Skip to main content
Log in

CQDs as emerging trends for future prospect in enhancement of photocatalytic activity

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) as a rising class of carbon family have gained widespread attention in view of their multiple properties such as great photoluminescence (PL) properties, facile synthesis route, needing economical and cheap raw material, high physiochemical stability, and simple functionalization. This makes CQDs highly versatile and with potential for different applications. To date, CQDs-enabled photocatalysts are regarded as one of the most efficient technologies to degrade pollutants in water; however, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder getting an ideal performance that may be applied on a large scale. Conventional techniques have been modified via a new advanced method. In this review, we highlighted the strategies to improve the activity of conventional semiconductor photocatalysis via coupling with CQDs, and strategies to improve the photocatalytic activity such as functionalization, doping, and Z-scheme heterojunctions were discussed in detail. This review also covered the CQDs heterojunction application in pollutant degradation and discussed several examples with high-performance photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ÓhAiseadha C, Quinn G, Connolly R, Connolly M, Soon W (2020) Energy and climate policy—an evaluation of global climate change expenditure 2011–2018. Energies 13(18):4839. https://doi.org/10.3390/en13184839

    Article  CAS  Google Scholar 

  2. Chen Z, Li X, Xu Q, Tao Z, Yao F, Huang X, Yang Q (2020) Three-dimensional network space Ag3PO4/NP–CQDs/rGH for enhanced organic pollutant photodegradation: synergetic photocatalysis activity/stability and effect of real water quality parameters. Chem Eng J 390:124454. https://doi.org/10.1016/j.cej.2020.124454

    Article  CAS  Google Scholar 

  3. Sargin I, Yanalak G, Arslan G, Patir IH (2019) Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution. Int J Hydrogen Energy 44(39):21781–21789. https://doi.org/10.1016/j.ijhydene.2019.06.168

    Article  CAS  Google Scholar 

  4. Nasir JA, ur Rehman Z, Shah SNA, Khan A, Butler IS, Catlow CRA (2020) Recent developments and perspectives in CdS-based photocatalysts for water splitting. J Mater Chem A 8(40):20752–20780. https://doi.org/10.1039/D0TA05834C

    Article  CAS  Google Scholar 

  5. Mohammadi M, Rezaei A, Khazaei A, Xuwei S, Huajun Z (2019) Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl Mater Interfaces 11(36):3319433206. https://doi.org/10.1021/acsami.9b07961

    Article  CAS  Google Scholar 

  6. Maiti D, Hare BJ, Daza YA, Ramos AE, Kuhn JN, Bhethanabotla VR (2018) Earth abundant perovskite oxides for low temperature CO2 conversion. Energy Environ Sci 11(3):648659. https://doi.org/10.1039/C7EE03383D

    Article  Google Scholar 

  7. Yaashikaa PR, Kumar PS, Varjani SJ, Saravanan A (2019) A review on photochemical, biochemical and electrochemical transformation of CO2 into value added products. J CO2 Util 33:131147. https://doi.org/10.1016/j.jcou.2019.05.017

    Article  CAS  Google Scholar 

  8. Pirsaheb M, Asadi A, Sillanpää M, Farhadian N (2018) Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review. J Mol Liq 271:857–871. https://doi.org/10.1016/j.molliq.2018.09.064

    Article  CAS  Google Scholar 

  9. Zhang D, Cao W, Mao B, Liu Y, Li F, Dong W, Shi W (2020) Efficient 0D/2D heterostructured photocatalysts with Zn-AgIn5S8 quantum dots embedded in ultrathin NiS nanosheets for hydrogen production. Ind Eng Chem Res 59(37):16249–16257. https://doi.org/10.1021/acs.iecr.0c02397

    Article  CAS  Google Scholar 

  10. Zhang X, Peng T, Song S (2016) Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A 4(7):2365–2402. https://doi.org/10.1039/C5TA08939E

