Skip to main content
Log in

Electronic and mechanical properties of (6,1) single-walled carbon nanotubes with different tube diameters: a theoretical study

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We investigated the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) with different tube diameters using density functional theory (DFT) and molecular dynamics (MD) simulation, respectively. The carbon nanotubes’ electronic properties were derived from the index number (\(n_1\), \(n_2\)), lattice vectors, and the rolled graphene sheet orientation. For (6,1) SWCNT, (\(n_{1}\)-\(n_{2}\))/3 is non-integer, so the expected characteristic is semiconducting. We have considered (6,1) Chiral SWCNT with different diameters ‘d’ (4.68 Å, 4.90 Å, 5.14 Å, 5.32 Å, 5.53 Å) corresponds to respective bond lengths ‘\(\delta\)’ (1.32 Å, 1.38 Å, 1.45 Å, 1.50 Å and 1.56 Å) and then analyze the electronic properties from the Linear Combination of Atomic Orbitals (LCAO) based on DFT. We have used both the DFT-1/2 and GGA exchange energy correlation approximations for our calculation and compared the results. In both cases, the energy bandgap is decreasing order with the increase in bond lengths. The lowest value of formation energy was obtained at the bond length \(\delta =1.45\) Å (\(d=5.14\) Å). For the mechanical properties, we have calculated Young’s modulus using molecular dynamics (MD) simulations. From our calculation, we have found that the (6,1) SWCNT with bond length 1.45 Å (\(d=5.14\) Å) has Young’s modulus value of 1.553 TPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  2. Fischer JE, Johnson AT (1999) Electronic properties of carbon nanotubes. Curr Opin Solid State Mater Sci 4:28

    Article  CAS  Google Scholar 

  3. Hu Z, Arefin MRH, Yan X, Fan QH (2014) Mechanical property characterization of carbon nanotube modified polymeric nanocomposites by computer modeling. Compos Part B Eng 56:100

    Article  CAS  Google Scholar 

  4. Gardea F, Lagoudas DC (2014) Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos Part B Eng 56:611

    Article  CAS  Google Scholar 

  5. Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310:1171

    Article  CAS  Google Scholar 

  6. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  Google Scholar 

  7. Zhang X, Cui H, Gui Y, Tang J (2017) Mechanism and application of carbon nanotube sensors in SF\(_6\) decomposed production detection: a review. Nanoscale Res Lett 12:177. https://doi.org/10.1186/s11671-017-1945-8

    Article  CAS  Google Scholar 

  8. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review modern electronic materials 2:95–105. https://doi.org/10.1016/j.moem.2017.02.002

    Article  Google Scholar 

  9. Wang S, Zeng Q, Yang L, Zhang Z, Wang Z, Pei T, Ding L, Liang X, Gao M, Li Y, Peng L. M (2011) High-performance carbon nanotube light-emitting diodes with asymmetric contacts. Nano Lett 11:23–29. https://doi.org/10.1021/nl101513z

    Article  CAS  Google Scholar 

  10. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622

    Article  CAS  Google Scholar 

  11. Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026

    Article  CAS  Google Scholar 

  12. Durgun E, Dag S, Bagci VMK, Gulseren O, Yildirim T, Ciraci S (2003) Systematic study of adsorption of single atoms on a carbon nanotube. Phys Rev B 67:201401

    Article  Google Scholar 

  13. Abdelhalim A, Abdellah A, Scarpa G, Lugli P (2014) Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications. Nanotechnology 25:055208

    Article  Google Scholar 

  14. Zhou Y, Jiang Y, Xie G, Du X, Tai H (2014) Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens Actuators B Chem 191:24

    Article  CAS  Google Scholar 

  15. Liu SF, Lin S, Swager TM (2016) An organocobalt carbon nanotube chemiresistive carbon monoxide detector. ACS Sens 1:354

    Article  CAS  Google Scholar 

  16. Datta S (2005) Quantum transport: atom to transistor, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  17. Lojka M, Lauermannova AM, Sedmidubsky D, Pavlikova M, Zaleska M, Pavlik Z, Pivak A, Jankovsky O (2021) Magnesium oxychloride cement composites with MWCNT for the construction applications. MDPI Mater 14:484. https://doi.org/10.3390/ma14030484

