Skip to main content
Log in

Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon dots (CDts) with tunable fluorescence properties in aqueous media were synthesized hydrothermally. The excitation wavelength variation to obtain the maximum emission produced a blue shift in the emission peaks upon dilution in an aqueous solution. The shift can be explained by a re-absorption phenomenon in a concentrated solution. The interparticle interaction within was responsible to show dilution-dependent optical behavior. The as-synthesized solution of CDts did not show any prominent absorption peak over a wide range. However, upon dilution, two peaks became predominant. The concentration-dependent behavior was observed during the interaction with metal cations. Cationic salts of Co(II) and Hg(II) caused quenching at different dilutions of CDts. This might be explained by the exposure of different surface functional groups during dilution and metal-ion–CDts charge transfer. The quenched fluorescence of CDts was rescued using ascorbic acid. Therefore, the one-pot detection of Co(II)/Hg(II) and ascorbic acid was designed through a ‘Turn Off/On’ phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Liu ML, Bin CB, Li CM, Huang CZ (2019) Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471. https://doi.org/10.1039/c8gc02736f

    Article  CAS  Google Scholar 

  2. Kundelev EV, Tepliakov NV, Leonov MY, Maslov VG, Baranov AV, Fedorov AV, Rukhlenko ID, Rogach AL (2019) Amino functionalization of carbon dots leads to red emission enhancement. J Phys Chem Lett 10:5111–5116. https://doi.org/10.1021/acs.jpclett.9b01724

    Article  CAS  Google Scholar 

  3. Manoj B, Raj AM, Thomas GC (2018) Tailoring of low grade coal to fluorescent nanocarbon structures and their potential as a glucose sensor. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-32371-9

    Article  CAS  Google Scholar 

  4. Zhu J, Shao H, Bai X, Zhai Y, Zhu Y, Chen X, Pan G, Dong B, Xu L, Zhang H, Song H (2018) Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes. Nanotechnology. https://doi.org/10.1088/1361-6528/aab9d6

    Article  Google Scholar 

  5. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC Trends Anal Chem 89:163–180. https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  6. Dong Y, Pang H, Bin YH, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chemie Int Ed 52:7800–7804. https://doi.org/10.1002/anie.201301114

    Article  CAS  Google Scholar 

  7. Fu M, Ehrat F, Wang Y, Milowska KZ, Reckmeier C, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2015) Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15:6030–6035. https://doi.org/10.1021/acs.nanolett.5b02215

    Article  CAS  Google Scholar 

  8. Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Döblinger M, Feldmann J, Urban AS, Stolarczyk JK (2017) Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-01463-x

    Article  CAS  Google Scholar 

  9. Sarkar S, Sudolská M, Dubecký M, Reckmeier CJ, Rogach AL, Zbořil R, Otyepka M (2016) Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J Phys Chem C 120:1303–1308. https://doi.org/10.1021/acs.jpcc.5b10186

    Article  CAS  Google Scholar 

  10. Das SK, Liu Y, Yeom S, Kim DY, Richards CI (2014) Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett 14:620–625. https://doi.org/10.1021/nl403820m

    Article  CAS  Google Scholar 

  11. Gude V, Das A, Chatterjee T, Mandal PK (2016) Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Phys Chem Chem Phys 18:28274–28280. https://doi.org/10.1039/c6cp05321a

    Article  CAS  Google Scholar 

  12. Yu P, Wen X, Toh YR, Tang J (2012) Temperature-dependent fluorescence in carbon dots. J Phys Chem C 116:25552–25557. https://doi.org/10.1021/jp307308z

    Article  CAS  Google Scholar 

  13. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112. https://doi.org/10.1021/cm5003669

    Article  CAS  Google Scholar 

  14. Jana J, Ganguly M, Das B, Dhara S, Negishi Y, Pal T (2016) One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta 150:253–264. https://doi.org/10.1016/j.talanta.2015.12.047

