Skip to main content
Log in

Cobalt-induced retrotransposon polymorphism and humic acid protection on maize genome

  • Original Paper
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Retrotransposon activity and genomic template stability (GTS) are one of the most significant rearranging mechanisms in environmental stress. Therefore, in this study, it is aimed to elucidate effecting of Cobalt (Co) on the instability of genomes and Long Terminal Repeat retrotransposon polymorphism in Zea mays and whether humic acid (HA) has any role on these parameters. For this purpose, Retrotransposon-microsatellite amplified polymorphism (REMAP) and Inter-Retrotransposon Amplified Polymorphism (IRAP) markers were applied to evaluate retrotransposon polymorphism and the GTS levels. It was found that IRAP and REMAP primers generate unique polymorphic band structures on maize plants treated with various doses of Co. Retrotransposon polymorphism increased and GTS decreased while increasing Co concentration. On the other hand, there was a reduction in negative effects of Co on retrotransposon GTS and polymorphism after treatment with HA. The results indicate that HA may be used effectively for the protection of maize seedlings from the destructive effects of Co toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are provided in complete in the ‘Results’ section of this paper.

References

  1. Ali S, Gill RA, Mwamba TM, Zhang N, Lv MT, ul Hassan Z, Islam F, Ali S, Zhou WJ (2018) Differential cobalt-induced effects on plant growth, ultrastructural modifications, and antioxidative response among four Brassica napus (L.) cultivars. Int J Environ Sci Technol 15(12):2685–2700

    CAS  Google Scholar 

  2. Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environ Toxicol Chem 18:2275–2282

    CAS  PubMed  Google Scholar 

  3. Baccarelli A, Ghosh S (2012) Environmental exposures epigenetics and cardiovascular disease. Curr Opin Clin Nutr and Metab Care 15:323

    CAS  Google Scholar 

  4. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Scheid OM (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10(1):e1004115

    PubMed  PubMed Central  Google Scholar 

  5. Concheri G, Nardi S, Piccolo A, Rascio N, Dell’Agnola G (1994) Effects of humic fractions on morphological changes related to invertase and peroxidase activities in wheat seedlings. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier Science, Amsterdam, pp 257–262

    Google Scholar 

  6. Cozzi R, Nicolai M, Perticone P, De Salvia R, Spuntarelli F (1993) Desmutagenic activity of natural humic acids: inhibition of mitomycin C and maleic hydrazide mutagenicity. Mutat Res/Genet Toxicol 299(1):37–44

    CAS  Google Scholar 

  7. De Boeck M, Lison D, Kirsch-Volders M (1998) Evaluation of the in vitro direct and indirect genotoxic effects of cobalt compounds using the alkaline comet assay. Influence of interdonor and interexperimental variability. Carcinogenesis 19:2021–2029

    PubMed  Google Scholar 

  8. Erturk FA, Ay H, Nardemir G, Agar G (2012) Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health 29:662–671

    PubMed  Google Scholar 

  9. Esnault C, Lee M, Ham C, Levin HL (2019) Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 29(1):85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Farouk S, Mosa AA, Taha AA, El-Gahmery AM (2011) Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. J Stress Physiol Biochem 7(2):99

    Google Scholar 

  11. Ferrara G, Loffredo E, Senesi N, Marcos R (2006) Humic acids reduce the genotoxicity of mitomycin C in the human lymphoblastoid cell line TK6. Mutat Res 603:27–32

    CAS  PubMed  Google Scholar 

  12. Ferrara G, Loffredo E, Simeone R, Senesi N (2000) Evaluation of antimutagenic and desmutagenic effects of humic and fulvic acids on root tips of Vicia faba. Environ Toxicol 15:513–517

    CAS  Google Scholar 

  13. Gbadegesin MA, Wills MA, Beeching JR (2008) Diversity of LTR-retrotransposons and enhancer/suppressor mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genom 280:305–317

    CAS  Google Scholar 

  14. Gichner T, Znidar I, Szakova J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    CAS  PubMed  Google Scholar 

  15. Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34(5–6):619–628

    CAS  Google Scholar 

  16. Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub AP, Costa APP (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    CAS  PubMed  Google Scholar 

  17. Grandbastien MA, Lucas H, More JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 is linked to the plant defence responses. Genetica 100:241–252

    CAS  PubMed  Google Scholar 

  18. Hammock D, Huang CC, Mort G, Swinehart JH (2003) The effect of humic acid on the uptake of mercury (II) cadmium (II) and zinc (II) by chinook salmon (Oncorhynchus tshawytscha) eggs. Arch Environ Contam Toxicol 44:83–88

    CAS  PubMed  Google Scholar 

  19. Hartwig A (1995) Current aspects in metal genotoxicity. Biometals 8:3–11

    CAS  PubMed  Google Scholar 

  20. Hou J, Lu D, Mason AS, Li B, Xiao M, An S, Fu D (2019) Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta 1:23–40

    Google Scholar 

  21. Huang XY, Li M, Luo R, Zhao FJ, Salt DE (2019) Epigenetic regulation of sulfur homeostasis in plants. J Exp Bot 70(16):4171–4182

    CAS  PubMed  Google Scholar 

  22. Jadoon S, Malik A (2018) A review of formation, toxicity of reactive oxygen species by heavy metals and tolerance in plants. Int J Biochem Res Rev. https://doi.org/10.9734/IJBCRR/2018/38670

    Article  Google Scholar 

  23. Kasten U, Mullenders LH, Hartwig A (1997) Cobalt (II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. Mutat Res/DNA Repair 383:81–89

