collection phase larger than the com-
plexity of the data analysis phase in most cases.
The large number of chosen plaintexts may by it-
self make the attack impractical, as it transfers
the responsibility of computing the major part of
the attack from the attacker to the attacked party,
who is required to encrypt a large number of cho-
sen plaintexts for the attacker to be able to mount
his attack. It is therefore common in such cases to
quote the complexity of a differential attack to be
the number of required chosen plaintexts.

After the publication of the differential crypt-
analysis attack on DES, whose complexity is 247

(it requires 247 chosen plaintexts and the time of
analysis is less than 240), IBM announced that
they were aware of differential cryptanalysis when
they designed DES, and actually designed it to

withstand differential attacks. Moreover, differen-
tial attacks (to which they called the T method)
were classified as top secret for purposes of US
national security, and IBM were requested by the
NSA not to publish any information on them.

There are various improvements of differential
cryptanalysis aimed to reduce the complexity of
differential attacks. One simple method is a combi-
nation of several characteristics in a single larger
structure. In case two characteristics are used,
such a structure is called a quartet. It contains
four plaintexts of the form P, P ⊕ �1

p, P ⊕ �2
p,

P ⊕ �1
p ⊕ �2

p, for the plaintexts differences �1
p and

�2
p. It can easily be seen that in such a quartet

each difference appears twice: the first difference
appears as the difference of the first two plain-
texts, and also as the difference of the other two
plaintexts; the second difference appears as the
difference of the first and third plaintexts, and also
as the difference of the second and fourth plain-
texts. Thus, a total of four pairs are contained in
a quartet; without using quartets only two pairs
are contained in the same number of plaintexts.
Larger structures of eight plaintexts using three
different characteristics contain 12 pairs. Such
structures are useful when there are several high-
probability characteristics that can be used for an
attack, as if the second best characteristic has a
relatively low probability, the benefit of getting
pairs with such a difference is quite low.

Another improvement (which was also men-
tioned in the original publication on differential
cryptanalysis) is using an extended form of differ-
ences, in which not all the bits of the difference
are fixed. This type of differences was later called
truncated differences [10]. An important type of
truncated differences (in most cases truncated dif-
ferences refer to this type) is the word-wise trun-
cated differences. Word-wise truncated differences
are differences in which the difference itself is not
considered, but instead the differences are divided
into two classes, namely zero differences and non-
zero differences. In these cases the data blocks
are divided to words (either 8-bit bytes, or 16-bit
words, or words of a different size depending on
the native structure of the cipher), and the anal-
ysis only considers whether the difference of a
word is expected to be zero or not. Such consid-
eration is useful when non-zero differences evolve
to other (unknown in advance) non-zero differ-
ences, so that the information on the zero/non-
zero difference evolve through many rounds of the
cipher.

A third extension defines non-XOR differences,
such as subtraction of integers (useful for cases
where the native operation in the cipher is

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

150 Differential cryptanalysis

addition), or differences of division modulo a prime
(useful for cases where the native operation in the
cipher is multiplication modulo a prime, such as
in IDEA [11]). Also a combination of different dif-
ferences for different parts of the block, or for dif-
ferent rounds of the cipher is considered. For such
cases, difference distribution tables where the in-
put differences are defined with one operation and
the output differences with another, are very use-
ful (especially when the operation natively trans-
forms one operation to another, such as in cases of
exponentiation S boxes, or logarithm S boxes).

Higher-order differences [12] consider deriva-
tives of a second or a higher order. Higher-order
differences are shown successful in several cases
where differential cryptanalysis is not applicable
due to low probabilities of characteristics; in some
of these cases higher-order differences prove the
most successful attack. However, higher-order at-
tacks are successful mainly against ciphers with
a small number of rounds.

It was also observed that in most differential
attacks, the intermediate differences predicted by
the characteristics are not used, and thus can be
ignored [11]. In such cases, the considered dif-
ferences are only the plaintext differences and
the difference after the final round of the char-
acteristic. In most cases there are many different
characteristics with the same plaintext difference
and the same final difference; these characteris-
tics sum up to one differential, whose probability
is the sum of their probabilities.

The major method for protection against differ-
ential cryptanalysis is by bounding the probabil-
ity of the best characteristic (or differential) to be
very low. Whenever the designer wishes to prove
that differential cryptanalysis is not applicable,
he bounds the probability p of the best character-
istic (or differential) such that 1/p is larger than
the required complexity, or even larger than the
size of the plaintext space (in which case even
choosing the whole plaintext space is not sufficient
for mounting an attack). These bounds were for-
malized into various theories of provable security
against differential cryptanalysis.

A specially interesting theory for provable se-
curity against differential cryptanalysis (and also
linear cryptanalysis) is the theory of decorrela-
tion [16], which makes it possible to prove security
of block ciphers against certain (restricted) kinds
of attacks, including basic variants of differential
and linear cryptanalysis.

Although the usual claims for security against
differential cryptanalysis say that the probabil-
ities of the highest-probability differentials are
very low, and thus differential attacks require

a huge amount of data and complexity, it was
observed that even differentials with probability
zero (i.e., that cannot occur—there are no right
pairs under any key) can be used for attacks [1,9].
This kind of attacks is called differential crypt-
analysis using impossible differentials (or shortly
impossible cryptanalysis). The main idea is to se-
lect a large set of pairs with the plaintext differ-
ence of an impossible differential with n − 1 (or
slightly less) rounds, where n is the number of
rounds of the block cipher, and to try all the pos-
sible subkeys of the extra round(s). If it appears
that for some value of the subkey, decryption of
the ciphertexts by one round (or the few rounds)
leads to the impossible difference in any one of
the pairs, then we are assured that the subkey is
wrong, and thus can be discarded. After discarding
sufficiently many subkeys, the attacker reduces
his list of possible values of the subkeys to a short
list (or even to one subkey), and he is assured that
the correct subkey is in the list. Depending on the
design of the cipher and the key schedule, for some
ciphers it would be more efficient to try reducing
the number of possible subkeys to 1 (i.e., only the
correct subkey), while for others it would be more
efficient to reduce the size of the short list to some
larger size, and then perform an exhaustive search
of the remaining possible keys.

There are also attacks that use differentials as
their building blocks, while combining differen-
tials in various ways. The most promising ones
are boomerang [17], amplified boomerang [8], and
rectangle [2] attacks. The main idea in all these at-
tacks are the combination of four plaintexts, which
for simplicity of description we assume are located
on the corners of a square, where one short differ-
ential is used in both pairs for the first few rounds
(the horizontal edges), while a second short differ-
ential is used for the rest of the rounds but on the
orthogonal pairs (the vertical edges). Although the
probabilities of the total structure are p2q2 where
p and q are the probabilities of the two differen-
tials, it appears that it is much easier in various
cases to find good short differentials, than to find
one full differential of a comparable probability.

Although differential cryptanalysis is basically
a chosen plaintext attack (as the attacker needs
to choose the plaintext differences), the attacker
usually does not need to choose the exact values
of the plaintexts. This observation allows conver-
sion of chosen plaintext differential cryptanaly-
sis attacks into known plaintext attacks [3], using
the fact that in a sufficiently large set of random
plaintexts there are many pairs whose difference
is as required by the chosen plaintext attack. Once
these pairs of plaintexts are identified, the original

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Differential cryptanalysis 151

chosen plaintext attack may be performed on these
pairs. This variant usually requires a huge num-
ber of known plaintexts, which is about

√
m2n+1

where n is the size of the plaintext in bits and m is
the number of chosen plaintext pairs required by
the chosen plaintext attack. On some ciphers this
is the best published known-plaintext attack.

In some cases it is also possible to convert dif-
ferential cryptanalysis to ciphertext-only attacks.
For more information on these conversions see [7].

Differential cryptanalysis was originally devel-
oped on FEAL-8 [13,15], a block cipher which was
claimed to be faster and more secure than DES.
It was then generalized and extended to DES and
other schemes. Feal-8 was broken using a few hun-
dred chosen plaintexts. Given the corresponding
ciphertexts, it takes less than a minute on a per-
sonal computer to recover the key [5]. The first
results on DES [4] showed that DES reduced to
15 rounds was vulnerable to a differential attack,
while the full 16-round DES required 258 chosen
plaintexts for a successful attack, whose genera-
tion is slower than exhaustive search. In the fol-
lowing year an improvement of the technique was
invented [6]. The main trick in the improved at-
tack was the ability to receive the first round for
free, using large specially designed structures, set-
ting the characteristic from the second round on.
This improvement made it possible to apply the
15-round attack on the full 16 rounds. Another im-
provement allowed to find the key when the first
right pair is analyzed, rather than to wait till suffi-
ciently many right pairs are found. This improve-
ment is applicable when the attack considers all
the key bits (or almost all the key bits) in a sin-
gle counting phase. As a result, the improved at-
tack could analyze the full 16-round DES given 247

chosen plaintext and their corresponding cipher-
texts, whose complexity of analysis was smaller
than 240.

Eli Biham

References

[1] Biham, Eli, Alex Biryukov, and Adi Shamir
(1999). “Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials.” Advances
in Cryptology—EUROCRYPT’99, Lecture Notes in
Computer Science, vol. 1592, ed. J. Stern. Springer,
Berlin, 12–23.

[2] Biham, Eli, Orr Dunkelman, and Nathan Keller
(2002). “New results on boomerang and rectangle
attacks.” Proceedings of Fast Software Encryp-
tion, Leuven, Lecture Notes in Computer Science,
vol. 2365, eds. Daemen, J. and V. Rijmen. Springer,
Berlin, 1–16.

[3] Biham, Eli and Adi Shamir (1993). Differential
Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, Berlin, New York.

[4] Biham, Eli and Adi Shamir (1991). “Differential
cryptanalysis of DES-like cryptosystems.” Journal
of Cryptology, 4 (1), 3–72.

[5] Biham, Eli and Adi Shamir (1991). “Differen-
tial cryptanalysis of FEAL and N-hash.” Techni-
cal report CS91-17, Department of Applied Math-
ematics and Computer Science, The Weizmann
Institute of Science, Advances in Cryptology—
EUROCRYPT’91. The extended abstract appears
in Lecture Notes in Computer Science, vol. 547, ed.
D.W. Davies. Springer, Berlin, 1–16.

[6] Biham, Eli and Adi Shamir (1992). “Differen-
tial cryptanalysis of the full 16-round DES.” Ad-
vances in Cryptology—CRYPTO’92, Lecture Notes
in Computer Science, vol. 740, ed. E.F Brickel.
Springer, Berlin, 487–496.

[7] Biryukov, Alex and Eyal Kushilevitz (1998). “From
differential cryptanalysis to ciphertext-only at-
tacks.” Advances in Cryptology—CRYPTO’98, Lec-
ture Notes in Computer Science, vol. 1462, ed. H.
Krawczyk. Springer, Berlin, 72–88.

