Skip to main content

Advertisement

Log in

One-pot sonochemical preparation of carbon dots, influence of process parameters and potential applications: a review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The carbon-based nanostructures are in limelight due to their widespread applications in nano-to-micro-scale technologies. The carbon dots are known for their unique physical, electrical, optical, chemical and biological properties. The carbon dots (CDs) are being produced through several well-developed synthesis methods, one of which is the green sonochemical. This method is preferred over others because it is a green source of energy, facile, fast, low-temperature process, non-toxic and less expensive. Despite the fact of using 90% less energy than other methods, this method has been overlooked in the published literature. It is possible to prepare pure and doped CDs of low toxicity and controlled physicochemical properties through sonochemical method. In recent years, sonochemically produced CDs have been tuned and characterized for a variety of applications. This review has explored the merits and demerits of sonochemical method in comparison to the other methods for the synthesis of pure CDs and their nanocomposites. The role of multiple factors in tailoring the specific parameters of CDs for their application in antibacterial, polymerization, tissue engineering, catalysis, bio-imagining, supercapacitors, drug delivery and electric devices is also elaborated in this review. This review also concludes on future directions in the applications of sonochemically produced CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Himaja AL, Karthik PS, Singh SP (2015) Carbon dots: the newest member of the carbon nanomaterials family. Chem Rec 15:595–615

    CAS  Google Scholar 

  2. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    CAS  Google Scholar 

  3. Luo PG, Yang F, Yang ST, Sonkar SK, Yang L, Broglie JJ, Liu Y, Sun YP (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. Royal Soc Chem Adv 4:10791–10807

    CAS  Google Scholar 

  4. Kumar VB, Sahu AK, Mohsin ASM, Li X, Gedanken A (2017) Refractive-index tuning of highly fluorescent carbon dots. ACS Appl Mater Interfaces 9:28930–28938

    CAS  Google Scholar 

  5. Zhu S, Song S, Zhao Y, Shao X, Zhang J, Yang J (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    CAS  Google Scholar 

  6. Feng XL, Wu JS, Ai M, Pisula W, Zhi LJ, Rabe JP, Mullen K (2007) Triangle-shaped polycyclic aromatic hydrocarbons. Angew Chem Int Ed 46:3033–3036

    CAS  Google Scholar 

  7. R. Kumar (2019) Lipid-based nanoparticles for drug-delivery systems, Nanocarriers Drug Delivery, Elsevier. 249–284

  8. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    CAS  Google Scholar 

  9. Kumar R, Singh A, Garg N, Siril PF (2018) Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason Sonochem 40:686–696

    CAS  Google Scholar 

  10. Kumar R, Singh A, Garg N (2019) Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J Drug Deliv Sci Technol 54:101277

    CAS  Google Scholar 

  11. Dong QY, Chen CQ, Zheng XT, Gao LL, Cui ZM, Yang HB, Guo CX (2012) One step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:8764–8766

    CAS  Google Scholar 

  12. Wang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, Zhang JH, Chen QD, Xu HL, Han W, Yang B (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. Am Chem Soci Nano 8:2541–2547

    CAS  Google Scholar 

  13. Chan KK, Yap SHK, Yong KT (2018) Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano Micro Lett 10:72

    CAS  Google Scholar 

  14. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21:2445–2450

    CAS  Google Scholar 

  15. Niu F, Xu Y, Liu M, Sun J, Guo P, Liu J (2016) Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale 8:5470–5477

    CAS  Google Scholar 

  16. Arsalani N, Nezhad-Mokhtari P, Jabbari E (2019) Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery. Artif Cells Nanomed Biotechnol 47:540–547

    CAS  Google Scholar 

  17. Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A (2017) Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol 46:1–18

    Google Scholar 

  18. Nguyen V, Yan L, Xu H, Yue M (2018) One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing. Appli Surf Sci 427:1118–1123

    CAS  Google Scholar 

  19. Zeng H, Li L, Ding Y, Zhuang Q (2018) Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 178:879–885

    CAS  Google Scholar 

  20. Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angewandte Chemie Int Edit 121:4668–4671