    Article  CAS  Google Scholar 

  11. Gadhi TA, Qureshi A, Channa N, Mahar RB, Chiadò A, Novara C, Tagliaferro A (2021) Bi2O3/nylon multilayered nanocomposite membrane for the photocatalytic inactivation of waterborne pathogens and degradation of mixed organic pollutants. Environ Sci: Nano 8(1):342–355. https://doi.org/10.1039/D0EN01026J

    Article  CAS  Google Scholar 

  12. Sim LC (2015) Synthesis of solar and visible-light-active highly ordered titania nanotube arrays (TNTS) for photocatalytic applications/Sim Lan Ching (Doctoral dissertation, University of Malaya). http://studentsrepo.um.edu.my/id/eprint/7724

  13. Jiang L, Yuan X, Zeng G, Wu Z, Liang J, Chen X, Wang H (2018) Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl Catal B: Environ 221:715–725. https://doi.org/10.1016/j.apcatb.2017.09.059

    Article  CAS  Google Scholar 

  14. Dai K, Lv J, Zhang J, Zhu G, Geng L, Liang C (2018) Efficient visible-light-driven splitting of water into hydrogen over surface-fluorinated anatase TiO2 nanosheets with exposed 001 facets/layered CdS–diethylenetriamine nanobelts. ACS Sustain Chem Eng 6(10):12817–12826. https://doi.org/10.1021/acssuschemeng.8b02064

    Article  CAS  Google Scholar 

  15. Wang YL, Nie T, Li YH, Wang XL, Zheng LR, Chen AP et al (2017) Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm. Angew Chem 129(26):7538–7542. https://doi.org/10.1002/ange.201702943

    Article  Google Scholar 

  16. Fan T, Zhou Y, Qiu M, Zhang H (2018) Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J Innov Opt Health Sci 11(06):1830003. https://doi.org/10.1142/S1793545818300033

    Article  CAS  Google Scholar 

  17. Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J Mater Sci: Mater Electron 28(18):13532–13539. https://doi.org/10.1007/s10854-017-7192-z

    Article  CAS  Google Scholar 

  18. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6(30):7944–7970. https://doi.org/10.1039/C7TC05878K

    Article  CAS  Google Scholar 

  19. Arcudi F, Đorđević L, Prato M (2019) Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc Chem Res 52(8):2070–2079. https://doi.org/10.1021/acs.accounts.9b00249

    Article  CAS  Google Scholar 

  20. Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY (2017) Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Sci Total Environ 584:393–401. https://doi.org/10.1016/j.scitotenv.2017.01.021

    Article  CAS  Google Scholar 

  21. Kou X, Jiang S, Park SJ, Meng LY (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 49(21):6915–6938. https://doi.org/10.1039/D0DT01004A

    Article  CAS  Google Scholar 

  22. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184(2):343–368. https://doi.org/10.1007/s00604-016-2043-9

    Article  CAS  Google Scholar 

  23. Shi R, Li Z, Yu H, Shang L, Zhou C, Waterhouse GI et al (2017) Effect of nitrogen doping level on the performance of N-doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution. Chemsuschem 10(22):4650–4656. https://doi.org/10.1002/cssc.201700943

    Article  CAS  Google Scholar 

  24. Shao DD, Yang WJ, Xiao HF, Wang ZY, Zhou C, Cao XL, Sun SP (2019) Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Appl Mater Interfaces 12(1):580–590. https://doi.org/10.1021/acsami.9b16704

    Article  CAS  Google Scholar 

  25. Kosaka T, Teduka Y, Ogura T, Zhou Y, Hisatomi T, Nishiyama H, Domen K, Takahashi Y, Onishi H (2020) Transient kinetics of O2 evolution in photocatalytic water-splitting reaction. ACS Catal 10(22):13159–13164

    Article  CAS  Google Scholar 

  26. Wang X, Cao Z, Zhang Y, Xu H, Cao S, Zhang R (2020) All-solid-state Z-scheme Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2. Chem Eng J 385:123782. https://doi.org/10.1016/j.cej.2019.123782

    Article  Google Scholar 

  27. Ivanova I, Kandiel TA, Cho YJ, Choi W, Bahnemann D (2018) Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO3 particles: effect of different cocatalysts and their specific activity. ACS Catal 8(3):2313–2325. https://doi.org/10.1021/acscatal.7b04326