[8] Kelsey, John, Tadayoshi Kohno, and Bruce
Schneier (2000). “Amplified boomerang attacks
against reduced-round MARS and serpent.” Pro-
ceedings of Fast Software Encryption 7, Lecture
Notes in Computer Science, vol. 1978, ed. B.
Schneier. Springer-Verlag, Berlin, 75–93.

[9] Knudsen, Lars Ramkilde (1998). “DEAL—a 128-
bit block cipher.” AES submission, available on
http://www.ii.uib.no/∼larsr/papers/deal.ps

[10] Knudsen, Lars (1995). “Truncated and higher or-
der differentials.” Proceedings of Fast Software
Encryption 2, Lecture Notes in Computer Science,
vol. 1008, ed. B. Preneel. Springer-Verlag, Berlin,
196–211.

[11] Lai, Xuejia, James L. Massey, and Sean Murphy
(1991). “Markov ciphers and differential cryptanal-
ysis.” Advances in Cryptology, Proceedings of EU-
ROCRYPT ’91, Lecture Notes in Computer Sci-
ence, vol. 547, ed. D.W. Davies. Springer, Berlin,
17–38.

[12] Lai, Xuejia (1994). “Higher order derivative and
differential cryptanalysis.” Proceedings of Sympo-
sium on Communication, Coding and Cryptogra-
phy, in honor of J.L. Massey on the occasion of his
60th birthday.

[13] Miyaguchi, Shoji, Akira Shiraishi, and Akihiro
Shimizu (1988). “Fast data encryption algorithm
FEAL-8.” Review of Electrical Communications
Laboratories, 36 (4), 433–437.

[14] National Bureau of Standards (1977), Data En-
cryption Standard, U.S. Department of Commerce,
FIPS pub. 46.

[15] Shimizu, Akihiro and Shoji Miyaguchi (1987).
“Fast data encryption algorithm FEAL.” Advances
in Cryptology—EUROCRYPT’87, Lecture Notes in
Computer Science, vol. 304, eds. David Chaum and
Wyn L. Price. Springer, Berlin, 267–278.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

152 Differential-linear attack

[16] Vaudenay, Serge (1998). “Provable security for
block ciphers by decorrelation.” Proceedings of
STACS’98, Lecture Notes in Computer Science,
vol. 1373, eds. M. Morvan, C. Meinel, and D. Krob.
Springer, Berlin, 249–275.

[17] Wagner, David (1999). “The boomerang attack.”
Proceedings of Fast Software Encryption, FSE’99,
Rome, Lecture Notes in Computer Science, vol.
1636, ed. L. Knudsen. Springer, Berlin, 156–170.

DIFFERENTIAL–LINEAR
ATTACK

Differential–Linear attack is a chosen plaintext
two-stage technique of cryptanalysis (by analogy
with two-stage rocket technology) in which the
first stage is covered by differential cryptanalysis,
which ensures propagation of useful properties
midway through the block cipher. The second
stage is then performed from the middle of
the cipher and to the ciphertext using linear
cryptanalysis. The technique was discovered and
demonstrated on the example of 8-round DES
(see Data Encryption Standard) by Langford and
Hellman [4]. Given a differential characteristic
with probability p for the rounds 1, . . . , i and the
linear characteristic with bias q for the rounds
i + 1, . . . , R, the bias of resulting linear approx-
imation would be 1/2 + 2pq2 and the data com-
plexity of the attack will be O(p−2q−4) [3, p. 65].
Thus the attack would be useful only in special
cases when there are good characteristics or linear
approximations half-way through the cipher, but
no good patterns for the full cipher. Their attack
enhanced with such refinements as packing data
into structures and key-ranking (or list decoding)
can recover 10-bits of the secret key for 8-round
DES using 512 chosen plaintexts. In [1] the same
technique is used to break 8-round FEAL with 12
chosen plaintexts and expensive analysis phase.
Further applications and refinements of the tech-
nique are given in [2].

Alex Biryukov

References

[1] Aoki, K. and K. Ohta (1996). “Differential-linear
cryptanalysis of FEAL-8.” IEICE Trans. on Funda-
mentals of Electronics, Communications and Com-
puter Sciences, E79A (1), 20–27.

[2] Eli Biham, Orr Dunkelman, and Nathan Keller,
“Enhancing Differential-Linear Cryptanalysis”, Ad-
vances in Cryptology ASIACRYPT 2002, Lecture

Notes in Computer Science, vol. 2501, ed. Y. Zheng.
Springer-Verlag, Berlin, p. 254–266.

[3] Langford, S.K. (1995). “Differential-linear crypt-
analysis and threshold signatures.” Technical re-
port, PhD Thesis, Stanford University.

[4] Langford, S.K. and M.E. Hellman (1994).
“Differential–linear cryptanalysis.” Advances in
Cryptology—CRYPTO’94. Lecture Notes in Com-
puter Science, vol. 839, ed. Y. Desmedt. Springer-
Verlag, Berlin, 17–25.

DIFFERENTIAL POWER
ANALYSIS

Differential Power Analysis utilizes power con-
sumption of a cryptographic device such as a
smartcard as side-channel information. In Simple
Power Analysis (SPA) an attacker directly ob-
serves a device’s power consumption. It is known
that the amount of power consumed by the device
varies depending on the data operated on and the
instructions performed during different parts of
an algorithm’s execution. Define a power trace as
a set of power consumption measurements during
a cryptographic operation. By simply examining
power traces, it is possible to determine major
characteristic details of a cryptographic device
and the implementation of the cryptographic algo-
rithm being used. SPA can therefore be used to dis-
cover implementation details, such as DES rounds
(see Data Encryption Standard) and RSA opera-
tions (see RSA public key encryption). Moreover,
SPA can reveal differences between multiplication
and squaring operations, which can be used to
recover the private key in RSA implementations.
SPA can also reveal visible differences within
permutations and shifts in DES implementations,
which might lead to recovering the secret DES
key.

While SPA attacks use primarily visual inspec-
tion to identify relevant power fluctuations, Dif-
ferential Power Analysis (DPA) exploits character-
istic behavior (e.g., power consumption behavior
of transistors and logic gates) [2]. DPA uses an
attacking model and statistical analysis to ex-
tract hidden information from a large sample of
power traces obtained during “controlled” crypto-
graphic computations. In case of SPA, direct ob-
servations of a device’s power consumption would
not allow identifying the effects of a single tran-
sistor switching. The use of statistical methods
in a controlled DPA environment allows iden-
tifying small differences in power consumption,
which can be used to recover specific information

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Differential power analysis 153

such as the individual bits in a secret key.
This means secret key material can be recovered
from tamper-resistant devices such as smartcards
(smartcard tamper resistance). To execute an at-
tack based on DPA, an attacker does not need to
know as many details about how the algorithm is
implemented.

The basis of a DPA attack is the use of an
abstract model based on the power consumption
characteristics of the logic that includes the noise
components. When measuring the power con-
sumption, various noise components are superim-
posed on the power traces. The main noise sources
are external, intrinsic, quantization and algorith-
mic noise. Intrinsic and quantization noise are
small compared to the power consumption. The ex-
ternal noise can be reduced by careful use of the
measurement equipment. The algorithmic noise
can be averaged out by the DPA strategy itself.
To reduce the influence of noise in DPA one can
increase the number of samples required to detect
variations. Analysis can take place in the time and
frequency domain.

The basis DPA technique is as follows. Assume
that a sufficient number N of random power traces
have been collected (e.g., N samples of cipher-
texts obtained using the same encryption key).
Each power trace is a collection of power samples
PS(n, t), which represent the power consumption
at time t in trace n as the sum of the power dis-
sipated by all circuitry. In practice, the number
of measurements t in each power trace depends
on the sampling rate and the memory capacity as
well as the duration of the cryptographic opera-
tion. Next, partition the power samples PS(n, t)
into two sets S0 and S1 according to the outcome
0 or 1 of a partitioning or discrimination function
D. The outcome value of the partitioning function
D can be simply the value of a specific ciphertext
bit. In general, the size of set S0 will be roughly
the same as the size of S1. Next, compute the av-
erage power signal for each set Sat time t . By sub-
tracting the two averages, we obtain the DPA bias
signal B(t). Selecting an appropriate D-function
will result in a DPA bias signal that an attacker
can use to verify guesses of the secret key. The
D-function is chosen such that at some point dur-
ing implementation the device needs to calculate
the value of this bit. When this occurs or any time
data containing this bit is manipulated, there will
be a slight difference in the amount of power dis-
sipated depending on whether this bit is a zero
or a one. Let ε denote this difference, and the in-
struction manipulating the D-bit occurs at time
t ′, then the value ε is equal to the expectation

difference

E[S | (D = 0)] − E[S | (D = 1)], for t = t ′.

When t �= t ′ the device is manipulating bits other
than the D-bit, and assuming that the power
dissipation is independent of the D-bit, the differ-
ence in expectation of the two sets equals zero for
sufficiently large N. Thus the bias function B(t)
will show power spikes of height ε at times t ′ and
will appear flat at all other times. If the proper
D-function was chosen, the bias signal will show
spikes whenever the D-bit was manipulated and
otherwise the resulting B(t) will not show any
bias. Using this approach an attacker can verify
guesses for the hidden key bit information using
the D-function. Repeating this approach for dif-
ferent D-bits, the secret key can be obtained bit by
bit.

Variants or improvements of the classical DPA
attack exist that use signals from multiple
sources, use different measuring techniques, com-
bine signals with different temporal offsets, use
specific and more powerful differential functions,
and apply more advanced signal processing func-
tions and models. To enlarge the peak, a multiple-
bit attack can be used.

A DPA attack involves hundreds to thousands
of samples. After processing and statistical analy-
sis, the DPA process can reconstruct the full secret
or private key within several minutes. The whole
process is easy to implement and requires only
standard measurement equipment, which cost lies
between a few hundred to a few thousand dollars.
DPA attacks are non-invasive, which makes them
difficult to detect. DPA requires little or no infor-
mation about the target device and can be auto-
mated. DPA and SPA has successfully been ap-
plied to attack a large number of smartcards and
PCMCIA cards [3]. See [1] for an approach how to
counteract Power Analysis attacks.

Tom Caddy

References

[1] Chari, Suresh, Charanjit Jutla, Josyula R. Rao, and
Pankaj Rohatgi (1999). “Towards sound approaches
to counteracts power-analysis attacks.” Advances
in Cryptology—CRYPTO’99, Lecture Notes in Com-
puter Science, vol. 1666, ed. M. Wiener. Springer-
Verlag, Berlin, 389–412.

[2] Kocher, Paul, Joshua Jaffe, and Benjamin Jun
(1999). “Differential power analysis.” Advances in
Cryptology—CRYPTO’99, Lecture Notes in Com-
puter Science, vol. 1666, ed. M. Wiener. Springer-
Verlag, Berlin, 388–397.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

154 Diffie–Hellman problem

[3] Messerges, Thomas S., Ezzy A. Dabbish, and Robert
H. Sloan (1999). “Investigations of power analy-
sis attacks on smartcards.” Proceedings of USENIX
Workshop on Smartcard Technology, 151–161.