    Google Scholar 

  21. Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 7:40973–40989

    CAS  Google Scholar 

  22. Sim LC, Tai JY, Khor JM, Wong JL, Lee JY, Leong KH, Saravanan P, Aziz AA (2019) Carbon dots synthesized from green precursors with an amplified photoluminescence: synthesis, characterization, and its application. Springer, Plant Nanobionics, pp 1–33

    Google Scholar 

  23. Hou Y, Lu Q, Deng J, Li H, Zhang Y (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    CAS  Google Scholar 

  24. de Medeiros TV, Manioudakis J, Noun F, Macairan JR, Victoria F, Naccache R (2019) Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C 7:7175–7195

    Google Scholar 

  25. Kumar R, Soni P, Siril PF (2019) Engineering the morphology and particle size of high energetic compounds using drop-by-drop and drop-to-drop solvent-antisolvent interaction methods. Am Chem Soc Omega 4:5424–5433

    CAS  Google Scholar 

  26. Dias C, Vasimalai N, Sarria MP, Pinheiro I, Vilas-Boas V, Peixoto J, Espina B (2019) Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials 9:199

    CAS  Google Scholar 

  27. Li H, He X, Liu Y, Huang H, Lian S, Lee ST, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    CAS  Google Scholar 

  28. Wei K, Li J, Ge Z, You Y, Xu H (2014) Sonochemical synthesis of highly photoluminescent carbon nanodots. RSC Adv 4:52230–52234

    CAS  Google Scholar 

  29. Kumar VB, Porat Z, Gedanken A (2016) Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrason Sonochem 28:367–375

    CAS  Google Scholar 

  30. Kumar VB, Kumar R, Gedanken A, Shefi O (2019) Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason Sonochem 52:205–213

    CAS  Google Scholar 

  31. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y (2014) Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6:1890–1895

    CAS  Google Scholar 

  32. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    CAS  Google Scholar 

  33. Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T (2006) Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 110(2):831–836

    CAS  Google Scholar 

  34. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  35. Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    CAS  Google Scholar 

  36. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 2008:5116

    Google Scholar 

  37. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle. Angewandte Chemie Int Edit 46:6473–6475

    CAS  Google Scholar 

  38. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu C (2010) One-Step synthesis of highly luminescent carbon dots in noncoordinating solvents. J Mater Chem 22:4528–4530

    CAS  Google Scholar 

  39. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–Off–On fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. Am Chem Soc Appl Mater Interfaces 5:13242–13247

    CAS  Google Scholar 

  40. Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP (2012) Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc 134:747–750

    CAS  Google Scholar 

  41. Yao S, Hu Y, Li G (2014) A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field. Carbon 66:77–83

    CAS  Google Scholar 

  42. Xue M, Guan W, Gu W, Guo C, Su S, Xu P, Ye L (2014) Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. Int J Nanomed 9:5071

    Google Scholar 

  43. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118

    Google Scholar 

  44. Wei W, Xu C, Wu L, Wang J, Ren J, Qu X (2015) Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4:3564

    Google Scholar 

  45. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for Multicolor patterning, sensors, and bioimaging. Angewandte Chemie Int Ed 52:3953–3957

    CAS  Google Scholar 

  46. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589

    CAS  Google Scholar 

  47. Dong Y, Pang H, Bin Yang H, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon based dots co-doped with nitrogen and sulfur for High quantum yield and excitation- independent emission. Angewandte Chemie Int Ed 52:7800–7804

    CAS  Google Scholar 

  48. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2015) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294

    Google Scholar 

  49. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. Am Chem Soc Nano 6:400–409

    CAS  Google Scholar 

  50. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473

    Google Scholar 

  51. Zhuo Y, Miao H, Zhong D, Zhu S, Yang X (2015) One-step synthesis of high quantum yield and excitation independent emission carbon dots for cell imaging. Mater Lett 139:197–200