    Article  CAS  Google Scholar 

  18. Duc HM, Huu DN, Huu TT, Trong LL, Nhu HL, Ngoc HP, Van TN, Thi QHK, Vu GN (2021) The effect of multiwalled carbon nanotubes on the thermal conductivity and cellular size of polyurethane foam. Adv Polymer Technol 2021:6634545. https://doi.org/10.1155/2021/6634545

    Article  CAS  Google Scholar 

  19. Nafar M, Grivani G (2019) Immobilization of MoO\(_2\)(acac)\(_2\) on multiwall carbon nano tube and epoxidation of alkenes. Iran J Chem Chem Eng (IJCCE) 38:1–8. https://doi.org/10.30492/ijcce.2019.30764

    Article  Google Scholar 

  20. Beydokhti AK, Hajiabadi SH, Sanati A (2018) Surface modification of carbon nanotubes as a key factor on rheological characteristics of water-based drilling muds. Iran J Chem Chem Engi (IJCCE) 37:1–14. https://doi.org/10.30492/ijcce.2018.28219

    Article  Google Scholar 

  21. Diva TN, Zare K, Taleshi F, Yousefi M (2019) Removal of Cd\(^{2+}\) from aqueous solution by Nickel Oxide/CNT nanocomposites. Iran J Chem Chem Eng (IJCCE) 38:141–154. https://doi.org/10.30492/ijcce.2019.30130

    Article  Google Scholar 

  22. Qiu M, Xie Y, Gao X, Li J, Deng Y, Guan D, Ma L, Yuan C (2016) Band gap opening and semiconductonotubes with distinctive boron-nitrogen line defect. Phys Chem Chem Phys 18:4643–4651. https://doi.org/10.1039/C5CP06853C

    Article  CAS  Google Scholar 

  23. Karimi P (2016) Effects of structure and partially localization of the \(\pi\) electron clouds of single-walled carbon nanotubes on the cation-\(\pi\) interactions. Iran J Chem Chem Eng (IJCCE) 35:35–43. https://doi.org/10.30492/ijcce.2016.22057

    Article  Google Scholar 

  24. Tavasoli A, Irani M, Nakhaeipour A, Mortazavi Y, Khodadadi AA, Dalai AK (2009) Preparation of a novel super active Fischer-Tropsch cobalt catalyst supported on carbon nanotubes. Iran J Chem Chem Eng (IJCCE) 28:37–48. https://doi.org/10.30492/ijcce.2009.6913

    Article  CAS  Google Scholar 

  25. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679. https://doi.org/10.1016/j.cbpa.2005.10.005

    Article  CAS  Google Scholar 

  26. Guo Q, Shen XT, Li YY, Xu SQ (2017) Carbon nanotubes-based drug delivery to cancer and brain. Curr Med Sci 37:635–641. https://doi.org/10.1007/s11596-017-1783-z

    Article  CAS  Google Scholar 

  27. Rai DP, Singh YT, Chettri B, Patra PK (2021) A theoretical investigation of electronic and optical properties of (6,1) single-wall carbon nanotube (SWCNT). Carbon Lett 31:441–448. https://doi.org/10.1007/s42823-020-00172-8

    Article  Google Scholar 

  28. Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP (2006) Ghasemi nejhad, analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43:6832

    Article  CAS  Google Scholar 

  29. Sinnott SB, Andreys R (2001) Carbon nanotubes: synthesis, properties and applications. Crit Rev Solid State Mater Sci 26:145

    Article  CAS  Google Scholar 

  30. Wang X, LI Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137

    Article  CAS  Google Scholar 

  31. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:53

    Article  Google Scholar 

  32. Chou SG, Plentz F, Jiang J, Saito R, Nezich D, Ribeiro HB, Jorio A, Pimenta MA, Samsonidze Ge G, Santos A P, Zheng M, Onoa G B, Semke E D, Dresselhaus G, Dresselhaus M S (2005) Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence Spectroscopy. Phys Rev Lett 94:127402

    Article  CAS  Google Scholar 

  33. Htoon H, O’Connell MJ, Doorn SK, Klimov VI (2005) Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions. Phys Rev Lett 94:127403

    Article  CAS  Google Scholar 

  34. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378

    Article  CAS  Google Scholar 

  35. Kim JY, Kim SH (2006) Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites. J Polymer Sci Part B Polymer Phys 44:1062