DIFFIE–HELLMAN
KEY AGREEMENT

The Diffie–Hellman protocol is a type of key agree-
ment protocol. It was originally described in Diffie
and Hellman’s seminal paper on public key cryp-
tography.

This key agreement protocol allows Alice and
Bob to exchange public key values, and from these
values and knowledge of their own corresponding
private keys, securely compute a shared key K, al-
lowing for further secure communication. Know-
ing only the exchanged public key values, an eav-
esdropper is not able to compute the shared key.

As a preamble to the protocol, the following pub-
lic parameters are assumed to exist (see Number
Theory): a large prime number p such that dis-
crete logarithms in the multiplicative group of in-
tegers from 1 to p− 1 (Z ∗

p) are intractable; and a
generator g of Z ∗

p . Alice randomly selects a value
0 < a < p− 1 and computes r = ga mod p. Alice
sends r to Bob. Similarly, Bob selects a value 0 < b
< p− 1 and computes s = gb mod p. Bob sends s to
Alice. Given a and s, Alice computes K = sa mod
p ≡ gab (mod p). Similarly, given b and r , Bob com-
putes K = rb mod p ≡ gab (mod p). Thus, Alice and
Bob are able to compute the same key value, K.

Now consider the information available to an
eavesdropper. This includes g, p, r and s. Thus,
the eavesdropper must attempt to compute K ≡
gab (mod p) given ga mod p and gb mod p. This is
known as the decisional Diffie–Hellman problem
and for appropriately chosen g and p, it is believed
to be very difficult to solve.

Several variations to this simple protocol exist
(see Key Agreement). Of particular note is the fact
that the above protocol does not provide for the
authentication of Alice and Bob. The Station-to-
Station protocol provides one variation to this pro-
tocol that authenticates Alice and Bob.

Mike Just

References

[1] Menezes, Alfred, Paul van Oorschot, and Scott
Vanstone (1997). Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton.

[2] Stinson, Douglas R. (1995). Cryptography: Theory
and Practice. CRC Press, Boca Raton.

DIFFIE–HELLMAN
PROBLEM

In their pioneering paper Diffie and Hellman [15]
proposed an elegant, reliable, and efficient way to
establish a common key between two communicat-
ing parties. In the most general settings their idea
can be described as follows (see Diffie–Hellman
key agreement for further discussion). Given a
cyclic group G and a generator g of G, two com-
municating parties Alice and Bob execute the fol-
lowing protocol:
� Alice selects secret x, Bob selects secret y;
� Alice publishes X = gx, Bob publishes Y = gy;
� Alice computes K = Yx, Bob computes K = Xy.

Thus at the end of the protocol the values
X = gx and Y = gy have become public, while the
value K = Yx = Xy = gxy supposedly remains pri-
vate and is known as the Diffie–Hellman secret key.

Thus the Diffie–Hellman Problem, DHP, with re-
spect to the group G is to compute gxy from the
given values of gx and gy.

Certainly, only groups in which DHP is hard are
of cryptographic interest. For example, if G is an
additive group of the residue ring Zm modulo m,
see modular arithmetic, then DHP is trivial: using
additive notations the attacker simply computes
x ≡ X/g (mod m) (because g is a generator of the
additive group of Zm, we have gcd(g, m) = 1) and
then K ≡ xY (mod m).

On the other hand, it is widely believed that us-
ing multiplicative subgroups of the group of units
Z

∗
m of the residue ring Zm modulo m yields exam-

ples of groups for which DHP is hard, provided
that the modulus m is carefully chosen. This be-
lief also extends to subgroups of the multiplica-
tive group F

∗
q of a finite field Fq of q elements. In

fact these groups are exactly the groups suggested
by Diffie and Hellman [15]. Although, since that
time the requirements on the suitable groups have
been refined and better understood, unfortunately
not too many other examples of “reliable” groups
have been found. Probably the most intriguing
and promising example, practically and theoret-
ically, is given by subgroups of point groups on
elliptic curves, which have been proposed for this
kind of application by Koblitz [24] and Miller [36].
Since the original proposal, many very important
theoretical and practical issues related to using
elliptic curves in cryptography have been investi-
gated, see [2, 17]. Even more surprisingly, elliptic
curves have led to certain variants of the Diffie–
Hellman schemes, which are not available in sub-
groups of F

∗
q or Z

∗
m, see [5, 22, 23] and references

therein.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Diffie–Hellman problem 155

DIFFIE–HELLMAN AND DISCRETE LOGA-
RITHM PROBLEMS: It is immediate that if one
can find x from the given value of X = gx, that is,
solve the discrete logarithm problem, DLP, then
the whole scheme is broken. In fact, in our example
of a “weak” group G, this is exactly DLP which
can easily be solved. Thus DHP is not harder than
DLP. On the other hand, the only known (theo-
retical and practical) way to solve DHP is to solve
the associated DLP. Thus a natural question arises
whether DHP is equivalent to DLP or is strictly
weaker. The answer can certainly depend on the
specific group G.

Despite a widespread assumption that this in-
deed is the case, that is, that in any crypto-
graphically “interesting” group DHP and DLP
are equivalent, very few theoretical results are
known. In particular, it has been demonstrated
in [6, 31, 32] that, under certain conditions, DHP
and DLP are polynomial time equivalent. How-
ever, there are no unconditional results known in
this direction.

Some quantitative relations between complexi-
ties of DHP and DLP are considered in [13].

CRYPTOGRAPHICALLY INTERESTING GROUPS:
As we have mentioned, the choice of the group G is
crucial for the hardness of DHP (while the choice
of the generator g does not seem to be important at
all). Probably the most immediate choice is G = F

∗
q ,

thus g is a primitive element of Fq . However, one
can work in a subgroup of F

∗
q of sufficiently large

prime order � (but still much smaller than q and
thus more efficient) without sacrificing the secu-
rity of the protocol. Indeed, we recall that based on
our current knowledge we may conclude that the
hardness of DLP in a subgroup G ⊆ F

∗
q (at least for

some most commonly used types of fields; for fur-
ther discussion see discrete logarithm problem) is
majorised
1. by �1/2 where � is the largest prime divisor of

#G, see [35,44];
2. by Lq [1/2, 21/2] for a rigorous unconditional al-

gorithm, see [37];
3. by Lq

[
1/3, (64/9)1/3

]
for the heuristic number

field sieve algorithm, see [39,40],
where as usual we denote by Lx[t, γ] (see
L-notation) any quantity of the form

Lx[t, γ] = exp((γ + o(1)) (log x)t (log log x)1−t).

It has also been discovered that some special
subgroups of some special extension fields are
computationally more efficient and also allow one
to reduce the information exchange without sac-
rificing the security of the protocol. The two most

practically and theoretically important examples
are given by LUC, see [3,43], and XTR, see [26–28],
protocols (see, more generally, subgroup crypto-
systems). Despite several substantial achieve-
ments in this area, these results are still to be
better understood and put in a more systematic
form [10].

One can also consider subgroups of the residue
ring Z

∗
m modulo a composite m ≥ 1. Although they

do not seem to give any practical advantages (at
least in the original setting of the two party key
exchange protocol), there are some theoretical re-
sults supporting this choice, for example, see [1].

The situation is more complicated with sub-
groups of the point groups of elliptic curves, and
more generally of abelian varieties. For these
groups not only the arithmetic structure of the
cardinality G matters, but many other factors also
play an essential role, see [2, 17, 19, 20, 25, 34, 38]
and references therein.

BIT SECURITY OF THE DIFFIE–HELLMAN
SECRET KEY: So far, while there are several
examples of groups in which DHP (like DLP) is
conjectured to be hard, as with other areas of cryp-
tography, the security relies on unproven assump-
tions. Nevertheless, after decades of exploration,
we have gained a reasonably high level of confi-
dence in some groups, for example, in subgroups of
F

∗
p. Of course, this assumes that p and #G are suf-

ficiently large to thwart the discrete logarithm at-
tack. Typically, nowadays, p is at least about 1024
bits, #G is at least about 160 bits. However, af-
ter the common key K = gxy is established, only a
small portion of bits of K will be used as a common
key for some pre-agreed symmetric cryptosystem.

Thus, a natural question arises: Assume that
finding all of K is infeasible, is it necessarilly in-
feasible to find certain bits of K?

In practice, one often derives the secret key from
K via a hash function but this requires an addi-
tional function, which generally must be modeled
as a black box. Moreover, this approach requires a
hash function satisfying some additional require-
ments which could be hard to prove uncondition-
ally. Thus the security of the the obtained private
key relies on the hardness of DHP and some as-
sumptions about the hash function. Bit security
results allow us to eliminate the usage of hash
functions and thus to avoid the need to make any
additional assumptions.

For G = F
∗
p, Boneh and Venkatesan [8] have

found a very elegant way, using lattice basis reduc-
tion (see lattices), to solve this question in the affir-
mative, see also [9]. Their result has been slightly

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

156 Diffie–Hellman problem

improved and also extended to other groups
in [21]. For the XTR version of DHP it has recently
been done in [30]. The results of these papers can
be summarized as follows: “error-free” recovery
of even some small portion of information about
the Diffie–Hellman secret key K = gxy is as hard
as recovering the whole key (cf. hard-core bit).
Including the case where the recovering al-
gorithm works with only some non-negligible
positive probability of success is an extremely im-
portant open question. This would immediately
imply that hashing K does not increase the se-
curity of the secret key over simply using a short
substring of bits of K for the same purpose, at least
in an asymptotic sense.

It is important to remark that these results
do not assert that the knowledge of just a few
bits of K for particular (gx, gy) translates into the
knowledge of all the bits. Rather the statement
is that given an efficient algorithm to determine
certain bits of the common key corresponding to
arbitrary gx and gy, one can determine all of the
common key corresponding to particular gx and gy.

Another, somewhat dual problem involving
some partial information about K is studied
in [41]. It is shown in [41] that any polynomial
time algorithm which for given x and y produces a
list L of polynomially many elements of #G where
K = gxy ∈ L, can be used to design a polynomial
time algorithm which finds K unambiguously.

NUMBER THEORETIC AND ALGEBRAIC PROP-
ERTIES: As we have mentioned, getting rigorous
results about the hardness of DHP is probably in-
feasible nowadays. One can however study some
number theoretic and algebraic properties of the
map K : G × G → G given by K(gx, gy) = gxy. This
is of independent intrinsic interest and may also
shed some light on other properties of this map
which are of direct cryptographic interest.

For example, many cryptographic protocols are
based on the assumption of hardness of the deci-
sional Diffie–Hellman problem, DDHP, rather
than DHP itself. Roughly speaking, DDHP is the
problem of deciding whether a triple (u, v, w) ∈ G3

of random elements of G is of the form (gx, gy, gxy)
for some x and y. Clearly, DDHP is no harder
than DHP, and it is believed that in fact it is no
easier, see [4]. Unfortunately there are no viable
approaches to a proof of this conjecture. Motivated
by this problem, in the series of works [11,12,18]
several “statistical” results have been established,
which show that if G is a sufficiently large sub-
group of F

∗
p then at least statistically the triples

(gx, gy, gxy) behave as triples of random elements.