    CAS  Google Scholar 

  52. Jiang H, Chen F, Lagally MG, Denes FS (2010) New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir 26:1991–1995

    CAS  Google Scholar 

  53. Kwon W, Rhee SW (2012) Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem Commun 48:5256

    CAS  Google Scholar 

  54. Lai CW, Hsiao YH, Peng YK, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/ mSiO2 for cell imaging and drug release. J Mater Chem 22:14403

    CAS  Google Scholar 

  55. Maruthapandi M, Kumar VB, Gedanken A (2018) Carbon dot initiated synthesis of poly (4,4′-diaminodiphenylmethane) and its methylene blue adsorption. Am Chem Soc Omega 3:7061–7068

    CAS  Google Scholar 

  56. Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, Rogach AL (2015) Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun 51:2950–2953

    CAS  Google Scholar 

  57. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6:3868–3874

    CAS  Google Scholar 

  58. Shi L, Yang JH, Zeng HB, Chen YM, Yang SC, Wu C, Zeng H, Yoshihito O, Zhang Q (2016) Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8:14374–14378

    CAS  Google Scholar 

  59. Kumar R, Kumar VB, Marcus M, Gedanken A, Shefi O (2019) Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective, Proc. SPIE 10892, Colloidal Nanoparticles for Biomedical Applications XIV,1089214

  60. Arumugham T, Alagumuthu M, Amimodu RG, Munusamy S, Iyer SK (2020) A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustain Adv Mater Technol 23:00138

    Google Scholar 

  61. Kong W, Wu D, Li G, Chen X, Gong P, Sun Z, Chen G, Xia L, You J, Wu Y (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684

    CAS  Google Scholar 

  62. Kumar D, Singh K, Verma V, Bhatti HS (2014) Synthesis and characterization of carbon quantum dots from orange juice. J Bionanosci 8:274–279

    CAS  Google Scholar 

  63. Hoan BT, Tam PD, Pham VH (2019) Green synthesis of highly luminescent carbon quantum dots from lemon juice. J Nanotechnol: 2852816

  64. Xiao D, Yuan D, Hea H, Lu J (2013) Microwave-assisted one-step green synthesis of amino-functionalized fluorescent carbon nitride dots from chitosan. Luminescence 28:612–615

    CAS  Google Scholar 

  65. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwaveassisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264

    CAS  Google Scholar 

  66. Gu D, Shang S, Yu Q, Shen J (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    CAS  Google Scholar 

  67. S.L. D’souza, S.S. Chettiar, J.R. Koduru, S.K. Kailasa, (2018) Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik 158:893–900

    Google Scholar 

  68. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y, Moraiscd PC, Bi H (2014) Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe3+ and l-lysine for bioimaging. J Mater Chem B 2:4631–4639

    CAS  Google Scholar 

  69. Aji M, Susanto PA (2017) Wiguna, Sulhadi, Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. J Theor Appl Physics 11:119–126

    Google Scholar 

  70. Shi Y, Li C, Liu S, Liu Z, Zhu J, Yang J, Hu X (2015) Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv 5:64790–64796

    CAS  Google Scholar 

  71. Dias C, Vasimalai N, Sarria MP, ´ I. Pinheiro, V. Vilas-Boas, J. Peixoto, B. Espina, (2019) Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials 9:199

    CAS  Google Scholar 

  72. Ring L, Yenn TW, Wen-Nee T, Tumin ND, Yusof FAM, Yacob LS, Rosli MIHB, Taher MA (2020) Synthesis of curcumin quantum dots and their antimicrobial activity on necrotizing fasciitis causing bacteria. Mater Today Proceed 31:31–35

    Google Scholar 

  73. Nalesso S, Bussemaker MJ, Sear RP, Hodnett M, Lee J (2019) A review on possible mechanisms of sonocrystallisation in solution. Ultrason Sonochem 57:125–138

    CAS  Google Scholar 

  74. Suslick KS, McNamara WB, Didenko Y (1999) Hot spot conditions during multi-bubble cavitation, Sonochemistry and Sonoluminescence 191–204

  75. Vončina DB, Majcen-Le-Marechal A (2003) Reactive dye decolorization using combined ultrasound/H2O2. Dyes Pigment 59:173–179