    Article  CAS  Google Scholar 

  28. Weng B, Qi MY, Han C, Tang ZR, Xu YJ (2019) Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal 9(5):4642–4687. https://doi.org/10.1021/acscatal.9b00313

    Article  CAS  Google Scholar 

  29. Khan MS, Zhang F, Osada M, Mao SS, Shen S (2020) Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL 4(8):1900435. https://doi.org/10.1002/solr.201900435

    Article  CAS  Google Scholar 

  30. De CK, Routh T, Roy D, Mandal S, Mandal PK (2018) Highly photoluminescent InP based core alloy shell QDs from air-stable precursors: excitation wavelength dependent photoluminescence quantum yield, photoluminescence decay dynamics, and single particle blinking dynamics. J Phys Chem C 122(1):964–973. https://doi.org/10.1021/acs.jpcc.7b11327

    Article  CAS  Google Scholar 

  31. Yan C, Du X, Li J, Ding X, Li Z, Tang Y (2019) Effect of excitation wavelength on optical performances of quantum-dot-converted light-emitting diode. Nanomaterials 9(8):1100. https://doi.org/10.3390/nano9081100

    Article  CAS  Google Scholar 

  32. Chien YH, Chan KK, Yap SHK, Yong KT (2018) NIR-responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: a perspective. J Chem Technol Biotechnol 93(6):1519–1528. https://doi.org/10.1002/jctb.5581

    Article  CAS  Google Scholar 

  33. Di G, Zhu Z, Dai Q, Zhang H, Shen X, Qiu Y, Küppers S (2020) Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs. Chem Eng J 379:122296. https://doi.org/10.1016/j.cej.2019.122296

    Article  CAS  Google Scholar 

  34. Kong D, Zheng Y, Kobielusz M, Wang Y, Bai Z, Macyk W, Tang J (2018) Recent advances in visible light-driven water oxidation and reduction in suspension systems. Mater Today 21(8):897–924. https://doi.org/10.1016/j.mattod.2018.04.009

    Article  CAS  Google Scholar 

  35. He RA, Cao SW, Yu JG (2016) Recent advances in morphology control and surface modification of Bi-based photocatalysts. Acta Phys Chim Sin 32(12):2841–2870. https://doi.org/10.3866/PKU.WHXB201611021

    Article  CAS  Google Scholar 

  36. Jaleel JA, Pramod K (2018) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321. https://doi.org/10.1016/j.jconrel.2017.11.027

    Article  CAS  Google Scholar 

  37. Chen Y, Lu Q, Yan X, Mo Q, Chen Y, Liu B, Wang Q (2016) Enhanced photocatalytic activity of the carbon quantum dot-modified BiOI microsphere. Nanoscale Res Lett 11(1):1–7. https://doi.org/10.1186/s11671-016-1262-7

    Article  CAS  Google Scholar 

  38. Hu Y, Guan R, Zhang C, Zhang K, Liu W, Shao X, Yue Q (2020) Fluorescence and photocatalytic activity of metal-free nitrogen-doped carbon quantum dots with varying nitrogen contents. Appl Surf Sci 531:147344. https://doi.org/10.1016/j.apsusc.2020.147344

    Article  CAS  Google Scholar 

  39. Zhou B, Zhao X, Liu H, Qu J, Huang CP (2010) Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl Catal B: Environ 99(1–2):214–221. https://doi.org/10.1016/j.apcatb.2010.06.022

    Article  CAS  Google Scholar 

  40. Fresno F, Portela R, Suárez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2(9):2863–2884. https://doi.org/10.1039/C3TA13793G

    Article  CAS  Google Scholar 

  41. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  42. Peng F, Zhou Q, Zhang D, Lu C, Ni Y, Kou J, Xu Z (2015) Bio-inspired design: Inner-motile multifunctional ZnO/CdS heterostructures magnetically actuated artificial cilia film for photocatalytic hydrogen evolution. Appl Catal B: Environ 165:419–427. https://doi.org/10.1016/j.apcatb.2014.09.050

