Skip to main content
Log in

Fabrication of blue fluorescent carbon quantum dots using green carbon precursor Psidium guajava leaf extract and its application in water treatment

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 µg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iravani S, Varma RS (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett 18:703–727

    CAS  Google Scholar 

  2. Zhang Z, Duan Y, Yu Y, Yan Z, Chen J (2015) Carbon quantum dots: synthesis, characterization, and assessment of cytocompatibility. J Mater Sci Mater Med 26:213

    Google Scholar 

  3. Singh I, Arora R, Dhiman H, Pahwa R (2018) Carbon quantum dots: synthesis, characterization and biomedical applications. Turk J Pharm Sci 15:219–230

    CAS  Google Scholar 

  4. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    CAS  Google Scholar 

  5. Li P, Poon YF, Li W, Zhu HY, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang ET (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156

    CAS  Google Scholar 

  6. Zhou J, Sheng Z, Han H, Zou M, Li C (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66:222–224

    CAS  Google Scholar 

  7. Song Y, Zhu S, Yang B (2014) Bioimaging based on fluorescent carbon dots. Rsc Adv 4:27184–27200

    CAS  Google Scholar 

  8. Yogesh GK, Shuaib EP, Sastikumar D (2017) Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder (4% ash) by laser ablation in solution. Mater Res Bull 91:220–226

    CAS  Google Scholar 

  9. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mate Chem 21:2445–2450

    CAS  Google Scholar 

  10. Hou Y, Lu Q, Deng J, Li H, Zhang Y (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    CAS  Google Scholar 

  11. Li CL, Ou CM, Huang CC, Wu WC, Chen YP, Lin TE, Ho LC, Wang CW, Shih CC, Zhou HC, Lee YC (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2:4564–4571

    CAS  Google Scholar 

  12. Kong D, Xiao Z, Gao Y, Zhang X, Guo R, Huang X, Li X, Zhi L (2019) Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Mater Sci Eng R Rep 137:1–37

    Google Scholar 

  13. Ramar V, Moothattu S, Balasubramanian K (2018) Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution. Sol Energy 169:120–127

    CAS  Google Scholar 

  14. Jhonsi MA (2018) Carbon quantum dots for bioimaging. State of the art in nano-bioimaging. IntechOpen, London, pp 35–53

    Google Scholar 

  15. Omer KM, Aziz KHH, Salih YM, Tofiq DI, Hassan AQ (2019) Photoluminescence enhancement via microwave irradiation of carbon quantum dots derived from solvothermal synthesis of l-arginine. New J Chem 43:689–695

    CAS  Google Scholar 

  16. Ren X, Wei Q, Ren P, Wang Y, Peng Y (2018) Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS2 quantum dots. Opt Mater 86:62–65

    CAS  Google Scholar 

  17. Wang J, Liu G, Cham-Fai Leung K, Loffroy R, Lu PX, Wang XJ (2015) Opportunities and challenges of fluorescent carbon dots in translational optical imaging. Curr Pharm Des 21:5401–5416

    CAS  Google Scholar 

  18. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Comm 48:8835–8837

    CAS  Google Scholar 

  19. Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212

    CAS  Google Scholar 

  20. Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicol 198:229–238

    CAS  Google Scholar 

  21. Momba MN, Malakate VK, Theron J (2006) Abundance of pathogenic Escherichia coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources. J Water Health 4:289–296

    CAS  Google Scholar 

  22. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogen 4:307–334

    Google Scholar 

  23. Jabbar Z, Angham A, Sami GHF (2014) Removal of azo dye from aqueous solutions using chitosan. Orient J Chem 30(2):571–575

    CAS  Google Scholar 

  24. Kauspėdienė D, Gefenienė A, Kazlauskienė E, Ragauskas R, Selskienė A (2013) Simultaneous removal of azo and phthalocyanine dyes from aqueous solutions using weak base anion exchange resin. Water Air Soil Pollut 224(11):1769

    Google Scholar 

  25. Jaiarj P, Khoohaswan P, Wongkrajang Y, Peungvicha P, Suriyawong P, Saraya MS, Ruangsomboon O (1999) Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J Ethnopharmacol 67:203–212

    CAS  Google Scholar 

  26. Chen HY, Yen GC (2007) Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem 101:686–694

    CAS  Google Scholar 

  27. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnol 5:34–41

    CAS  Google Scholar 

  28. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A (2013) Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int J Microbiol. https://doi.org/10.1155/2013/746165