    Google Scholar 

  76. Kumar VB, Tang J, Lee KJ, Pol VG, Gedanken A (2016) In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium- ion batteries. RSC Adv 6:66256–66265

    CAS  Google Scholar 

  77. Kumar VB, Perelshtein I, Lipovsky A, Porat Z, Gedanken A (2015) The sonochemical synthesis of Ga@C-dots particles. RSC Adv 5:25533–25540

    CAS  Google Scholar 

  78. Kumar VB, Tang J, Lee KJ, Pol VG, Gedanken A (2016) In situ sonochemical synthesis of luminescent Sn@ C-dots and a hybrid Sn@ C-dots@ Sn anode for lithium-ion batteries. RSC Adv 6(70):66256–66265

    CAS  Google Scholar 

  79. Lin LX, Zhang SW (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48:10177–10179

    CAS  Google Scholar 

  80. Nie H, Li M, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang S (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    CAS  Google Scholar 

  81. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338

    CAS  Google Scholar 

  82. Mason TJ (2007) Sonochemistry and the environment—providing a “green” link between chemistry, physics and engineering. Ultrason Sonochem 14:476–483

    CAS  Google Scholar 

  83. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    CAS  Google Scholar 

  84. Mohandes F, Salavati-Niasari M (2013) Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason Sonochem 20:354–365

    CAS  Google Scholar 

  85. Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    CAS  Google Scholar 

  86. Wang N, Fan H, Sun J, Han Z, Dong J, Ai S (2016) Fluorine-doped carbon nitride quantum dots: ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging. Carbon 109:141–148

    CAS  Google Scholar 

  87. Cho HH, Yang H, Kang DJ, Kim BJ (2015) Surface engineering of graphene quantum dots and their applications as efficient surfactants. ACS Appl Mater Interfaces 7:8615–8621

    CAS  Google Scholar 

  88. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    CAS  Google Scholar 

  89. Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubblesize distributions in acoustic cavitation. Phys Rev Lett 102:084302

    Google Scholar 

  90. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrason Sonochem 18:864–872

    CAS  Google Scholar 

  91. Morel MH, Dehlon P, Autran JC, Leygue JP, Bar-L Helgouach C (2000) Effects of temperature, sonication time, and power settings on size distribution and extractability of total wheat flour proteins as determined by size-exclusion high performance liquid chromatography. Cereal Chem 77:685–691

    CAS  Google Scholar 

  92. Joyce E, Phull SS, Lorimer JP, Mason TJ (2003) The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason Sonochem 10:315–318

    CAS  Google Scholar 

  93. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109

    CAS  Google Scholar 

  94. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835

    CAS  Google Scholar 

  95. Kumar VB, Kumar R, Friedman O, Golan Y, Gedanken A, Shefi O (2019) One-pot hydrothermal synthesis of elements (B, N, P)-doped fluorescent carbon dots for cell labelling, differentiation and outgrowth of neuronal cells. Chem Select 4:4222–4232

    CAS  Google Scholar 

  96. Li H, He X, Liu Y, Huang H, Lian S, Lee ST, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2):605–609

    CAS  Google Scholar 

  97. Wang F, Wang S, Sun Z, Zhu H (2015) Study on the ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fuorescent quantum dots. Fuller Nanotub Carbon Nanostruct 23(9):769–776

    Google Scholar 

  98. Dang H, Huang LK, Zhang Y, Wang CF, Chen S (2016) Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind Eng Chem Res 55(18):5335–5341

    CAS  Google Scholar 

  99. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electro-chemiluminescence properties. Chem Commun

  100. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI passivation enhanced fluorescence. Biomaterials 33(13):3604–3613

    CAS  Google Scholar 

  101. Cao X, Wang J, Deng W, Chen J, Wang Y, Zhou J, Du P, Xu W, Wang Q, Wang Q, Yu Q, Spector M, Yu J, Xu X (2018) Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci Rep 8:7057