    Article  CAS  Google Scholar 

  43. Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, Christensen IL (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60(15):1600–1614. https://doi.org/10.1016/j.addr.2008.08.004

    Article  CAS  Google Scholar 

  44. Othman NH, Ismail MC, Mustapha M, Sallih N, Kee KE, Jaal RA (2019) Graphene-based polymer nanocomposites as barrier coatings for corrosion protection. Prog Org Coat 135:82–99. https://doi.org/10.1016/j.porgcoat.2019.05.030

    Article  CAS  Google Scholar 

  45. Wang P, Li D, Chen J, Zhang X, Xian J, Yang X, Shao Y (2014) A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl Catal B: Environ 160:217–226. https://doi.org/10.1016/j.apcatb.2014.05.032

    Article  CAS  Google Scholar 

  46. Ng BJ, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai SP (2020) Z-scheme photocatalytic systems for solar water splitting. Adv Sci 7(7):1903171. https://doi.org/10.1002/advs.201903171

    Article  CAS  Google Scholar 

  47. Ge J, Zhang Y, Heo YJ, Park SJ (2019) Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts 9(2):122. https://doi.org/10.3390/catal9020122

    Article  CAS  Google Scholar 

  48. Cai H, Wang B, Xiong L, Bi J, Yuan L, Yang G, Yang S (2019) Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Appl Catal B: Environ 256:117853. https://doi.org/10.1016/j.apcatb.2019.117853

    Article  CAS  Google Scholar 

  49. Yaw CS, Ruan Q, Tang J, Soh AK, Chong MN (2019) A Type II nn staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: fabrication, characterisation and experimental validation. Chem Eng J 364:177–185. https://doi.org/10.1016/j.cej.2019.01.179

    Article  CAS  Google Scholar 

  50. Liu E, Xu C, Jin C, Fan J, Hu X (2019) Carbon quantum dots bridged TiO2 and Cd0.5Zn0.5S film as solid-state Z-scheme photocatalyst with enhanced H2 evolution activity. J Taiwan Inst Chem Eng 97:316–325. https://doi.org/10.1016/j.jtice.2019.02.027

    Article  CAS  Google Scholar 

  51. Zhang Z, Zheng T, Xu J, Zeng H, Zhang N (2017) Carbon quantum dots/Bi2WO6 composites for efficient photocatalytic pollutant degradation and hydrogen evolution. NANO 12(07):1750082. https://doi.org/10.1142/S1793292017500825

    Article  CAS  Google Scholar 

  52. Liang Y, Lin S, Liu L, Hu J, Cui W (2015) Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation. Appl Catal B: Environ 164:192–203. https://doi.org/10.1016/j.apcatb.2014.08.048

    Article  CAS  Google Scholar 

  53. Xu X, Gao Z, Cui Z, Liang Y, Li Z, Zhu S, Ma J (2016) Synthesis of Cu2O octadecahedron/TiO2 quantum dot heterojunctions with high visible light photocatalytic activity and high stability. ACS Appl Mater Interfaces 8(1):91–101. https://doi.org/10.1021/acsami.5b06536

    Article  CAS  Google Scholar 

  54. Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, Yang B (2018) Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today 19:201–218. https://doi.org/10.1016/j.nantod.2018.02.008

    Article  CAS  Google Scholar 

  55. Yang MQ, Gao M, Hong M, Ho GW (2018) Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv Mater 30(47):1802894. https://doi.org/10.1002/adma.201802894

    Article  CAS  Google Scholar 

  56. Lu YH, Chen W, Feng YP, He PM (2009) Tuning the electronic structure of graphene by an organic molecule. J Phys Chem B 113(1):2–5. https://doi.org/10.1021/jp806905e

    Article  CAS  Google Scholar 

  57. Li Z, Loh XJ (2017) Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 9(3):e1429. https://doi.org/10.1002/wnan.1429

    Article  Google Scholar 

  58. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014. https://doi.org/10.1007/s00216-009-3332-5