    Article  CAS  Google Scholar 

  36. Obodo KO, Gebreyesus G, Ouma CNM, Obodo JT, Ezeonu SO, Rai DP, Bouhafs B (2020) Controlling the electronic and optical properties of HfS\(_2\) mono-layers via lanthanide substitutional doping: a DFT+U study. RSC Adv 10:15670–5676. https://doi.org/10.1039/d0ra02464c

    Article  CAS  Google Scholar 

  37. Obodo KO, Ouma CNM, Obodo JT, Braun M, Bessarabov D (2019) First principles study of single and multi-site transition metal dopant ions in MoS\(_2\) monolayer. Comput Condens Matter 21:e00419. https://doi.org/10.1016/j.cocom.2019.e00419

    Article  Google Scholar 

  38. Obodo KO, Noto LL, Mofokeng SJ, Ouma CNM, Braun M, Dhlamini MS (2018) Influence of Tm , Ho and Er dopants on the properties of Yb activated ZnTiO\(_3\) perovskite : a density functional theory insight. Mater Res Exp 5:10622

    Google Scholar 

  39. Jana D, Sun CL, Chen LC, Chen KH (2013) Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog Mater Sci 58:565

    Article  CAS  Google Scholar 

  40. Wagner C, Schuster J, Schleife A (2019) Strain and screening: optical properties of a small-diameter carbon nanotube from first principles. Phys Rev B 99:075140

    Article  CAS  Google Scholar 

  41. Aditya ID (2018) Widayani and suprijadi, electronic properties of semiconducting zigzag (10, 0) carbon nanotubes due to uniaxial strain. ARPN J Eng Appl Sci 13:2390

    CAS  Google Scholar 

  42. Cho TH, Su WS, Leung TC, Ren W, Chan CT (2009) Electronic and optical properties of single-walled carbon nanotubes under a uniform transverse electric field: a first-principles study. Phys Rev B 79:235123

    Article  Google Scholar 

  43. Mawphlang BRKLL, Ghimire MP, Rai DP, Patra PK (2021) Buckling behavior of nonuniform carbon nanotubes using nonlocal elasticity theory and the differential transformation method. Int Nano Lett 11:25–34. https://doi.org/10.1007/s40089-020-00319-5

    Article  CAS  Google Scholar 

  44. Chena C, Song C, Yang J, Chena D, Zhua W, Liaoa C, Dong X, Liu X, Wei L, Hu N, He R, Zhang Y (2017) Intramolecular p-i-n junction photovoltaic device based on selectively doped carbon nanotubes. Nano Energy 32:280

    Article  Google Scholar 

  45. Wang H, Li B, Yang J (2017) Electronic, optical and mechanical properties of diamond nanowires encapsulated in carbon nanotubes: a first-principles view. J Phys Chem (C) 121:3661

    Article  CAS  Google Scholar 

  46. Treacy MMJ, Ebbesen TW, Gibsont JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678

    Article  CAS  Google Scholar 

  47. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511

    Article  CAS  Google Scholar 

  48. Al Kharusi MSM, Alzebdeh K, Pervez T (2016) An atomistic-based continuum modeling for evaluation of effective elastic properties of single-walled carbon nanotubes. J Nanomater 13:2016

    Google Scholar 

  49. Ding F (2005) Theoretical study of the stability of defects in the single walled carbon nanotubes as the function of their distance from the nanotube end. Phys Rev B 72:7

    Article  Google Scholar 

  50. Liew KM, Wong CH, He XQ, Tan MJ, Meguid SA (2004) Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B 69:8

    Article  Google Scholar 

  51. Unnikrishnan VU, Banerjee D, Reddy JN (2008) Atomistic- mesoscale interfacial resistance based thermal analysis of carbon nanotube systems. Int J Thermal Sci 47:1602

    Article  CAS  Google Scholar 

  52. Zhou Y, Baseer MA, Mahfuz H, Jeelani S (2006) Monte Carlo simulation on tensile failure process of unidirectional carbon fiber reinforced nano-phased epoxy. Mater Sci Eng A 420:63

    Article  Google Scholar 

  53. Sarmazdeh MM, Mendi RT, Zelati A, Boochani A, Nofeli F (2016) First-principles study of optical properties of InN nanosheet. Int J Mod Phys B 30:9

    Article  Google Scholar 

  54. Taghavi Mendi R, Sarmazdeh MM, Boochani A, Elahi SM, Naderi S (2016) Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations. Mod Phys Lett B 30:1