    Google Scholar 

  102. Wei X, Xu Y, Li Y, Yin X, He X (2014) Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing. Royal Soc Chem Adv 4(84):44504–44508

    CAS  Google Scholar 

  103. Wang J, Wei J, Su S, Qiu J (2014) Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem 39(1):501–507

    Google Scholar 

  104. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. Am Chem Soc Nanotechnol 10(4):4410–4420

    CAS  Google Scholar 

  105. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6(9):6797–6805

    CAS  Google Scholar 

  106. Wang F, Wang S, Sun Z, Zhu H (2015) Study on the ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Fuller Nanotub Carbon Nanostruct 23(9):769–776

    Google Scholar 

  107. Ji H, Sun H, Qu X (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189

    CAS  Google Scholar 

  108. Kumar VB, Natan M, Jacobi G, Porat Z, Banin E, Gedanken A (2017) Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa. Int J Nanomed 12:725–730

    CAS  Google Scholar 

  109. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against escherichia coli O157:H7. J Appl Microbiol 107:1193–2120

    CAS  Google Scholar 

  110. Yang J, Zhang X, Ma Y-H, Gao G, Chen X, Jia H-R, Li Y-H, Chen Z, Wu F-G (2016) Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces 8:32170–32181

    CAS  Google Scholar 

  111. Raviglione MC, Snider DE, Kochi A (1995) Global epidemiology of tuberculosis. JAMA 273:220

    CAS  Google Scholar 

  112. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    CAS  Google Scholar 

  113. Baroli B (2010) Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J Pharm Sci 99:21–50

    CAS  Google Scholar 

  114. Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442

    CAS  Google Scholar 

  115. Kumar VB, Dolitzky A, Michaeli S, Gedanken A (2018) Antiparasitic ointment based on a biocompatibile carbon dot nanocomposite. ACS Appl Nano Mater 1:1784–1791

    CAS  Google Scholar 

  116. Moorthy M, Kumar VB, Porat Z, Gedanken A (2018) Novel polymerization of aniline and pyrrole by carbon dots. New J Chem 42:535–540

    CAS  Google Scholar 

  117. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun YP (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774

    Google Scholar 

  118. Han Y, Huang H, Zhang H, Liu Y, Han X, Liu R, Li H, Kang Z (2014) Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. Am Chem Soc Catalysis 4:781–787

    CAS  Google Scholar 

  119. Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X, Lee CS, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060

    CAS  Google Scholar 

  120. Kumar VB, Perkas N, Porat Z, Gedanken A (2017) Solar-light-driven photocatalytic activity of novel Sn@C-Dots-Modified TiO2 catalyst. Chem Select 2:6683–6688

    CAS  Google Scholar 

  121. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, Hoboken

    Google Scholar 

  122. Dutt S, Siril PF, Sharma V, Periasamy S (2015) Gold core –polyaniline shell composite nanowires as a substrate for surface enhanced Raman scattering and catalyst for dye reduction. New J Chem 39:902–908

    CAS  Google Scholar 

  123. Dutt S, Siril PF (2014) Morphology controlled synthesis of polyaniline nanostructures using swollen liquid crystal templates. J Appl Polymer Sci 131

  124. Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709

    CAS  Google Scholar 

  125. Maruthapandi M, Nagvenkar AP, Perelshtein I, Gedanken A (2019) Carbon-dot initiated synthesis of polypyrrole and polypyrrole@CuO micro/nanoparticles with enhanced antibacterial activity. ACS Appl Polymer Mater 1:1181–1186

    CAS  Google Scholar 

  126. Maruthapandi M, Kumar VB, Levine M, Gedanken A (2018) Fabrication of poly (4,4′- oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. Eur Polymer J 109:153–161

    CAS  Google Scholar 

  127. Maruthapandi M, Kumar VB, Luong JHT, Gedanken A (2018) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption on polyaniline and polypyrrole macro-nanoparticles synthesized by C-Dot-initiated polymerization. Am Chem Soc Omega 3:7196–7203

    CAS  Google Scholar 

  128. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc. https://doi.org/10.1021/ja073527l