One can also study algebraic properties of the
set of points (gx, gy, gxy) or even just (gx, gx2

)
(which corresponds to the “diagonal” case x =
y). In particular one can ask about the degree
of polynomials F for which F(gx, gy, gxy) = 0 or
F (gx, gy) = gxy or F(gx, gx2

) = 0 or F (gx) = gx2
for

all or “many” x, y ∈ G. Certainly it is intuitively
obvious that such polynomials should be of very
large degree and have a complicated structure.
It is useful to recall the interpolation attack on
block ciphers which is based on finding polyno-
mial relations of similar spirit. It has been shown
in [14] (as one would certainly expect) that such
polynomials are of exponentially large degree, see
also [42]. Several more results of this type can also
be found in [16,33,45].

Igor E. Shparlinski

References

[1] Biham, E., D. Boneh, and O. Reingold (1999).
“Breaking generalized Diffie–Hellman modulo a
composite is no easier than factoring.” Inform. Proc.
Letters, 70, 83–87.

[2] Blake, I., G. Seroussi, and N. Smart (1999). Ellip-
tic Curves in Cryptography. London Mathematical
Society, Lecture Notes Series, vol. 265. Cambridge
University Press, Cambridge.

[3] Bleichenbacher, D., W. Bosma, and A.K. Lenstra
(1995). “Some remarks on Lucas-based cryptosys-
tems.” Advances in Cryptology—CRYPTO’95, Lec-
ture Notes in Computer Science, vol. 963, ed.
D. Coppersmith. Springer-Verlag, Berlin, 386–
396.

[4] Boneh, D. (1998). “The decision Diffie–Hellman
problem.” Proceedings of ANTS-III, Lecture Notes
in Computer Science, vol. 1423, ed. J.P. Buhler.
Springer-Verlag, Berlin, 48–63.

[5] Boneh, D. and M. Franklin (2001). “Identity-
based encryption from the Weil pairing.” Ad-
vances in Cryptology—CRYPTO 2001, Lecture
Notes in Computer Science, vol. 2139, ed. J. Kilian.
Springer-Verlag, Berlin, 213–229.

[6] Boneh, D. and R. Lipton (1996). “Algorithms for
black-box fields and their applications to cryptog-
raphy.” Advances in Cryptology—CRYPTO’96, Lec-
ture Notes in Computer Science, vol. 1109, ed. N.
Koblitz. Springer-Verlag, Berlin, 283–297.

[7] Boneh, D. and I.E. Shparlinski (2001). “On
the unpredictability of bits of the elliptic curve
Diffie–Hellman scheme.” Advances in Cryptology—
CRYPTO 2001, Lecture Notes in Computer Sci-
ence, vol. 2139, ed. J. Kilian. Springer-Verlag,
Berlin, 201–212.

[8] Boneh, D. and R. Venkatesan (1996). “Hardness
of computing the most significant bits of secret
keys in Diffie–Hellman and related schemes.” Ad-
vances in Cryptology—CRYPTO’96, Lecture Notes

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Diffie–Hellman problem 157

in Computer Science, vol. 1109, ed. N. Koblitz.
Springer-Verlag, Berlin, 129–142.

[9] Boneh, D. and R. Venkatesan (1997). “Rounding in
lattices and its cryptographic applications.” Proc.
8th Annual ACM-SIAM Symp. on Discr. Algo-
rithms. ACM, 675–681.

[10] Bosma, W., J. Hutton, and E. Verheul (2002). “Look-
ing beyond XTR.” Advances in Cryptography—
ASIACRYPT 2002, Lecture Notes in Computer
Science, vol. 2501, ed. Y. Zheng. Springer-Verlag,
Berlin, 46–63.

[11] Canetti, R., J.B. Friedlander, S.V. Konyagin,
M. Larsen, D. Lieman, and I.E. Shparlinski (2000).
“On the statistical properties of Diffie–Hellman
distributions.” Israel J. Math., 120, 23–46.

[12] Canetti, R., J.B. Friedlander, and I.E. Shparlin-
ski (1999). “On certain exponential sums and the
distribution of Diffie–Hellman triples.” J. London
Math. Soc., 59, 799–812.

[13] Cherepnev, M.A. (1996). “On the connection be-
tween the discrete logarithms and the Diffie–
Hellman problem.” Diskretnaja Matem., 6, 341–
349 (in Russian).

[14] Coppersmith, D. and I.E. Shparlinski (2000). “On
polynomial approximation of the discrete loga-
rithm and the Diffie–Hellman mapping.” J. Cryp-
tology, 13, 339–360.

[15] Diffie, W. and M.E. Hellman (1976). “New direc-
tions in cryptography.” IEEE Trans. Inform. The-
ory, 22, 109–112.

[16] El Mahassni, E. and I.E. Shparlinski (2001).
“Polynomial representations of the Diffie–Hellman
mapping.” Bull. Aust. Math. Soc., 63, 467–
473.

[17] Enge, A. (1999). Elliptic Curves and their Applica-
tions to Cryptography. Kluwer Academic Publish-
ers, Dordrecht.

[18] Friedlander, J.B. and I.E. Shparlinski (2001). “On
the distribution of Diffie–Hellman triples with
sparse exponents.” SIAM J. Discr. Math., 14, 162–
169.

[19] Galbraith, S.D. (2001). “Supersingular curves
in cryptography.” Advances in Cryptology—
ASIACRYPT 2001, Lecture Notes in Computer
Science, vol. 2248, ed. C. Boyd. Springer-Verlag,
Berlin, 495–513.

[20] Gaudry, P., F. Hess, and N.P. Smart (2002). “Con-
structive and destructive facets of Weil descent on
elliptic curves.” J. Cryptology, 15, 19–46.

[21] González Vasco, M.I. and I.E. Shparlinski (2001).
“On the security of Diffie–Hellman bits.” Proc.
Workshop on Cryptography and Computational
Number Theory, Singapore, 1999. Birkhäuser, 257–
268.

[22] Joux, A. (2000). “A one round protocol for tripartite
Diffie–Hellman.” Proc. of ANTS-IV, Lecture Notes
in Computer Science, vol. 1838, ed. W. Bosma.
Springer-Verlag, Berlin, 385–393.

[23] Joux, A. (2002). “The Weil and Tate pairings as
building blocks for public key cryptosystems.” Proc.
of ANTS V, Lecture Notes in Computer Science,

vol. 2369, eds. D. Kohel and C. Fieker. Springer-
Verlag, Berlin, 20–32.

[24] Koblitz, N. (1987). “Elliptic curve cryptosystems.”
Math. Comp., 48, 203–209.

[25] Koblitz, N. “Good and bad uses of elliptic curves in
cryptography.” Moscow Math. Journal. To appear.

[26] Lenstra, A.K. and E.R. Verheul (2000). “The XTR
public key system.” Advances in Cryptology—
CRYPTO 2000, Lecture Notes in Computer Sci-
ence, vol. 1880, ed. M. Bellare. Springer-Verlag,
Berlin, 1–19.

[27] Lenstra, A.K. and E.R. Verheul (2000). “Key im-
provements to XTR.” Advances in Cryptography—
ASIACRYPT 2000, Lecture Notes in Computer Sci-
ence, vol. 1976, ed. T. Okamoto. Springer-Verlag,
Berlin, 220–233.

[28] Lenstra, A.K. and E.R. Verheul (2001). “Fast ir-
reducibility and subgroup membership testing in
XTR.” PKC 2001, Lecture Notes in Computer Sci-
ence, vol. 1992, ed. K. Kim. Springer-Verlag, Berlin,
73–86.

[29] Lenstra, A.K. and E.R. Verheul (2001). “An
overview of the XTR public key system.” Proc. the
Conf. on Public Key Cryptography and Computa-
tional Number Theory, Warsaw 2000. Walter de
Gruyter, 151–180.

[30] Li, W.-C.W., M. Näslund, and I.E. Shparlinski
(2002). “The hidden number problem with the
trace and bit security of XTR and LUC.” Ad-
vances in Cryptology—CRYPTO 2002, Lecture
Notes in Computer Science, vol. 2442, ed. M. Yung.
Springer-Verlag, Berlin, 433–448.

[31] Maurer, U.M. and S. Wolf (1999). “The relationship
between breaking the Diffie–Hellman protocol and
computing discrete logarithms.” SIAM J. Comp.,
28, 1689–1721.

[32] Maurer, U.M. and S. Wolf (2000). “The Diffie–
Hellman protocol.” Designs, Codes and Cryptogra-
phy, 19, 147–171.

[33] Meidl, W. and A. Winterhof (2002). “A polynomial
representation of the Diffie–Hellman mapping.”
Appl. Algebra in Engin., Commun. and Comput-
ing, 13, 313–318.

[34] Menezes, A.J., N. Koblitz, and S.A. Vanstone
(2000). “The state of elliptic curve cryptography.”
Designs, Codes and Cryptography, 19, 173–193.

[35] Menezes, A.J., P.C. van Oorschot, and S.A.
Vanstone (1996). Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, FL.

[36] Miller, V.C. (1986). “Use of elliptic curves in cryp-
tography.” Advances in Cryptology—CRYPTO’85
Lecture Notes in Computer Science, vol. 218, ed.
H.C. Williams. Springer-Verlag, Berlin, 417–426.

[37] Pomerance, C. (1987). “Fast, rigorous factorization
and discrete logarithm algorithms.” Discrete Algo-
rithms and Complexity. Academic Press, 119–143.

[38] Rubin, K. and A. Silverberg (2002). “Supersin-
gular abelian varieties in cryptology.” Advances
in Cryptology—CRYPTO 2002, Lecture Notes
in Computer Science, vol. 2442, ed. M. Yung.
Springer-Verlag, Berlin, 336–353.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

158 Digital signature schemes

[39] Schirokauer, O. (1993). “Discrete logarithms and
local units.” Philos. Trans. Roy. Soc. London, Ser.
A, 345, 409–423.

[40] Schirokauer, O., D. Weber, and T. Denny (1996).
“Discrete logarithms: The effectiveness of the index
calculus method.” Proceedings of ANTS-II, Lecture
Notes in Computer Science, vol. 1122, ed. H. Cohen.
Springer-Verlag, Berlin, 337–362.

[41] Shoup, V. (1997). “Lower bounds for discrete
logarithms and related problems.” Advances in
Cryptology—EUROCRYPT’97, Lecture Notes in
Computer Science, vol. 1233, ed. W. Fumy.
Springer-Verlag, Berlin, 256–266.

[42] Shparlinski, I.E. (2003). Cryptographic Applica-
tions of Analytic Number Theory. Birkhauser.

[43] Smith, P.J. and C.T. Skinner (1995). “A public-
key cryptosystem and a digital signature sys-
tem based on the Lucas function analogue to
discrete logarithms.” Advances in Cryptography—
ASIACRYPT’94, Lecture Notes in Computer Sci-
ence, vol. 917, eds. J. Pieprzyk and R. Safavi-Naini.
Springer-Verlag, Berlin, 357–364.