    Article  CAS  Google Scholar 

  15. Barman MK, Jana B, Bhattacharyya S, Patra A (2014) Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots-nickel(II) phthalocyanine conjugates. J Phys Chem C 118:20034–20041. https://doi.org/10.1021/jp507080c

    Article  CAS  Google Scholar 

  16. Dong Y, Pang H, Yang H, Jiang J, Chi Y, Yu T (2014) Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction. RSC Adv 4:32791–32795. https://doi.org/10.1039/c4ra06594h

    Article  CAS  Google Scholar 

  17. Xu Q, Su R, Chen Y, Theruvakkattil Sreenivasan S, Li N, Zheng X, Zhu J, Pan H, Li W, Xu C, Xia Z, Dai L (2018) Metal charge transfer doped carbon dots with reversibly switchable, ultra-high quantum yield photoluminescence. ACS Appl Nano Mater 1:1886–1893. https://doi.org/10.1021/acsanm.8b00277

    Article  CAS  Google Scholar 

  18. Sarkar S, Das K, Das PK (2016) Hydrophobically tailored carbon dots toward modulating microstructure of reverse micelle and amplification of lipase catalytic response. Langmuir 32:3890–3900. https://doi.org/10.1021/acs.langmuir.5b04750

    Article  CAS  Google Scholar 

  19. Suzuki K, Malfatti L, Takahashi M, Carboni D, Messina F, Tokudome Y, Takemoto M, Innocenzi P (2017) Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-05540-5

    Article  CAS  Google Scholar 

  20. Rub Pakkath SA, Chetty SS, Selvarasu P, Vadivel Murugan A, Kumar Y, Periyasamy L, Santhakumar M, Sadras SR, Santhakumar K (2018) Transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped carbon dots synthesized via microwave-assisted pyrolysis: a potential nanoprobe for magneto-fluorescent dual-modality bioimaging. ACS Biomater Sci Eng 4:2581–2596. https://doi.org/10.1021/acsbiomaterials.7b00943

    Article  CAS  Google Scholar 

  21. Long YM, Zhou CH, Zhang ZL, Tian ZQ, Bao L, Lin Y, Pang DW (2012) Shifting and non-shifting fluorescence emitted by carbon nanodots. J Mater Chem 22:5917–5920. https://doi.org/10.1039/c2jm30639e

    Article  CAS  Google Scholar 

  22. Wang C, Jiang K, Wu Q, Wu J, Zhang C (2016) Green synthesis of red-emitting carbon nanodots as a novel “Turn-on” nanothermometer in living cells. Chem A Eur J 22:14475–14479. https://doi.org/10.1002/chem.201602795

    Article  CAS  Google Scholar 

  23. Ding H, Wei JS, Zhong N, Gao QY, Xiong HM (2017) Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging. Langmuir 33:12635–12642. https://doi.org/10.1021/acs.langmuir.7b02385

    Article  CAS  Google Scholar 

  24. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  Google Scholar 

  25. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chemie Int Ed 54:5360–5363. https://doi.org/10.1002/anie.201501193

    Article  CAS  Google Scholar 

  26. Wenxia Z, Dejian D, Xifang C, Xiaoxiao GJF (2014) Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption. Appl Phys Lett. https://doi.org/10.1063/1.4867487

    Article  Google Scholar 

  27. Wang T, Wang A, Wang R, Liu Z, Sun Y, Shan G, Chen Y, Liu Y (2019) Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-47168-7

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhuo P, Yin H, Fan Y, Zhang J, Liu X, Chen Z (2019) Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies. ACS Appl Mater Interfaces 11:24395–24403. https://doi.org/10.1021/acsami.9b04600

    Article  CAS  Google Scholar 

  29. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837. https://doi.org/10.1039/c2cc33796g

    Article  CAS  Google Scholar 

  30. Xu M, He G, Li Z, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6:10307–10315. https://doi.org/10.1039/c4nr02792b