    Article  Google Scholar 

  129. Song Y, Shi W, Chen W, Li X, Ma H (2020) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem 22(25):12568–12573

    Google Scholar 

  130. Lai CW, Hsiao Y, Peng Y, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem 22(29):14403–14409

    CAS  Google Scholar 

  131. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Wu M (2012) Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22(8):3314–3318

    CAS  Google Scholar 

  132. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42

    CAS  Google Scholar 

  133. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27(28):4169–4177

    CAS  Google Scholar 

  134. Dehvari K, Liu KY, Tseng PJ, Gedda G, Girma WM, Chang JY (2019) Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng 95:495–503

    CAS  Google Scholar 

  135. Li C, Sun X, Li Y, Liu H, Long B, Xie D, Wang K (2021) Rapid and green fabrication of carbon dots for cellular imaging and anti-counterfeiting applications. ACS Omega 6(4):3232–3237

    CAS  Google Scholar 

  136. Zilony N, Rosenberg M, Holtzman L, Schori H, Shefi O, Segal E (2017) Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. J Control Release 257:51–59

    CAS  Google Scholar 

  137. Nissan I, Kumar VB, Porat Z, Makovec D, Shefi O, Gedanken A (2017) Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. J Mater Chem B 5:1371–1379

    CAS  Google Scholar 

  138. Baranes K, Chejanovsky N, Alon N, Sharoni A, Shefi O (2012) Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol Bioeng 109:1791–1797

    CAS  Google Scholar 

  139. Baranes K, Hibsh D, Cohen S, Yamin T, Efroni S, Sharoni A, Shefi O (2019) Comparing transcriptome profiles of neurons interfacing adjacent cells and nanopatterned substrates reveals fundamental neuronal interactions. Nano Lett 19:1451–1459

    CAS  Google Scholar 

  140. Antman-Passig M, Shefi O (2016) Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett 16:2567–2573

    CAS  Google Scholar 

  141. Buzea C, Robbie K (2005) Assembling the puzzle of superconducting elements: a review. Supercond Sci Technol 18:R1–R8

    CAS  Google Scholar 

  142. S.J. Ye, A. Matsumoto, Y.C. Zhang, H. Kumakura, Strong enhancement of high field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon coating method, Superconductor Science and Technology, 27 (2014) 085012.

  143. Shani L, Kumar VB, Gedanken A, Shapiro I, Shapiro BY, Shaulov A, Yeshurun Y (2018) Type-I superconductivity in carbon-coated Sn nano-spheres. Physica C (Amsterdam, Neth) 546:6–10

    CAS  Google Scholar 

  144. Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sour Part A Recover, Util Environ Effects 31:163–168

    Google Scholar 

  145. Zeng X, Danquah MK, Chen XD, Lu Y (2011) Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252–3260

    CAS  Google Scholar 

  146. Koberg M, Abu-Much R, Gedanken A (2011) Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst. Biores Technol 102:1073–1078

    CAS  Google Scholar 

  147. Tangy A, Kumar VB, Pulidindi IN, Kinel-Tahan Y, Yehoshua Y, Gedanken A (2016) In-Situ transesterification of Chlorella vulgaris using carbon-dot functionalized strontium oxide as a heterogeneous catalyst under microwave irradiation. Energy Fuels 30:10602–10610

    CAS  Google Scholar 

  148. Kumar VB, Borenstein A, Markovsky B, Aurbach D, Gedanken A, Talianker M, Porat Z (2016) Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J Phys Chem C 120:13406–13413

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the efforts of King Khalid University, Saudi Arabia (Deanship of Scientific Research) for support through the Research Groups Project under the Grant Number (R.G.P.1/73/42).

Funding

This work is completed under the Research Groups Project under the Grant Number (R.G.P.1/73/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Naz.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Naz, M.Y., Shukrullah, S. et al. One-pot sonochemical preparation of carbon dots, influence of process parameters and potential applications: a review. Carbon Lett. 32, 39–55 (2022). https://doi.org/10.1007/s42823-021-00273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00273-y

Keywords

Navigation