[44] Stinson, D.R. (1995). Cryptography: Theory and
Practice. CRC Press, Boca Raton, FL.

[45] Winterhof, A. (2001). “A note on the interpolation
of the Diffie–Hellman mapping.” Bull. Aust. Math.
Soc., 64, 475–477.

DIGITAL SIGNATURE
SCHEMES

Digital signature schemes are techniques to as-
sure an entity’s acknowledgement of having sent
a certain message. Typically, an entity has a pri-
vate key and a corresponding public key which
is tied to the entity’s name (see also public key
infrastructure). The entity generates a string
called signature which depends on the message to
sign and his private key.

The fact that the entity acknowledged, i.e. that
he signed the message, can be verified by any-
one using the entity’s public key, the message,
and the signature. Data authentication and sig-
nature schemes are sometimes distinguished in
the sense that in the latter, verification can be
done by anyone at any time after the generation
of the signature. Due to this property, the digital
signature scheme achieves non-repudiation prop-
erty, that is, a signer cannot later deny the fact of
signing.

Some examples of digital signature schemes are
RSA digital signature scheme, ElGamal digital
signature scheme, Rabin digital signature scheme,
Schnorr digital signature scheme, Digital Signa-
ture Standard, and Nyberg-Rueppel signature
scheme.

A digital signature scheme consists of three al-
gorithms, namely the key generation algorithm,
the signing algorithm and the verification algo-
rithm. The security of digital signature is argued
as follows: no adversary, without the knowledge
of the private key, can generate a message and a
signature that passes the verification algorithm.
(See forgery for more discussions on the secu-
rity of signatures.) There are two types of signa-
ture schemes, namely ‘with appendix’ and ‘with
message recovery’. In the former, the target mes-
sage is the input of the verification algorithm;
that is, the verifier must know the message in
advance to verify the signature. In the latter,
the target message is the output of the verifica-
tion algorithm, so the message does not need to
be sent with the signature. An example of the
former is the ElGamal digital signature scheme
and of the latter is the RSA digital signature
scheme.

Kazue Sako

DIGITAL SIGNATURE
STANDARD

The Digital Signature Standard (DSS), first pro-
posed by Kravitz [2] in 1991, became a US federal
standard in May 1994. It is published as Federal
Information Processing Letters (FIPS) 186. The
signature scheme is based on the ElGamal dig-
ital signature scheme and borrows ideas from
Schnorr digital signatures for reducing signature
size. We describe a slight generalization of the al-
gorithm that allows for an arbitrary security pa-
rameter, whereas the standard only supports a
fixed parameter. The signature scheme makes use
of modular arithmetic and works as follows:
Key Generation. Given two security parameters

τ, λ ∈ Z (τ > λ) as input do the following:
1. Generate a random λ-bit prime q.
2. Generate a random τ -bit prime prime p such

that q divides p− 1.
3. Pick an element g ∈ Z

∗
p of order q.

4. Pick a random integer α ∈ [1, q] and compute
y = gα ∈ Z

∗
p.

5. Let H be a hash function H : {0, 1}∗ → Zq .
The FIPS 186 standard mandates that H be
based on the SHA-1 cryptographic hash func-
tion.

6. Output the public key (p, q, g, y, H) and the
private key (p, q, g, α, H).

Signing. To sign a message m ∈ {0, 1}∗ using the
private key (p, q, g, α, H) do:

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Digital steganography 159

1. Pick a random integer k ∈ [1, q − 1].
2. Compute r = (gk mod p) mod q. We view r as

an integer 0 ≤ r < q.
3. Compute s = k−1(H(m) + αr) mod q.
4. Output the pair (r, s) ∈ Z

∗
p as the signature

on m.
Verifying. To verify a message/signature pair

(m, (r, s)) using the public key (p, q, g, y, H) do:
1. Verify that 0 ≤ r, s < q, otherwise reject the

signature.
2. Compute u1 = H(m)/s mod q and u2 = r/s

mod q.
3. Compute v = (gu1 yu2 mod p) mod q.
4. Accept the signature if r = v mod q. Other-

wise, reject.
We first check that the verification algorithm

accepts all valid message/signature pairs. For a
valid message/signature pair we have

gu1 yu2 = gu1+αu2 = g(H(m)+αr)/s = gk (mod p).

It follows that v = (gu1 yu2 mod p) mod q = r and
therefore a valid message/signature is always
accepted.

It is not clear how to analyze the security of this
algorithm. Even the random oracle model does not
seem to help since there is no hash function in the
algorithm that can be modelled as a random ora-
cle. It is believed that this is deliberate so that the
algorithm does not infringe on existing patents.
Security analysis for a generalization of DSS is
given in [1].

To discuss signature length we fix concrete
security parameters. At the present time the
discrete-logarithm problem in the cyclic group Z

∗
p

where p is a 1024-bit prime and is considered in-
tractable [3] except for a very well funded orga-
nization. DSS uses a subgroup of order q of Z

∗
p.

When q is a 160-bit prime, the discrete log prob-
lem in this subgroup is believed to be as hard as
discrete-log in all of Z

∗
p. Hence, for the present dis-

cussion we assume p is a 1024-bit prime and q is
a 160-bit prime. Since a DSS signature contains
two elements in Zq we see that, with these param-
eters, a DSS signature is 320-bits long. This is the
same length as a Schnorr signature. We note that
BLS short signatures are half the size and provide
comparable security.

Dan Boneh

References

[1] Brickell, Ernest, David Pointcheval, Serge Vaude-
nay, and Moti Yung (2000). “Design validations for
discrete logarithm based signature schemes.” Pro-
ceedings of Public Key Cryptography 2000, 276–292.

[2] Kravitz, D. (1993). “Digital signature algorithm.”
U.S. patent #5,231,668.

[3] Lenstra, Arjen and Eric Verheul (2001). “Selecting
cryptographic key sizes.” Journal of Cryptology, 14
(4), 255–293.

DIGITAL
STEGANOGRAPHY

INTRODUCTION: Steganography is the art and
science of hiding information by embedding mes-
sages within other, seemingly harmless messages.
Steganography means “covered writing” in Greek.
As the goal of steganography is to hide the pres-
ence of a message and to create a covert channel,
it can be seen as the complement of cryptography,
whose goal is to hide the content of a message.

A famous illustration of steganography is
Simmons’ “Prisoners’ Problem” [10]: Alice and Bob
are in jail, locked up in separate cells far apart
from each other, and wish to devise an escape
plan. They are allowed to communicate by means
of sending messages via trusted couriers, provided
they do not deal with escape plans. But the couri-
ers are agents of the warden Eve (who plays the
role of the adversary here) and will leak all com-
munication to her. If Eve detects any sign of con-
spiracy, she will thwart the escape plans by trans-
ferring both prisoners to high-security cells from
which nobody has ever escaped. Alice and Bob are
well aware of these facts, so that before getting
locked up, they have shared a secret codeword
that they are now going to exploit for embedding a
hidden information into their seemingly innocent
messages. Alice and Bob succeed if they can ex-
change information allowing them to coordinate
their escape and Eve does not become suspicious.

According to the standard terminology of in-
formation hiding [8], a legitimate communication
among the prisoners is called covertext, and a mes-
sage with embedded hidden information is called
stegotext. The distributions of covertext and ste-
gotext are known to the warden Eve because she
knows what constitutes a legitimate communica-
tion among prisoners and which tricks they ap-
ply to add a hidden meaning to innocent looking
messages.

The algorithms for creating stegotext with an
embedded message by Alice and for decoding the
message by Bob are collectively called a stegosys-
tem. A stegosystem should hide the embedded
message at least as well as an encryption scheme
since it may be enough for the adversary to learn
only a small amount of information about the

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

160 Digital steganography

embedded message to conclude that Alice and Bob
are conspiring. But steganography requires more
than that. The ciphertext generated by most en-
cryption schemes resembles a sequence of random
bits, and this is very likely to raise the suspicion
of Eve. Instead, stegotext should “look” just like
innocent covertext even though it contains a hid-
den message.

This intuition forms the basis of the recently de-
veloped formal approach to steganography [2,3,5,
6, 11]. It views a stegosystem as a cryptosystem
with the additional property that its output, i.e.,
the stegotext, is not distinguishable from covertext
to the adversary.

Formally, a stegosystem consists of a triple of
algorithms for key generation, message encod-
ing, and message decoding, respectively. In the
symmetric-key setting considered here, the out-
put of the key generation algorithm is given only
to Alice and to Bob.

The covertext is modeled by a distribution C
over a given set C. The covertext may be given
explicitly as a list of values or implicitly as
an oracle that returns a sample of C upon re-
quest. A stegosystem that does not require explicit
knowledge of the covertext distribution is called
universal.

A more general model of a covertext channel has
also been proposed in the literature [5], which al-
lows to model dependencies among repeated uses
of the same covertext source. A channel consists
of an unbounded sequence of values drawn from
a set C whose distribution may depend in arbi-
trary ways on past outputs; access to the chan-
nel is given only by an oracle that samples from
the channel. The assumption is that the channel
oracle can be queried with an arbitrary prefix of
a possible channel output, i.e., its past “history,”
and it will return the next symbol according to
the channel distribution. In order to simplify the
presentation, channels are not considered further
here, but all definitions and constructions men-
tioned below can be readily extended to covertext
channels.

We borrow the complexity-theoretic notions of
probabilistic polynomial-time algorithms and neg-
ligible functions, in terms of a security parameter
n, from modern cryptography [4].

DEFINITION 1 (Stegosystem). Let C be a distri-
bution on a set C of covertexts. A stegosystem is a
triple of probabilistic polynomial-time algorithms
(SK, SE, SD) with the following properties:
� The key generation algorithm SK takes as input

the security parameter n and outputs a bit string
sk, called the [stego] key.

� The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego key sk and a message m ∈ {0, 1}l to be em-
bedded and outputs an element c of the cover-
text space C, which is called stegotext. The al-
gorithm may access the covertext distribution
C.

� The steganographic decoding algorithm SD
takes as inputs the security parameter n, the
stego key sk, and an element c of the covertext
space C and outputs either a message m ∈ {0, 1}l

or a special symbol ⊥. An output value of ⊥ in-
dicates a decoding error, for example, when SD
has determined that no message is embedded
in c.

For all sk output by SK(1n) and for all m ∈ {0, 1}l ,
the probability that SD(1n, sk, SE(1n, sk, m)) �= m
must be negligible in n.

Note that the syntax of a stegosystem as defined
above is equivalent to that of a (symmetric-key)
cryptosystem, except for the presence of the cover-
text distribution. The probability that the decod-
ing algorithm outputs the correct embedded mes-
sage is called the reliability of a stegosystem.

DEFINING SECURITY: The security of a stegosys-
tem is defined in terms of an experiment that
measures the capability of the adversary to de-
tect the presence of an embedded message. In
a secure stegosystem, Eve cannot distinguish
whether Alice is sending legitimate covertext or
stegotext.