    Article  CAS  Google Scholar 

  31. Wojtecki RJ, Yuen AY, Zimmerman TG, Jones GO, Horn HW, Boday DJ, Hedrick JL, García JM (2015) Development of a method for detecting trace metals in aqueous solutions based on the coordination chemistry of hexahydrotriazines. Analyst 140:5184–5189. https://doi.org/10.1039/c5an00099h

    Article  CAS  Google Scholar 

  32. Jiann KT, Presley BJ (2002) Preservation and determination of trace metal partitioning in river water by a two-column ion exchange method. Anal Chem 74:4716–4724. https://doi.org/10.1021/ac025626h

    Article  CAS  Google Scholar 

  33. Quigley MN, Vernon F (1996) Determination of trace metal ion concentrations in seawater. J Chem Educ 73:671–675. https://doi.org/10.1021/ed073p671

    Article  CAS  Google Scholar 

  34. Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304. https://doi.org/10.1021/acs.est.6b01897

    Article  CAS  Google Scholar 

  35. Long F, Zhu A, Shi H, Wang H, Liu J (2013) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:1–7. https://doi.org/10.1038/srep02308

    Article  Google Scholar 

  36. Lu YC, Chen J, Wang AJ, Bao N, Feng JJ, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(II) detection and bioimaging. J Mater Chem C 3:73–78. https://doi.org/10.1039/c4tc02111h

    Article  CAS  Google Scholar 

  37. Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4:6927–6945. https://doi.org/10.1039/c6tc02055k

    Article  CAS  Google Scholar 

  38. Kong D, Yan F, Han Z, Xu J, Guo X, Chen L (2016) Cobalt(II) ions detection using carbon dots as an sensitive and selective fluorescent probe. RSC Adv 6:67481–67487. https://doi.org/10.1039/c6ra12986b

    Article  CAS  Google Scholar 

  39. Shi J, Lu C, Yan D, Ma L (2013) High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens Bioelectron 45:58–64. https://doi.org/10.1016/j.bios.2013.01.056

    Article  CAS  Google Scholar 

  40. Mehta VN, Mungara AK, Kailasa SK (2013) Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal Methods 5:1818–1822. https://doi.org/10.1039/c3ay26150f

    Article  CAS  Google Scholar 

  41. Liu Z, Jia X, Bian P, Ma Z (2014) A simple and novel system for colorimetric detection of cobalt ions. Analyst 139:585–588. https://doi.org/10.1039/c3an01845h

    Article  CAS  Google Scholar 

  42. Jain AK, Gupta VK, Singh LP, Khurana U (1997) Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 122:583–586. https://doi.org/10.1039/a608421d

    Article  CAS  Google Scholar 

  43. Zhen SJ, Guo FL, Chen LQ, Li YF, Zhang Q, Huang CZ (2011) Visual detection of cobalt(II) ion in vitro and tissue with a new type of leaf-like molecular microcrystal. Chem Commun 47:2562–2564. https://doi.org/10.1039/c0cc03205k

    Article  CAS  Google Scholar 

  44. Song EJ, Kang J, You GR, Park GJ, Kim Y, Kim SJ, Kim C, Harrison RG (2013) A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Trans 42:15514–15520. https://doi.org/10.1039/c3dt51635k

    Article  CAS  Google Scholar 

  45. Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M (2013) Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 7:4595–4600. https://doi.org/10.1021/nn4013737

    Article  CAS  Google Scholar 

  46. Du J, Sun Y, Jiang L, Cao X, Qi D, Yin S, Ma J, Boey FYC, Chen X (2011) Flexible colorimetric detection of mercuric ion by simply mixing nanoparticles and oligopeptides. Small 7:1407–1411. https://doi.org/10.1002/smll.201002270

    Article  CAS  Google Scholar 

  47. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244. https://doi.org/10.1039/c1cs15245a

    Article  CAS  Google Scholar 

  48. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: Towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759. https://doi.org/10.1039/c0nr00863j

    Article  CAS  Google Scholar 

  49. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5:13242–13247. https://doi.org/10.1021/am4042355