    Article  CAS  Google Scholar 

  59. Shao P, Tian J, Yang F, Duan X, Gao S, Shi W, Wang S (2018) Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants. Adv Func Mater 28(13):1705295. https://doi.org/10.1002/adfm.201705295

    Article  CAS  Google Scholar 

  60. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4(4):455–458. https://doi.org/10.1002/smll.200700578

    Article  CAS  Google Scholar 

  61. Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q (2013) Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 5(23):11665–11671. https://doi.org/10.1039/C3NR03893A

    Article  CAS  Google Scholar 

  62. Cleeton C, Keirouz A, Chen X, Radacsi N (2019) Electrospun nanofibers for drug delivery and biosensing. ACS Biomater Sci Eng 5(9):4183–4205. https://doi.org/10.1021/acsbiomaterials.9b00853

    Article  CAS  Google Scholar 

  63. Amiri M, Nekoueian K, Saberi RS (2020) Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem. https://doi.org/10.1007/s00216-020-02915-y

    Article  Google Scholar 

  64. Cruz RAT, Soriano AN, de Yro PAN, Quiachon GMO, Emolaga CS, Ysulat MLM, Basilia BA (2019) Functionalized carbon-based quantum dots: optical characterization and potential application as Bio-fluorophore. IOP Conf Ser Mater Sci Eng 559(1):012003

    Article  CAS  Google Scholar 

  65. Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114(12):6130–6178. https://doi.org/10.1021/cr200359

    Article  CAS  Google Scholar 

  66. Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J et al (2015) Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects. Angew Chem 127(25):7383–7388. https://doi.org/10.1002/ange.201501478

    Article  Google Scholar 

  67. You Y, Tong X, Wang W, Sun J, Yu P, Ji H et al (2019) Eco-friendly colloidal quantum dot-based luminescent solar concentrators. Adv Sci 6(9):1801967. https://doi.org/10.1002/advs.201801967

    Article  CAS  Google Scholar 

  68. Kim MR, Ma D (2015) Quantum-dot-based solar cells: recent advances, strategies, and challenges. J Phys Chem Lett 6(1):85–99. https://doi.org/10.1021/jz502227h

    Article  CAS  Google Scholar 

  69. Yang F, LeCroy GE, Wang P, Liang W, Chen J, Fernando KS, Sun YP (2016) Functionalization of carbon nanoparticles and defunctionalization toward structural and mechanistic elucidation of carbon “quantum” dots. J Phys Chem C 120(44):25604–25611. https://doi.org/10.1021/acs.jpcc.6b08171

    Article  CAS  Google Scholar 

  70. Phang SJ, Tan LL (2019) Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal Sci Technol 9(21):5882–5905. https://doi.org/10.1039/C9CY01452G

    Article  CAS  Google Scholar 

  71. Devi P, Rajput P, Thakur A, Kim KH, Kumar P (2019) Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC, Trends Anal Chem 114:171–195. https://doi.org/10.1016/j.trac.2019.03.003

    Article  CAS  Google Scholar 

  72. Qu Y, Xu X, Huang R, Qi W, Su R, He Z (2020) Enhanced photocatalytic degradation of antibiotics in water over functionalized N, S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chem Eng J 382:123016. https://doi.org/10.1016/j.cej.2019.123016

    Article  CAS  Google Scholar 

  73. Li Z, Bommier C, Chong ZS, Jian Z, Surta TW, Wang X, Xing Z, Neuefeind JC, Stickle WF, Dolgos M, Greaney PA (2017) Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater 7(18):1602894

    Article  Google Scholar 

  74. Li Z, Bommier C, Chong ZS, Jian Z, Surta TW, Wang X, Ji X (2017) Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater 7(18):1602894. https://doi.org/10.1002/aenm.201602894

    Article  CAS  Google Scholar 

  75. Liu W, Wang C, Herold F, Etzold BJ, Su D, Qi W (2019) Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Appl Catal B: Environ 258:117982. https://doi.org/10.1016/j.apcatb.2019.117982