The attack considered here is a chosen-message
attack, where the adversary may influence the em-
bedded message but has otherwise no access to the
encoding and decoding functions. It parallels the
notion of a chosen-plaintext attack against a cryp-
tosystem.

Consider an adversary defined by a pair of algo-
rithms (SA1, SA2). The experiment consists of four
stages.
1. A key sk is generated by running the key gen-

eration algorithm SK.
2. Algorithm SA1 is run with input the security

parameter n; it outputs a tuple (m∗, s), where
m∗ ∈ {0, 1}l is a message and s is some addi-
tional information which the algorithm wants
to preserve. SA1 has access to the covertext dis-
tribution C.

3. A bit b is chosen at random and a challenge
covertext c∗ is determined depending on it:
If b = 0 then c∗ ← SE(sk, m∗) (c∗ becomes a
steganographic encoding of m∗) otherwise c∗ R←
C (c∗ is chosen randomly according to C).

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Digital steganography 161

4. Algorithm SA2 is run with inputs n, c∗, m∗, and
s, and outputs a bit b′. The goal of SA2 is to guess
the value of b, i.e., to determine whether the
message m∗ has been embedded in c or whether
c has simply been chosen according to C.
The adversary succeeds to distinguish stego-

text from covertext if b′ = b in the above experi-
ment. Since it is trivial to achieve Pr[b′ = b] = 1

2 ,
what actually counts is the adversary’s advantage
above randomly guessing b. Formally, we define
the advantage of adversary (SA1, SA2) to be

Pr
[
sk ← SK; (m∗, s) ← SA1(1n); b

R← {0, 1};
if b = 0 then c∗ ← SE(1n, sk, m∗)

else c∗ R← C : SA2(1n, c∗, m∗, s) = b
]

− 1
2

.

Depending on the detection capabilities as-
cribed to the adversary in terms of its computa-
tional power, and depending on its advantage in
distinguishing stegotext from covertext, one ob-
tains the following security notions for stegosys-
tems:
Perfectly secure steganography: The adver-

sary is an arbitrary, unbounded algorithm and
has advantage equal to 0.

Statistically secure steganography: The ad-
versary is an arbitrary, unbounded algorithm
and has only negligible advantage (in n).

Computationally secure steganography:
The adversary is an arbitrary probabilistic,
polynomial-time computable algorithm and has
only negligible advantage in n.
The first two notions are collectively known

as information-theoretically secure steganography.
The third notion, computational security, is dis-
cussed further on (cf., security).

This discussion has so far assumed that the
sender and the receiver share the same secret key
before communicating (cf., symmetric cryptosys-
tem). Departing from that assumption, it is also
possible to define public-key steganography with
computational security. This notion is analogous
to public-key cryptography and is the subject of
Section D (cf., asymmetric cryptosystem).

For the scope of this survey, the adversary is lim-
ited to passive attacks (see cryptanalysis). In the
Prisoners Problem, this means that the couriers
may not change the messages communicated be-
tween Alice and Bob and that Eve may not send a
message generated by herself to Bob and observe
his reaction to it. However, the adversary may in-
fluence the messages to be embedded; for example,
the warden Eve may determine the details of Alice
and Bob’s escape plan by choosing to confine them
in particular cells.

This survey is about the formal approach
to steganography and about stegosystems that
offer provable security. An overview of steganog-
raphy with heuristic security and of the his-
tory of steganography is given by Anderson and
Petitcolas [1].

What distinguishes steganography from other
forms of information hiding is the focus on
merely detecting the presence of a hidden message.
Watermarking and fingerprinting are two differ-
ent problems of information hiding, where the ex-
istence of a hidden message is public knowledge.
The focus in these areas is on hiding the mes-
sage in perceptual data from an observer that is
typically a human, and on embedding the mes-
sage robustly so that it cannot be removed without
significantly distorting the data itself. The differ-
ence between watermarking and fingerprinting is
that watermarking supplies digital objects with an
identification of origin and all objects are marked
in the same way; fingerprinting, conversely, at-
tempts to identify individual copies of an object
by means of embedding a unique marker in every
copy that is distributed to a user.

INFORMATION-THEORETICALLY SECURE STE-
GANOGRAPHY

DEFINITION 2 (Perfect Security). Given a cover-
text distribution C, a stegosystem (SK, SE, SD) is
called perfectly secure with respect to C if for
any adversary (SA1, SA2) with unbounded compu-
tational power, the advantage in the experiment
above is equal to 0.

Perfect security for a stegosystem parallels
Shannon’s notion of perfect security for a cryp-
tosystem [9] (cf., Shannon’s model). The require-
ment that every adversary has no advantage im-
plies that the distributions of the challenge c∗ are
equal in the two cases where it was generated
from SE (when b = 0) and sampled from C (when
b = 1). Hence, the adversary obtains no informa-
tion about b because she only observes the chal-
lenge c∗ and the distribution of c∗ is statistically
independent of b. Perfectly secure stegosystems
were defined by Cachin [3].

Perfectly secure stegosystems exist only for a
very limited class of covertext distributions. For
example, if the covertext distribution is uniform,
the one-time pad is a perfectly secure stegosystem
as follows.

Assume the covertext C is uniformly distributed
over the set of n-bit strings for some positive n
and let Alice and Bob share an n-bit key sk
with uniform distribution. The encoding function

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

162 Digital steganography

computes the bitwise XOR of the n-bit mes-
sage m and sk, i.e., SE(1n, sk, m) = m ⊕ sk; Bob
can decode this by computing SD(1n, sk, c) = c ⊕
sk. The resulting stegotext is uniformly dis-
tributed in the set of n-bit strings. The one-time
pad stegosystem is used like this in visual crypto-
graphy [7].

For covertext distributions that do not ad-
mit perfectly secure stegosystems, one may still
achieve the following security notion.

DEFINITION 3 (Statistical Security). Given a
covertext distribution C, a stegosystem (SK, SE,

SD) is called statistically secure with respect
to C if for all adversaries (SA1, SA2) with un-
bounded computational power, there exists a
negligible function ε such that the advantage in
the experiment above is at most ε(n).

Statistical security for stegosystems may equiv-
alently be defined by requiring that for any sk and
any m, the statistical distance between the proba-
bility distribution generated by SE(1n, sk, m) and
the covertext distribution is negligible.

Definition 3 was first proposed by Katzenbeisser
and Petitcolas [6]. A very similar notion was de-
fined by Cachin [3], using relative entropy between
the stegotext and covertext distributions for quan-
tifying the difference between them.

Here is a simple example of a statistically se-
cure stegosystem, adopted from [3]. It is repre-
sentative for a class of practical stegosystems that
embed information in a digital image by modify-
ing the least significant bit of every pixel repre-
sentation [1]. Suppose that the cover space C is
the set of n-bit strings with (C0, C1) being a parti-
tion of C and with distribution C such

∣∣Pr[c
R← C :

c ∈ C0] − Pr[c
R← C : c ∈ C1]

∣∣ = δ(n) for some neg-
ligible δ. Then there is a stegosystem for a one-
bit message m using a one-bit secret key sk. The
encoding algorithm SE computes s ← m ⊕ sk and
outputs c

R← Cs . Decoding works without error be-
cause m = 0 if and only if c ∈ Csk. It is easy to see
that the encoding provides perfect secrecy for m
and that the stegosystem is statistically secure.
Note, however, that finding the partition for a
given distribution is an NP-hard combinatorial op-
timization problem.

There exist also statistically secure universal
stegosystems, where the covertext distribution is
only available as a sampling oracle. Information-
theoretically secure stegosystems suffer from the
same drawback as cryptosystems with uncondi-
tional security in the sense that the secret key may
only be used once. This is not the case for compu-
tational security considered next.

COMPUTATIONALLY SECURE STEGANO-
GRAPHY

DEFINITION 4. (Computational Security).
Given a covertext distribution C, a stegosystem
(SK, SE, SD) is called computationally secure with
respect to C if for all probabilistic polynomial-time
adversaries (SA1, SA2), there exists a negligi-
ble function ε such that the advantage in the
experiment above is at most ε(n).

The notion was formalized independently by
Katzenbeisser and Petitcolas [6] and by Hopper,
Langford, and von Ahn [5]. The latter work also
presented the following construction of a com-
putationally secure, universal stegosystem. It il-
lustrates a popular encoding method that does
not rely on knowledge of the covertext distri-
bution, which is also used by some practical
stegosystems.

The encoding method is based on an algorithm
sample, which samples a covertext according to
C such that a given bit string b of length f =
O(log |C|) is embedded in it.

Algorithm sample
Input: security parameter n, a function
g : C → {0, 1} f, and a value b ∈ {0, 1} f

Output: a covertext x
1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x) = b or j = n
6: return x

Intuitively, algorithm sample returns a cover-
text chosen from distribution C, but restricted to
that subset of C which is mapped to the given b
by g. sample may also fail and return a covertext
c with g(c) �= b, but this happens only with negli-
gible probability in n.

Suppose {Gk} is a pseudorandom function fam-
ily indexed by k, with domain {0, 1} × C and range
{0, 1} f. (It can be thought of as a pair (G0, G1)
of independent pseudorandom functions.) The se-
cret key of the stegosystem consists of a randomly
chosen k. The encoding algorithm SE(1n, k, m)
for an f-bit message m first “encrypts” m to
y ← Gk(0, c0) ⊕ m for a public constant c0 ∈ C.
Note that y is the ciphertext of a symmetric-key
encryption of m and is computationally indistin-
guishable from a random f-bit string. This value
y is then embedded by computing a stegotext c ←
sample(n, Gk(1, ·), y). It can be shown that when

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Digital steganography 163

C is sufficiently random, as measured in terms of
min-entropy, the output distribution of sample is
statistically close to C [2,5].

The decoding algorithm SD(1n, k, c) outputs
m′ ← Gk(1, c) ⊕ Gk(0, c0); it is easy to show that
m′ is equal to the message that was embedded us-
ing SE except with negligible probability.

This stegosystem is an extension of the example
given above for statistical security. In fact, when G
is a universal hash function and the encryption is
realized using a one-time pad, this is a universal
stegosystem with statistical security.

PUBLIC-KEY STEGANOGRAPHY: What if Alice
and Bob did not have the time to agree on a secret
key before being imprisoned? They cannot use any
of the stegosystems presented so far because that
would require them to share a common secret key.
Fortunately, steganography is also possible with-
out shared secrets, only with public keys, similar
to public-key cryptography. The only requirement
is that Bob’s public key becomes known to Alice in
a way that is not detectable by Eve.

Formally, a public-key stegosystem consists of
a triple of algorithms for key generation, message
encoding, and message decoding like a (secret-key)
stegosystem, but the key generation algorithm
now outputs a stego key pair (spk, ssk). The pub-
lic key spk is made available to the adversary and
is the only key needed by the encoding algorithm
SE. The decoding algorithm SD needs the secret
key ssk as an additional input.