    Article  Google Scholar 

  29. Shen J, Shang S, Chen X, Wang D, Cai Y (2017) Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C 76:856–864

    CAS  Google Scholar 

  30. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Google Scholar 

  31. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    CAS  Google Scholar 

  32. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B Chem 213:434–443

    CAS  Google Scholar 

  33. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–8290

    CAS  Google Scholar 

  34. Zhang J, Shen W, Pan D, Zhang Z, Fang Y, Wu M (2010) Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose. New J Chem 34:591–593

    CAS  Google Scholar 

  35. Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C 33:2914–2917

    CAS  Google Scholar 

  36. Dubey P, Tripathi KM, Mishra R, Bhati A, Singh A, Sonkar SK (2015) A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Adv 5:87528–87534

    CAS  Google Scholar 

  37. Kasibabu BSB, D’souzaJha SLS, Kailasa SK (2015) Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J Fluoresc 25:803–810

    CAS  Google Scholar 

  38. Shivaji K, Mani S, Ponmurugan P, De Castro CS, Lloyd Davies M, Balasubramanian MG, Pitchaimuthu S (2018) Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater 1:1683–1693

    CAS  Google Scholar 

  39. Sabet M, Mahdavi K (2019) Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl Surf Sci 463:283–291

    CAS  Google Scholar 

  40. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428

    CAS  Google Scholar 

  41. Du F, Zhang M, Li X, Li J, Jiang X, Li Z, Hua Y, Shao G, Jin J, Shao Q, Zhou M (2014) Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology 25(31):315702

    Google Scholar 

  42. Kumar D, Singh K, Verma V, Bhatti HS (2014) Synthesis and characterization of carbon quantum dots from orange juice. J Bionanosci 8(4):274–279

    CAS  Google Scholar 

  43. Liu S, Zhao N, Cheng Z, Liu H (2015) Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15):6836–6842

    CAS  Google Scholar 

  44. Alam AM, Park BY, Ghouri ZK, Park M, Kim HY (2015) Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17:3791–3797

    CAS  Google Scholar 

  45. Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H (2015) Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mater Sci Eng C 47:325–332

    CAS  Google Scholar 

  46. Xu Z, Yu J, Liu G (2013) Fabrication of carbon quantum dots and their application for efficient detecting Ru (bpy) 32+ in the solution. Sens Actuators B Chem 181:209–214

    CAS  Google Scholar 

  47. Yuan M, Zhong R, Gao H, Li W, Yun X, Liu J, Zhao X, Zhao G, Zhang F (2015) One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Appl Surf Sci 355:1136–1144

    CAS  Google Scholar 

  48. Yu J, Xu C, Tian Z, Lin Y, Shi Z (2016) Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe 3+. New J Chem 40(3):2083–2088

    CAS  Google Scholar 

  49. Alexpandi R, Prasanth MI, Ravi AV, Balamurugan K, Durgadevi R, Srinivasan R, De Mesquita JF, Pandian SK (2019) Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV—a induced photoaging in model Caenorhabditis elegans. J Photochem Photobiol B: Biol 201:111637

    CAS  Google Scholar 

  50. Zhang Q, Sun X, Ruan H, Yin K, Li H (2017) Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Sci China Mater 60(2):141–150

    CAS  Google Scholar 

  51. Wang X, Feng Y, Dong P, Huang J (2019) A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem 7:671

    CAS  Google Scholar 

  52. Feng Y, Wang X, Huang J, Dong P, Ji J, Li J, Wang C (2020) Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chem Eng J 390:124525

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support rendered to Palanivel Velmurugan through RUSA 2.0 scheme in the form of Senior Postdoctoral fellowship [Grant No. F. 24-51/2014-U, Policy (TN Multi-Gen), Department of Education, Government of India] is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PV: conceptualization, investigation, writing—original draft, writing—review and editing, visualization; RVK: conceptualization, investigation, writing—original draft, writing—review and editing, visualization, SS: conceptualization, writing—review & editing; AVR: methodology; supervision; investigation, writing—original draft; project administration.

Corresponding author

Correspondence to Arumugam Veera Ravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmurugan, P., Kumar, R.V., Sivakumar, S. et al. Fabrication of blue fluorescent carbon quantum dots using green carbon precursor Psidium guajava leaf extract and its application in water treatment. Carbon Lett. 32, 119–129 (2022). https://doi.org/10.1007/s42823-021-00259-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00259-w

Keywords

Navigation