    Article  CAS  Google Scholar 

  76. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855. https://doi.org/10.1039/C3EE41444B

    Article  CAS  Google Scholar 

  77. Shabalala AN, Ekolu SO (2019) Quality of water recovered by treating acid mine drainage using pervious concrete adsorbent. Water SA 45(4):638–647. https://doi.org/10.17159/wsa/2019.v45.i4.7545

    Article  CAS  Google Scholar 

  78. Tian L, Li Z, Wang P, Zhai X, Wang X, Li T (2020) Carbon quantum dots for advanced electrocatalysis. J Energy Chem 55(1):279–294. https://doi.org/10.1016/j.jechem.2020.06.057

    Article  Google Scholar 

  79. De Strulle R (2009) Environmentally-neutral processing with condensed phase cryogenic fluids. United States patent US 7,601,257

  80. Tang J, Zhang J, Zhang Y, Xiao Y, Shi Y, Chen Y, Xu W (2019) Influence of group modification at the edges of carbon quantum dots on fluorescent emission. Nanoscale Res Lett 14(1):1–10. https://doi.org/10.1186/s11671-019-3079-7

    Article  CAS  Google Scholar 

  81. Navarro RM, Alvarez-Galvan MC, de la Mano JAV, Al-Zahrani SM, Fierro JLG (2010) A framework for visible-light water splitting. Energy Environ Sci 3(12):1865–1882. https://doi.org/10.1039/C001123A

    Article  CAS  Google Scholar 

  82. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  83. Teng Y, Zhou Q, Gao P (2019) Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit Rev Environ Sci Technol 49(24):2314–2358. https://doi.org/10.1080/10643389.2019.1609856

    Article  CAS  Google Scholar 

  84. Liang M, Zhang Z, Long R, Wang Y, Yu Y, Pei Y (2020) Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen. Environ Pollut 259:113770. https://doi.org/10.1016/j.envpol.2019.113770

    Article  CAS  Google Scholar 

  85. Wei X, Wang Y, Huang Y, Fan C (2019) Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. J Alloy Compd 802:467–476. https://doi.org/10.1016/j.jallcom.2019.06.086

    Article  CAS  Google Scholar 

  86. Zhu K, Lv Y, Liu J, Wang W, Wang C, Li S, Li Z (2019) Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J Alloy Compd 802:13–18. https://doi.org/10.1016/j.jallcom.2019.06.193

    Article  CAS  Google Scholar 

  87. Huang J, Li L, Chen J, Ma F, Yu Y (2020) Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting. Int J Hydrogen Energy 45(3):1822–1836. https://doi.org/10.1016/j.ijhydene.2019.11.078

    Article  CAS  Google Scholar 

  88. Zhu J, Zhang M, Xiong J, Yan Y, Li W, Cheng G (2019) Electrostatically assembled construction of ternary TiO2-Cu@C hybrid with enhanced solar-to-hydrogen evolution employing amorphous carbon dots as electronic mediator. Chem Eng J 375:121902. https://doi.org/10.1016/j.cej.2019.06.030

    Article  CAS  Google Scholar 

  89. Syed N, Huang J, Feng Y, Wang X, Cao L (2019) Carbon-based nanomaterials via heterojunction serving as photocatalyst. Front Chem 7:713. https://doi.org/10.3389/fchem.2019.00713

    Article  CAS  Google Scholar 

  90. Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Kang Z (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B: Environ 206:501–509. https://doi.org/10.1016/j.apcatb.2017.01.049

    Article  CAS  Google Scholar 

  91. Chen W, Yan RQ, Zhu JQ, Huang GB, Chen Z (2020) Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl Surf Sci 28(504):144406. https://doi.org/10.1016/j.surfin.2020.100745

    Article  CAS  Google Scholar 

  92. Putritama V, Fauzia V, Supangat A (2020) The effect of the layer number of MoS2 nanosheets on the photocatalytic efficiency of ZnO/MoS2. Surf Interfaces 21:100745. https://doi.org/10.1016/j.surfin.2020.100745