    CAS  Google Scholar 

  24. Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4(6):1036–1046

    CAS  Google Scholar 

  25. Kumar J, Bennetzen L (2000) Central players in the structure evolution and function of plant genomes. Trends Plant Sci 5:509–510

    CAS  PubMed  Google Scholar 

  26. Kumar V, Mishra RK, Kaur G, Dutta D (2017) Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics 9(11):1596–1609

    CAS  PubMed  Google Scholar 

  27. Lanciano S, Mirouze M (2018) Transposable elements: All mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev 49:106–114

    CAS  PubMed  Google Scholar 

  28. Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lison D, Van den Brule S, Van Maele-Fabry G (2018) Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crıt Rev Toxicol 48(7):522–539

    CAS  PubMed  Google Scholar 

  30. Liu L, Van Groen T, Kadish I, Tollefsbol TO (2009) DNA methylation impacts on learning and memory in aging. Neurobiol Aging 30:549–560

    CAS  PubMed  Google Scholar 

  31. Lwalaba JLW, Zvobgo G, Fu L, Zhang X, Mwamba TM, Muhammad N, Mundende RPM, Zhang G (2017) Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. Ecotoxicol Environ Saf 139:488–495

    CAS  PubMed  Google Scholar 

  32. Masuta Y, Kawabe A, Nozawa K, Naito K, Kato A, Ito H (2018) Characterization of a heat-activated retrotransposon in Vigna angularis. Breed Sci 68(2):168–176

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nie Q, Qiao G, Peng L, Wen X (2019) Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress. Plant Physiol Biochem 135:460–468

    CAS  PubMed  Google Scholar 

  34. Ozfidan-Konakci C, Yildiztugay E, Bahtiyar M, Kucukoduk M (2018) The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol Environ Saf 155:66–75

    CAS  PubMed  Google Scholar 

  35. Poczai P, Varga I, Bell NE, Hyvonen J (2012) Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. In: The molecular basis of plant genetic diversity. InTech

  36. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Popescu M, Popescu GC (2018) The role of seaweeds extracts as allevıators of heavy metal stress ın plants. In: International multidisciplinary scientific geoconference: SGEM, vol 18, pp 981–986

  38. Pouteau S, Grandbastien MA, Boccara M (1994) Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5:535–542

    CAS  Google Scholar 

  39. Rancelis V, Cesniene T, Zvingila D, Barysas D, Balciuniene L, Dapkuniene S (2006) Polymorphism of response to cobalt excess in individual Vicia faba plants. Environ Exp Bot 55:221–234

    CAS  Google Scholar 

  40. Rod NK, Gudadhe NN, Karmakar N, Mehta PV, Narwade AV (2019) Cobalt chloride enhances crop duration, increases production, and productivity of chickpea. J Plant Nutr 42(1):40–57

    CAS  Google Scholar 

  41. Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868

    CAS  PubMed  Google Scholar 

  42. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-pb cisregulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture wounding methyl jasmonate and fungal elicitors. Plant J 18:383–393

    CAS  PubMed  Google Scholar 

  43. Tappore R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel K, Livi KJT, Rivers MI, Marcus MA (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Google Scholar 

  44. Taspinar MS, Aydin M, Sigmaz B, Yildirim N, Agar G (2017) Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environ Sci Pollut Res 24(29):22948–22953

    CAS  Google Scholar 

  45. Todorova D, Sergiev I, Moskova I, Katerova Z, Georgieva N, Alexieva V, Mapelli S (2014) Biochemical responses of triticale plants treated with UV-B irradiation and nutrient solution enriched with humic acids. Turk J Bot 38(4):747–753

    CAS  Google Scholar 

  46. Uzunboy S, Demirci Çekiç S, Apak R (2019) Determination of cobalt (II)-hydrogen peroxide-ınduced DNA oxidative damage and preventive antioxidant activity by CUPRAC colorimetry. Anal Lett 52:2663–2676

    CAS  Google Scholar 

  47. Van Goethem F, Lison D, Kirsch-Volders M (1997) Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt–tungsten carbide. Mutat Res/Genet Toxicol Environ Mutagen 392(1):31–43

    Google Scholar 

  48. Voets J, Bervoets L, Blust R (2004) Cadmium bioavailability and accumulation in the presence of humic acid to the zebra mussel Dreissena polymorpha. Environ Sci Technol 38:1003–1008

    CAS  PubMed  Google Scholar 

  49. Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10(4):937–951

    Google Scholar 

  50. Yigider E, Taspinar MS, Sigmaz B, Aydin M, Agar G (2016) Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene 6:13–17

    CAS  Google Scholar 

  51. Yildirim N, Agar G, Taspinar MS, Turan M, Aydin M, Arslan E (2014) Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agric Scand Sect B Soil Plant Sci 64:141–148

    CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the participants in the study.

Author information

Authors and Affiliations

Authors

Contributions

MST and EY designed the study. MST realized that the submitting and the spelling of the article. Applications, DNA isolation and IRAP and REMAP PCR reactions were evaluated and performed by MA and EY. GA and EY analyzed IRAP and REMAP assay. The authors have brought together their data. All authors approved the final manuscript.

Corresponding author

Correspondence to Mahmut Sinan Taspinar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigider, E., Taspinar, M.S., Aydin, M. et al. Cobalt-induced retrotransposon polymorphism and humic acid protection on maize genome. BIOLOGIA FUTURA 71, 123–130 (2020). https://doi.org/10.1007/s42977-020-00001-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-020-00001-z

Keywords

Navigation