    Article  CAS  Google Scholar 

  50. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia FV, Narayanan AS (2015) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  51. Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20:7864–7869. https://doi.org/10.1039/c0jm01527j

    Article  CAS  Google Scholar 

  52. Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402. https://doi.org/10.1016/j.electacta.2015.02.116

    Article  CAS  Google Scholar 

  53. Atta NF, El-Kady MF, Galal A (2010) Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem 400:78–88. https://doi.org/10.1016/j.ab.2010.01.001

    Article  CAS  Google Scholar 

  54. Ehrat F, Bhattacharyya S, Schneider J, Löf A, Wyrwich R, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2017) Tracking the source of carbon dot photoluminescence: aromatic domains versus molecular fluorophores. Nano Lett 17:7710–7716. https://doi.org/10.1021/acs.nanolett.7b03863

    Article  CAS  Google Scholar 

  55. Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B (2015) Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3:5976–5984. https://doi.org/10.1039/c5tc00813a

    Article  CAS  Google Scholar 

  56. Schneider J, Reckmeier CJ, Xiong Y, Von Seckendorff M, Susha AS, Kasak P, Rogach AL (2017) Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C 121:2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519

    Article  CAS  Google Scholar 

  57. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y (2014) Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6:1890–1895. https://doi.org/10.1039/c3nr05380f

    Article  CAS  Google Scholar 

  58. Thongsai N, Nagae Y, Hirai T, Takahara A, Uchiyama T, Kamitani K, Paoprasert P (2017) Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. Sens Actuators B Chem 253:1026–1033. https://doi.org/10.1016/j.snb.2017.07.051

    Article  CAS  Google Scholar 

  59. Tong G, Wang J, Wang R, Guo X, He L, Qiu F, Wang G, Zhu B, Zhu X, Liu T (2015) Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). J Mater Chem B 3:700–706. https://doi.org/10.1039/c4tb01643b

    Article  CAS  Google Scholar 

  60. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chemie Int Ed 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  61. Du F, Ming Y, Zeng F, Yu C, Wu S (2013) A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology. https://doi.org/10.1088/0957-4484/24/36/365101

    Article  Google Scholar 

  62. Gao Z, Wang X, Chang J, Dapeng Wu, Wang L, Liu X, Fang Xu, Yuming Guo KJ (2015) Fluorescent carbon quantum dots, capacitance and catalysis active porous carbon microspheres from beer. RSC Adv 5:48665–48674. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  63. Ramasamy R (2015) Vibrational spectroscopic studies of imidazole. Armen J Phys 8:55–55. https://doi.org/10.1080/07370650591001844

    Article  CAS  Google Scholar 

  64. Tripathi KM, Tran TS, Kim YJ, Kim TY (2017) Green fluorescent onion-like carbon nanoparticles from flaxseed oil for visible light induced photocatalytic applications and label-free detection of Al(III) ions. ACS Sustain Chem Eng 5:3982–3992. https://doi.org/10.1021/acssuschemeng.6b03182

    Article  CAS  Google Scholar 

  65. Mintz KJ, Guerrero B, Leblanc RM (2018) Photoinduced electron transfer in carbon dots with long-wavelength photoluminescence. J Phys Chem C 122:29507–29515. https://doi.org/10.1021/acs.jpcc.8b06868

    Article  CAS  Google Scholar 

  66. Lai S, Jin Y, Shi L, Zhou R, Zhou Y, An D (2020) Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 12:591–601. https://doi.org/10.1039/c9nr08461d

    Article  CAS  Google Scholar 

  67. Fang Q, Dong Y, Chen Y, Lu C, Chi Y, Yang H, Yu T (2017) Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon N Y 118:319–326. https://doi.org/10.1016/j.carbon.2017.03.061

    Article  CAS  Google Scholar 

  68. Perikala M, Bhardwaj A (2019) Highly stable white-light-emitting carbon dot synthesis using a non-coordinating solvent. ACS Omega 4:21223–21229. https://doi.org/10.1021/acsomega.9b02686