    Article  CAS  Google Scholar 

  93. Zhang M, Lai C, Li B, Huang D, Zeng G, Xu P et al (2019) Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J Catal 369:469–481. https://doi.org/10.1016/j.jcat.2018.11.029

    Article  CAS  Google Scholar 

  94. Zhen Y, Wang J, Fu F, Fu W, Liang Y (2019) The Novel Z-Scheme Ternary-Component Ag/AgI/α-MoO3 Catalyst with excellent visible-light photocatalytic oxidative desulfurization performance for model fuel. Nanomaterials 9(7):1054. https://doi.org/10.3390/nano9071054

    Article  CAS  Google Scholar 

  95. Pan J, Liu J, Zuo S, Khan UA, Yu Y, Li B (2018) Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Appl Surf Sci 444:177–186. https://doi.org/10.1016/j.apsusc.2018.01.189

    Article  CAS  Google Scholar 

  96. Li C, Che H, Liu C, Che G, Charpentier PA, Xu WZ, Liu L (2019) Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. J Taiwan Inst Chem Eng 95:669–681. https://doi.org/10.1016/j.jtice.2018.10.011

    Article  CAS  Google Scholar 

  97. Das GS, Shim JP, Bhatnagar A, Tripathi KM, Kim T (2019) Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe (III) and ascorbic acid. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-49266-y

    Article  CAS  Google Scholar 

  98. Mondal K, Sharma A (2016) Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6(87):83589–83612. https://doi.org/10.1039/D0DT01004A

    Article  CAS  Google Scholar 

  99. Pandikumar A, Jothivenkatachalam K (eds) (2019) Photocatalytic functional materials for environmental remediation. Wiley, Hoboken. https://doi.org/10.1002/9781119529941

    Book  Google Scholar 

  100. LEI L (2013) TiO2 nanocomposite photocatalysts for water disinfection and decontamination under solar irradiation (Doctoral dissertation, Nanyang Technological University). https://doi.org/10.32657/10356/59532

  101. Banerjee A, Marcellino M, Masten I (2005) Leading indicators for euro-area inflation and GDP growth. Oxford Bull Econ Stat 67:785–813. https://doi.org/10.1111/j.1468-0084.2005.00141.x

    Article  Google Scholar 

  102. Shandilya P, Mittal D, Sudhaik A, Soni M, Raizada P, Saini AK, Singh P (2019) GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection. Sep Purif Technol 210:804–816. https://doi.org/10.1016/j.seppur.2018.08.077

    Article  CAS  Google Scholar 

  103. Behnood R, Sodeifian G (2020) Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants. J Environ Chem Eng 8(4):103821. https://doi.org/10.1016/j.jece.2020.103821

    Article  CAS  Google Scholar 

  104. Chen Q, Chen L, Qi J, Tong Y, Lv Y, Xu C, Liu W (2019) Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: effect of light wavelength. Chin Chem Lett 30(6):1214–1218. https://doi.org/10.1016/j.cclet.2019.03.002

    Article  CAS  Google Scholar 

  105. Feng S, Chen T, Liu Z, Shi J, Yue X, Li Y (2020) Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci Total Environ 704:135404. https://doi.org/10.1016/j.scitotenv.2019.135404

    Article  CAS  Google Scholar 

  106. Gao K, Gao X, Zhu W, Wang C, Yan T, Fu F, Li Q (2021) The hierarchical layered microsphere of BiOIxBr1–x solid solution decorated with N-doped CQDs with enhanced visible light photocatalytic oxidation pollutants. Chem Eng J 406:127155. https://doi.org/10.1016/j.cej.2020.127155

    Article  CAS  Google Scholar 

  107. Haitang WEI, Dongming ZHANG, Tianping LYU, Genlin ZHANG, Qingju LIU (2019) Research progress of visible-light response photocatalysts for organic pollutant degradation. J Funct Mater/Gongneng Cailiao 50(5)

  108. Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Zhang T (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2(10):3344–3351. https://doi.org/10.1039/C3TA14108J