DEFINITION 5 (Public-key Stegosystem). Let C
be a distribution on a set C of covertexts. A
public-key stegosystem is a triple of probabilistic
polynomial-time algorithms (SK, SE, SD) with the
following properties:
� The key generation algorithm SK takes as input

the security parameter n and outputs a pair of
bit strings (spk, ssk), called the [stego] public
key and the [stego] secret key.

� The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego public key spk and a message m ∈ {0, 1}l

and outputs a covertext c ∈ C.
� The steganographic decoding algorithm SD

takes as inputs the security parameter n, the
stego secret key ssk, and a covertext c ∈ C, and
outputs either a message m ∈ {0, 1}l or a special
symbol ⊥.

For all (spk, ssk) output by the key generation al-
gorithm and for all m ∈ {0, 1}l , the probability that
SD(1n, ssk, SE(1n, spk, m)) �= m must be negligi-
ble in n.

Security is defined analogously to the experi-
ment of Section 2 with the difference that the
public key spk is additionally given to the ad-
versary algorithms SA1 and SA2 and that the
challenge covertext is computed using spk only.
With these modifications, a public-key stegosys-
tem (SK, SE, SD) is called secure against chosen-
plaintext attacks if it is computationally secure ac-
cording to Definition 4.

Secure public-key stegosystems can be con-
structed using the method of Section D, but with
the pseudorandom function G0 (which is used
for “encryption”) replaced by a public-key cryp-
tosystem that has almost uniform ciphertexts.
This property means that the output of the en-
cryption algorithm is computationally indistin-
guishable from a uniform bit string of the same
length.

The definition and several constructions of
public-key stegosystems have been introduced by
von Ahn and Hopper [11] and by Backes and
Cachin [2]. The latter work also goes beyond the
case of passive adversaries considered here and
models adaptive chosen-covertext attacks, which
are similar to adaptive chosen-ciphertext attacks
against public-key cryptosystems. Achieving secu-
rity against such attacks results in the strongest
security notion known today for public-key cryp-
tosystems and for public-key stegosystems.

As this brief survey of steganography shows,
the evolution of the formal approach to stegosys-
tems has gone through the same steps as the
development of formal models for cryptosystems.
The models and the formulation of correspond-
ing stegosystems that offer provable security have
greatly enhanced our understanding of this impor-
tant area of information security.

Christian Cachin

References

[1] Anderson, R.J. and F.A. Petitcolas (1998). “On the
limits of steganography.” IEEE Journal on Selected
Areas in Communications, 16.

[2] Backes, M. and C. Cachin (2005). “Public-key
steganography with active attacks.” Proceedings
2nd Theory of Cryptography Conference (TCC
2005), Lecture Notes in Computer Science, vol.
3378, ed. J. Kilian. Springer, Berlin, 210–226.

[3] Cachin, C. (2004). “An information-theoretic model
for steganography.” Information and Computation,
vol. 192, pp. 41–56. (Preliminary version appeared
in Proc. 2nd Workshop on Information Hiding,
Lecture Notes in Computer Science, vol. 1525,
Springer, Berlin, 1998).

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

164 Discrete logarithm problem

[4] Goldreich, O. (2001). Foundations of Cryptography:
Basic Tools. Cambridge University Press, Cam-
bridge.

[5] Hopper, N.J., J. Langford, and L. von Ahn
(2002). “Provably secure steganography.” Advances
in Cryptology—CRYPTO 2002, Lecture Notes in
Computer Science, vol. 2442, ed. M. Yung. Springer,
Berlin.

[6] Katzenbeisser, S. and F.A.P. Petitcolas (2002).
“Defining security in steganographic systems.”
Security and Watermarking of Multimedia Con-
tents IV, Proceedings of SPIE, International Society
for Optical Engineering, vol. 4675, eds. E.J. Delp
and P.W. Won, 260–268.

[7] Naor, M. and A. Shamir (1995). “Visual cryptogra-
phy.” Advances in Cryptology—EUROCRYPT’94,
Lecture Notes in Computer Science, vol. 950, ed.
A. De Santis. Springer, Berlin, 1–12.

[8] Pfitzmann, B. (1996). “Information hiding termi-
nology.” Information Hiding, First International
Workshop, Lecture Notes in Computer Science,
vol. 1174, ed. R. Anderson. Springer, Berlin, 347–
350.

[9] Shannon, C.E. (1949). “Communication theory of
secrecy systems.” Bell System Technical Journal,
(28), 656–715.

[10] Simmons, G.J. (1984). “The prisoners’ problem and
the subliminal channel.” Advances in Cryptology—
CRYPTO’83, Lecture Notes in Computer Science,
ed. D. Chaum. Plenum, New York, 51–67.

[11] von Ahn, L. and N.J. Hopper (2004). “Public-
key steganography.” Advances in Cryptology–
EUROCRYPT 2004, Lecture Notes in Computer
Science, vol. 3027, eds. C. Cachin and J. Camenisch.
Springer, Berlin, 322–339.

DISCRETE LOGARITHM
PROBLEM

Let G be a cyclic group of order n, and g be a
generator for G. Given an element y ∈ G, the dis-
crete logarithm problem is to find an integer x such
that

gx = y.

The discrete logarithm problem has been of
particular interest since Diffie and Hellman (see
Diffie–Hellman key agreement) invented a cryp-
tographic system based on the difficulty of finding
discrete logarithms (a similar system was created
around the same time by Malcolm Williamson at
the Government Communications Headquarters
(GCHQ) in the UK, but not revealed until years
later). Given two people Alice and Bob who wish
to communicate over an insecure channel, each de-
cides on a private key xA and xB. Alice sends gxA to
Bob, and Bob sends gxB to Alice. Each of them can
then raise the received message to their private

key to compute

(gxA)xB = (gxB)xA = gxAxB.

An eavesdropper Eve who only knows gxA and gxB

must figure out gxAxB. This is widely believed to
be difficult. Clearly if Eve can solve the discrete
logarithm problem, she can compute xA and xB and
so break the system.

Other systems, such as the ElGamal digital
signature scheme and the Digital Signature Stan-
dard, also depend on the difficulty of solving the
discrete logarithm problem.

Pohlig and Hellman [9], and independently Sil-
ver, observed that if G has a subgroup of order
l, then by raising g and y to the (n/l)th power we
may solve for x modulo l. Thus, the difficulty of the
discrete logarithm problem depends on the largest
prime factor of n. For the rest of this article we will
assume that n is prime.

THE DISCRETE LOGARITHM PROBLEM IN DIF-
FERENT GROUPS: Any finite group may be used
for a Diffie–Hellman system, but some are more
secure than others. The main groups used are:
� The multiplicative subgroup of a finite field

GF(q), with q a prime or a power of 2.
� The points on an elliptic curve E over a finite

field (see elliptic curves).
� The class group of a quadratic number field.

Finite fields GF(2n) were popular into the 1980s,
but attacks by Blake, Fuji-Hara, Mullin and Van-
stone, and Coppersmith showed that the fields
were easier to attack than similarly-sized prime
fields. Index calculus attacks may also be applied
to prime fields.

Hafner and McCurley [6] gave a subexponen-
tial attack for class groups of imaginary quadratic
number fields, and Buchmann [2] extended this
to real quadratic and, conjecturally, higher-degree
number fields. Most elliptic curves, on the other
hand, have no known subexponential attacks. See
the entry on elliptic curve cryptography for more
details.

GENERIC ALGORITHMS FOR DISCRETE LOGA-
RITHMS: We will first consider generic algorithms,
which do not use any special information about the
group G, but only compose elements and check
for equality. Nechaev [7] and Shoup [15] showed
that generic algorithms must take �(

√
n) time

(see O-notation). Shor [14] showed that a quantum
computer can solve a discrete logarithm problem
in any group in polynomial time, but whether a
sufficiently large quantum computer can be built
is still an open problem.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Discrete logarithm problem 165

Shanks’ Baby Step–Giant Step Method

Shanks [13] gave the first algorithm better than
a brute-force search. Let m = �√n�. We construct
two tables, one starting at 1 and taking “giant
steps” of length m:

1, gm, g2m, . . . , g(m−1)m

and one of “baby steps” of length one from y:

y, yg, yg2, . . . , ygm−1.

Sort these lists and look for a match. If we find
gim = yg j, then y = gim− j, and so x = im − j. Any
x ∈ [0, n − 1] may be written in this form for i, j ≤
m, so we are certain to find such a match.

The time for this algorithm is O(
√

n) group op-
erations, plus the time to find collisions in the two
lists. This may be done either by sorting the lists
or using hash tables.

Pollard’s ρ Method

The drawback to Shanks’s algorithm is that it re-
quires O(

√
n) space as well as time. Pollard [10]

gave two methods that use negligible space and
still run in O(

√
n) time: the ρ method and the kan-

garoo method, which are discussed below. They are
not deterministic, but depend on taking pseudo-
random walks in G.

Divide the elements of G into three subsets, S1,
S2 and S3, say by the value of a hash of the ele-
ments modulo three. We define a walk by h0 = 1
and

hi+1 =



hi y, if hi ∈ S1

h2
i , if hi ∈ S2

hi g, if hi ∈ S3.

At each step we know

hi = gai ybi = gai+xbi

for some ai, bi . (In particular, we have (a0, b0) =
(0, 0) initially, and (ai+1, bi+1) = (ai, bi + 1),
(2ai, 2bi), or (ai + 1, bi), depending on the hash
value.) Eventually, this walk must repeat. If
hi = hj, we have

x ≡ aj − ai

bi − bj
(mod n).

If bi − bj is relatively prime to n (which is very
likely if n is prime), this gives us x.

Figure 1 illustrates the ρ method walk.
Rather than store all of the steps to detect

a collision, we may simultaneously compute hi
and h2i , and continue around the cycle until they
agree. Assuming that this map behaves as a ran-
dom walk, we will need O(

√
n) steps to find a

repeat.

h0

h1

h2

h3 . . .

Fig. 1. ρ method walk, with a collision at h3

Parallelized Collision Search

The ρ method has two main drawbacks. One is
that it is difficult to parallelize. Having k proces-
sors do random walks only results in an O(

√
k)

speedup, since the different walks are indepen-
dent, and the probability of one of k cycles of length
l having a collision is much less than one cycle of
length kl (see [8] for details). Another is that after
the collision occurs, many more steps around the
cycle are needed before the collision is detected.
Parallelized collision search [8] is a variant of the
ρ method which fixes both problems.

We designate a small fraction of elements of G
distinguished points, say if the last several bits of
the element are all zero. Then a walk will begin
at a random point, proceed as for the ρ method,
and end when we hit a distinguished point. We
save that point along with the starting point of
the path, and then begin a walk at a new ran-
dom point. When a distinguished point is hit for
the second time, we have a collision and with high
probability can determine x.

By picking the right fraction of elements of G to
be distinguished points, we may ensure that not
too much memory is needed to store the paths, and
not much time is wasted after a collision occurs.
Also, this algorithm may be trivially parallelized,
with a linear speedup.

Figure 2 shows this method.