    Article  CAS  Google Scholar 

  69. Chen Y, Lian H, Wei Y, He X, Chen Y, Wang B, Zeng Q, Lin J (2018) Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10:6734–6743. https://doi.org/10.1039/c8nr00204e

    Article  CAS  Google Scholar 

  70. Sillen A, Engelborghs Y (1998) The correct use of “average” fluorescence parameters. Photochem Photobiol 67:475–486. https://doi.org/10.1111/j.1751-1097.1998.tb09082.x

    Article  CAS  Google Scholar 

  71. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging mikhail. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z.Fluorescence

    Article  CAS  Google Scholar 

  72. Kumar P, Bohidar HB (2013) Observation of fluorescence from non-functionalized carbon nanoparticles and its solvent dependent spectroscopy. J Lumin 141:155–161. https://doi.org/10.1016/J.JLUMIN.2013.02.043

    Article  CAS  Google Scholar 

  73. Sauer M, Hofkens J, Enderlein J (2011) Handbook of fluorescence spectroscopy and imaging. Handb Fluoresc Spectrosc Imaging. https://doi.org/10.1002/9783527633500

    Article  Google Scholar 

  74. Al-Sogair FM, Operschall BP, Sigel A, Sigel H, Schnabl J, Sigel RKO (2011) Probing the metal-ion-binding strength of the hydroxyl group. Chem Rev 111:4964–5003. https://doi.org/10.1021/cr100415s

    Article  CAS  Google Scholar 

  75. Ben MW, Touzi H, Chevalier Y, Kalfat R, Jaffrezic-Renault N (2018) Effect of pH on the detection of metal ions using a ISFET sensor modified with a polysiloxane film substituted by naphtyl-cyclam. Sens Lett 14:246–252. https://doi.org/10.1166/sl.2016.3674

    Article  Google Scholar 

  76. Jana J, Ganguly M, Chandrakumar KRS, Rao GM, Pal T (2017) Boron precursor-dependent evolution of differently emitting carbon dots. Langmuir 33:573–584. https://doi.org/10.1021/acs.langmuir.6b04100

    Article  CAS  Google Scholar 

  77. Wang K, Xu JJ, Tang KS, Chen HY (2005) Solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles as ionophore. Talanta 67:798–805. https://doi.org/10.1016/j.talanta.2005.04.015

    Article  CAS  Google Scholar 

  78. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Ding C, Xian Y (2017) Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens 2:576–582. https://doi.org/10.1021/acssensors.7b00102

    Article  CAS  Google Scholar 

  79. Liu H, Zhao X, Wang F, Wang Y, Guo L, Mei J, Tian C, Yang X, Zhao D (2017) High-efficient excitation-independent blue luminescent carbon dots. Nanoscale Res Lett 12:6. https://doi.org/10.1186/s11671-017-2137-2

    Article  CAS  Google Scholar 

  80. Wang J, Fang X, Cui X, Zhang Y, Zhao H, Li X, He Y (2018) A highly sensitive colorimetric probe for Cd2+, Hg2+ and ascorbic acid determination based on trithiocyanuric acid-AuNPs. Talanta 188:266–272. https://doi.org/10.1016/j.talanta.2018.05.084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by The Ministry of Science, ICT and Future Planning (2019R1A2B5B02069683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hyun Hur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

42823_2020_182_MOESM1_ESM.docx

Electronic supplementary material contains the Experimental section, stability of CDt with time, FTIR spectra of CDt at different dilution, fluorescence spectra of CDt in different organic solvents at varied dilution condition, fluorescence of CDt at different dilution in the presence of metal ions, removal of interference for Co(II) detection, fluorescence of CDt1000 in presence of Hg(II) at different pH, table showing different components of lifetime values of CDts at different dilutions, comparative tables for Co(II), Hg(II), and AA detection. (DOCX 3096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, J., Hur, S.H. Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection. Carbon Lett. 31, 523–536 (2021). https://doi.org/10.1007/s42823-020-00182-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00182-6

Keywords

Navigation