    Google Scholar 

  55. De Sousa JM, Bizao RA, Sousa Filho VP, Aguiar AL, Coluci VR, Pugno NM, Girao EC, Souza Filho AG, Galvao DS (2019) Elastic properties of graphyne-based nanotubes. Comput Mat Sci 170:109153

    Article  Google Scholar 

  56. De Sousa JM, Bizao RA, Sousa Filho VP, Aguiar AL, Coluci VR, Pugno NM, Girao EC, Souza Filho AG, Galvao DS (2018) Mechanical properties of pentagraphene-based nanotubes: a molecular dynamics study. MRS Adv 3:97

    Article  Google Scholar 

  57. Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee ME, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanper A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2020) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Cond Matter 32:015901

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  59. Ferreira L. G, Marques M, Teles LK (2008) Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys Rev B 78:125116

    Article  Google Scholar 

  60. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991

    Article  CAS  Google Scholar 

  61. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177

    Article  CAS  Google Scholar 

  62. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268. https://doi.org/10.1103/PhysRevB.58.7260

    Article  CAS  Google Scholar 

  63. Stokbro K, Petersen DE, Smidstrup S, Blom A, Ipsen M, Kaasbjerg K (2010) Semiempirical model for nanoscale device simulations. Phys Rev B 82:075420. https://doi.org/10.1103/PhysRevB.82.075420

    Article  CAS  Google Scholar 

  64. Kohn W, Sham LJ (1965) Self-consistent equations including ex- change and correlation effects. Phys Rev 140:A1138

    Article  Google Scholar 

  65. Matsuda Y, Tahir-Kheli J, Goddard WA (2010) Definitive band gaps for single-wall carbon nanotubes. J Phys Chem Lett 1:2946

    Article  CAS  Google Scholar 

  66. Zhonghua Y, Guili L, Yingdon Q, Rongde L (2015) First-principle study on energy gap of CNT superlattice structure. J Semiconductors 36:102002

    Article  Google Scholar 

  67. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  68. Zang JL, Yuan Q, Wang FC, Zhao YP (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput Mater Sci 46:621

    Article  CAS  Google Scholar 

  69. Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447:51

    Article  Google Scholar 

  70. Nam T, Goto K, Yamaguchi Y, Premalal E, Shimamura Y, Inoue Y, Naito K, Ogihara S (2015) Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites. Compos Part A Appl Sci Manuf 76:289

    Article  CAS  Google Scholar 

  71. Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y, Itami K (2019) Strength of carbon nanotubes depends on their chemical structures. Nat Commun 10:1

    Article  CAS  Google Scholar 

  72. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552

    Article  CAS  Google Scholar 

  73. Hall AR, Anto L, Liu J, Vicci L, Falvo MR, Superfine R, Washburn S (2006) Experimental measurement of single-wall carbon nanotube torsional properties. Phys Rev Lett 96:256102

    Article  CAS  Google Scholar 

  74. Huang J, Rodrigue D (2015) Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites. Mater Design 65:974

    Article  CAS  Google Scholar 

  75. Sakharova NA, Pereira AFG, Antunes JM, Brett CMA, Fernandes JV (2015) Mechanical characterization of single-walled carbon nanotubes: numerical simulation study. Compos Part B Eng 75:73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. P. Rai acknowledges Core Research Grant from Department of Science and Technology SERB (CRG DST-SERB, New Delhi India) via Sanction no.CRG/2018/000009(Ver-1). KOO acknowledges DSI South Africa and HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University for financial support via KP5 grant.

Author information

Authors and Affiliations

Authors

Contributions

YTS: he is the first author, performing calculations, writing—original draft, and writing—review and editing. PKP: conceptualization, date curation, and formal analysis. KOO: formal analysis, data curation, and investigation. DPR: methodology, resources, licensed software (VNL-ATK), supervision, validation, result analysis, visualization, validation, and final compilation of paper.

Corresponding author

Correspondence to D. P. Rai.

Ethics declarations

Funding

Funding sources has been acknowledged in acknowledgement section.

Conflict of interest

All the authors declare that there are no conflicts of interest. They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y.T., Patra, P.K., Obodo, K.O. et al. Electronic and mechanical properties of (6,1) single-walled carbon nanotubes with different tube diameters: a theoretical study. Carbon Lett. 32, 451–460 (2022). https://doi.org/10.1007/s42823-021-00274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00274-x

Keywords

Navigation