    Article  CAS  Google Scholar 

  109. Zuo R, Du G, Zhang W, Liu L, Liu Y, Mei L, Li Z (2014) Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv Mater Sci Eng. https://doi.org/10.1155/2014/170148

    Article  Google Scholar 

  110. Sun C, Xu Q, Xie Y, Ling Y, Jiao J, Zhu H, Zhou D (2017) High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties. J Alloy Compd 723:333–344. https://doi.org/10.1016/j.jallcom.2017.06.130

    Article  CAS  Google Scholar 

  111. Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Liu H (2015) Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11:419–427. https://doi.org/10.1016/j.nanoen.2014.10.025

    Article  CAS  Google Scholar 

  112. Li S, Hu S, Jiang W, Liu Y, Zhou Y, Liu J, Wang Z (2018) Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. J Colloid Interface Sci 530:171–178. https://doi.org/10.1016/j.jcis.2018.06.084

    Article  CAS  Google Scholar 

  113. Li K, Su FY, Zhang WD (2016) Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl Surf Sci 375:110–117. https://doi.org/10.1016/j.apsusc.2016.03.025

    Article  CAS  Google Scholar 

  114. Lv B, Feng X, Lu L, Xia L, Yang Y, Wang X et al (2021) Facile synthesis of g-C3N4/TiO2/CQDs/Au Z-scheme heterojunction composites for solar-driven efficient photocatalytic hydrogen. Diam Relat Mater 111:108212. https://doi.org/10.1016/j.diamond.2020.108212

    Article  CAS  Google Scholar 

  115. Mahala C, Sharma MD, Basu M (2020) ZnO nanosheets decorated with graphite-like carbon nitride quantum dots as photoanodes in photoelectrochemical water splitting. ACS Appl Nano Mater 3(2):1999–2007. https://doi.org/10.1021/acsanm.0c00081

    Article  CAS  Google Scholar 

  116. Jiao Y, Huang Q, Wang J, He Z, Li Z (2019) A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl Catal B: Environ 247:124–132. https://doi.org/10.1016/j.apcatb.2019.01.073

    Article  CAS  Google Scholar 

  117. He F, Wang Y, Zhang J, Wang S, Zhao H, Dong P, Zhao C (2019) Hydrogen bond interactions within OH-CQDs/fiber-like carbon nitride for enhanced photodegradation and hydrogen evolution. Appl Surf Sci 495:143558. https://doi.org/10.1016/j.apsusc.2019.143558

    Article  CAS  Google Scholar 

  118. Jian X, Liu X, Yang HM, Li JG, Song XL, Dai HY, Liang ZH (2016) Construction of carbon quantum dots/proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application. Appl Surf Sci 370:514–521. https://doi.org/10.1016/j.apsusc.2016.02.119

    Article  CAS  Google Scholar 

  119. Hong Y, Meng Y, Zhang G, Yin B, Zhao Y, Shi W, Li C (2016) Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity. Sep Purif Technol 171:229–237. https://doi.org/10.1016/j.seppur.2016.07.025

    Article  CAS  Google Scholar 

  120. Guo F, Shi W, Guan W, Huang H, Liu Y (2017) Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep Purif Technol 173:295–303. https://doi.org/10.1016/j.seppur.2016.09.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52073166, 52072226), the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (No. 2019220214SYS017CG039), the Key Program for International S&T Cooperation Projects of Shaanxi Province (2020KW-038, 2020GHJD-04), Science and Technology Program of Xi'an, China (2020KJRC0009) and Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JY001), Science and Technology Resource Sharing Platform of Shaanxi Province (2020PT-022), and Science and Technology Plan of Weiyang District, Xi'an (202009). The authors thank Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials for their experimental platform and testing conditions. Dr. Y. Q. Feng ias grateful for the support from the Science and Technology Youth Stars Project of Shaanxi Province (2021KJXX-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Huang or Yongqiang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, N., Huang, J. & Feng, Y. CQDs as emerging trends for future prospect in enhancement of photocatalytic activity. Carbon Lett. 32, 81–97 (2022). https://doi.org/10.1007/s42823-021-00282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00282-x

Keywords

Navigation