Fig. 2. Parallelized collision search paths, with three
distinguished points and one collision

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

166 Discrete logarithm problem

Tame kangaroo

Wild kangaroo

Trap

Coalescence

Fig. 3. Kangaroo method paths, with one distinguished
point and collision

Pollard’s Kangaroo Method

Another method due to Pollard also uses a ran-
dom walk in G. In this algorithm the steps are
limited: h −→ hgs(h), where the hop length s(h) is
a pseudorandom function of h with values between
1 and

√
n.

The idea is to start from two points, say g
(the “tame” kangaroo, since we know its discrete
logarithm at all times) and y (the “wild” kangaroo),
and alternately take hops with length determined
by s(h). We will set “traps” when a kangaroo hits a
distinguished point. If the wild kangaroo and tame
kangaroo paths meet or “coalesce” at any point,
they will take the same hops from then on, and
any traps encountered by one after they coalesce
will also be encountered by the other. When one
reaches a trap that the other one hit, we have a
collision and can determine x.

The main advantage of the kangaroo method is
when x is known to be in a certain range, say [0, L]
for some L � |G|. In that case we may start the
tame kangaroo from gL/2, and the wild kangaroo
from y. We expect to find a collision before we get
far out of [0, L], and so this will take O(

√
L) time.

See Figure 3 for an illustration.

SUBEXPONENTIAL METHODS: The lower bound
for generic algorithms means that to find a
faster algorithm we must use information about
the group. The main method for doing this is
called index calculus, and is described in this
section.

Index Calculus Methods

Let

Lx[t, γ] = e(γ+o(1))(log x)t (log log x)1−t
,

for x → ∞ (see L-notation for further discussion).
This function interpolates between slow and fast
algorithms; Lx[1, γ] ≈ xγ is exponential in log x
(see exponential time), while Lx[0, γ] ≈ (log n)γ

is polynomial (see polynomial time). All the al-
gorithms of the previous section are O(

√
n) =

Ln[1, 1/2]. With early index calculus methods we
may reduce this to Ln[1/2, c], and the number field
sieve further improves this to Ln[1/3, c] for appro-
priate constants c.

All index calculus algorithms for discrete loga-
rithms have three main parts:
1. Gather equations relating the discrete loga-

rithms of a factor base of “small” elements.
2. Solve a linear system to find the factor base dis-

crete logarithms.
3. To find the discrete logarithm of an element y,

reduce y to a product of elements in the factor
base.
The first step is the same as in integer factoring.

The second step is also done in factoring, but mod-
ulo 2 instead of modulo n. The third step is only
done for discrete logarithms, typically by multi-
plying y by random powers of g, and attempting
to express the result as a product of smaller num-
bers, possibly recursively breaking those numbers
into smaller ones until everything is in the factor
base.

The factor base is a set of elements such as
small primes or low-degree polynomials, such that
other elements have a reasonable chance of being
“smooth”: expressible as a product of these small
elements (see the entry on smoothness). To opti-
mize the algorithm we need to know the probabil-
ity of this happening; see the section on number
theory for more information.

Typically the first two steps require large com-
putations, and finding individual logarithms is
much quicker.

For additional technical details on these meth-
ods, please see the entry index calculus.

Discrete Logarithms in Prime Fields

Coppersmith, Odlyzko, and Schroppel gave an
Lp[1/2, c] algorithm for prime fields GF(p), which
turned out to be special case of the Number Field
Sieve (using imaginary quadratic fields). In their
method there are two factor bases, one of small ra-
tional primes and another of small primes in the
imaginary quadratic field.

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

Discrete logarithm problem 167

The Number Field Sieve, which is the fastest
known algorithm for factoring integers, may also
be applied to finding discrete logarithms [5, 12].
The factor base used consists of small rational
primes and representatives of small prime ideals
in a number field. The asymptotic complexity is
the same as for factoring. The sieving phase is the
same, but solving the linear system modulo p− 1
instead of modulo 2 makes discrete logarithms
harder than factoring problems of the same size.

Because the number field sieve works better for
special numbers (such as primes p = re + s for r
and s small), it has been suggested that the Dig-
ital Signature Standard could be given a “trap-
door” by using a prime for which the Number Field
Sieve runs faster than on a typical prime of that
size. However, in [4], it is shown that such trap-
doors may be detected, and that it is easy to spec-
ify primes which were clearly not chosen with a
trapdoor.

Discrete Logarithms in Fields
of Characteristic 2

Until the 1980s, fields GF(q) with q = 2n received
the most attention, because of their applications
to shift registers and ease of implementation in
hardware. However, it turned out that attacks on
these fields ran much faster than prime fields, and
so few cryptosystems today depend on discrete log-
arithms in these fields.

Blake et al. [1] gave an attack which ran in time
Lq [1/2, c]. Their factor base consists of polynomi-
als in GF(2)[x] of low degree. This was improved
by Coppersmith [3], who gave the first index calcu-
lus algorithm which runs in time Lq [1/3, c]. It was
not realized until much later, but Coppersmith’s
method was a special case of the function field
sieve (see the entry sieving in function fields).

Other Fields

Schirokauer [11] has looked at GF(q) for q = pm

with p > 2 and m > 1. By combining features of
the number field sieve and function field sieve, he
gives an algorithm which is conjectured to run in
Lq [1/3, c] for some c for fields with q −→ ∞ and
m > (log p)2 or m < (log p)1/2−ε . In the “gap” be-
tween these constraints the algorithm is conjec-
tured to run in time Lq [2/5, c′].

Recently Lenstra and Verheul invented a cryp-
tosystem called XTR, which depends on the secu-
rity of discrete logarithms in GF(p6), for p6 ≈ 1024
bits. Weber [17] has computed discrete logarithms
in fields GF(p2) for small p.

ATTACKS ON ELLIPTIC CURVE DISCRETE
LOGARITHMS: The elliptic curve discrete loga-
rithm problem (ECDLP) was suggested as a ba-
sis for cryptosystems in 1985 by Neal Koblitz and
Victor Miller. Because no subexponential attack
was known for them, much shorter key sizes could
be used.

Since then, several attacks on special elliptic
curves have been developed, but no index calcu-
lus attack for general curves are known.

CHALLENGES AND ATTACKS: In 1989, Kevin
McCurley gave a challenge problem. Let q =
(7149 − 1)/6, and p = 2 × 739q + 1. McCurley gave
two numbers modulo p which equal 7x and 7y for
some x and y, and issued a challenge to find 7xy.

The form of p was intended to make it easy to
show that p is prime and that 7 is a primitive
root modulo p. Unfortunately, soon afterwards the
number field sieve was discovered, which showed
that the special form of this p made the system
much less secure. The challenge was broken in
1998 by Weber and Denny [18] using the special
number field sieve.

Joux and Lercier found discrete logarithms
modulo a nonspecial 120-digit prime in 2001. For
fields of characteristic 2, the record is GF(2607),
which was done in 2001 by Thomé [16].

In 1997 Certicom issued a series of ECDLP chal-
lenges. The problems ranged from easy (curves
over 79-bit fields), to very difficult (359-bit fields).
The largest challenge problem solved to date is a
curve over GF(p) for a 109-bit prime p by a group
at Notre Dame in 2002, using parallelized collision
search.

Daniel M. Gordon

References

[1] Blake, I.F., R. Fuji-Hara, R.C. Mullin, and S.A. Van-
stone (1984). “Computing logarithms in fields of
characteristic two.” SIAM Journal of Algebraic and
Discrete Methods, 5, 276–285.

[2] Buchmann, Johannes (1990). “A subexponen-
tial algorithm for the determination of class
groups and regulators of algebraic number fields.”
Séminaire de Théorie des Nombres, Paris 1988–
1989, Progr. Math., vol. 91, Birkhäuser, Boston,
27–41.

[3] Coppersmith, D. (1984). “Fast evaluation of dis-
crete logarithms in fields of characteristic two.”
IEEE Transactions on Information Theory, 30,
587–594.

[4] Gordon, D.M. (1992). “Designing and detecting
trapdoors in discrete log cryptosystems.” Ad-
vances in Cryptology—CRYPTO’92, Lecture Notes

P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:40

168 Discrete logarithm problem

in Computer Science, vol. 740, ed. E.F. Brickell.
Springer, Berlin, 66–75.

[5] Gordon, D.M. (1993). “Discrete logarithms in GF(p)
using the number field sieve.” SIAM J. Discrete
Math., 6, 124–138.

[6] Hafner, J. and K. McCurley (1989). “A rigor-
ous subexponential algorithm for computation of
class groups.” J. Amer. Math. Soc., 2 (4), 837–
850.

[7] Nechaev, V.I. (1994). “On the complexity of a deter-
ministic algorithm for a discrete logarithm.” Math.
Zametki, 55, 91–101.

[8] van Oorschot, P.C. and M.J. Wiener (1999). “Par-
allel collision search with cryptanalytic applica-
tions.” J. Cryptology, 12, 1–28.

[9] Pohlig, S.C. and M.E. Hellman (1978). “An im-
proved algorithm for computing logarithms over
GF(p) and its cryptographic significance.” IEEE
Trans. Info. Theory, IT-24, 106–110.

[10] Pollard, J.M. (1978). “Monte Carlo methods for in-
dex computation (mod p).” Mathematics of Compu-
tation, 32, 918–924.

[11] Schirokauer, O. “The impact of the number field
sieve on the discrete logarithm problem in finite
fields.” Proceedings of the 2002 Algorithmic Num-
ber Theory workshop at MSRI.

[12] Schirokauer, O. (1993). “Discrete logarithms and
local units.” Philos. Trans. Roy. Soc. London Ser. A,
345, 409–423.

[13] Shanks, D. (1971). “Class number, a theory of fac-
torization, and genera.” In 1969 Number Theory
Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, NY, 1969), Amer.
Math. Soc., Providence, RI, 415–440.

[14] Shor, P.W. (1997). “Polynomial-time algorithms for
prime factorization and discrete logarrithms on a
quantum computer.” SIAM J. Comput., 26, 1484–
1509.

[15] Shoup, V. (1997). “Lower bounds for discrete
logarithms and related problems.” Advances in
Cryptolog—EUROCRYPT’97, Lecture Notes in
Computer Science, vol. 1233, ed. W. Furny.
Springer, Berlin, 256–266.

[16] Thomé, E. (2001). “Computation of discrete loga-
rithms in GF(2607).” Advances in Cryptography—
ASIACRYPT 2001, Lecture Notes in Computer Sci-
ence, vol. 2248, ed. C. Boyd. Springer, Berlin, 107–
124.

[17] Weber, D. (1998). “Computing discrete loga-
rithms with quadratic number rings.” Advances
in Cryptology—EUROCRYPT’98, Lecture Notes
in Computer Science, vol. 1403, ed. K. Nyberg.
Springer, Berlin, 171–183.

[18] Weber, D. and T.F. Denny (1986). “The solution
of McCurley’s discrete log challenge.” Advances in
Cryptology—CRYPTO’98, Lecture Notes in Com-
puter Science, vol. 1462, ed. H. Krawczyk. Springer,
Berlin, 458–471.

