Skip to main content
Log in

Graphene exfoliation with supercritical fluids

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene is an unconventional material with a two-dimensional hexagonal crystalline array of elemental carbon atoms and outstanding properties; accordingly, a desirable objective in the line of research of graphene is the development of novel and more productive methods of synthesis, validating its properties and applications. In our exploratory research, we have effectively exfoliated graphene from graphite using supercritical fluids (water, ethanol and carbon dioxide). The exfoliated graphene was properly characterized; via scanning electron microscopy, the morphology of graphene was observed; Raman spectra confirmed the exfoliation of graphene depicting the characteristic shift towards smaller Raman number in the 2D band (2676 cm−1) compared to that of graphite (≈ 2700 cm−1); transmission electron microscopy analysis exhibited the crystalline structure of graphene attesting also the expected transparency of exfoliated layers. Graphene exfoliation from graphite by supercritical fluids promises to be a simple large-scale method for graphene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science (80-) 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  4. Whitener KE, Sheehan PE (2014) Graphene synthesis. Diam Relat Mater 46:25–34

    Article  CAS  Google Scholar 

  5. Padmajan Sasikala S, Poulin P, Aymonier C (2016) Prospects of supercritical fluids in realizing graphene-based functional materials. Adv Mater 28:2663–2691

    Article  CAS  Google Scholar 

  6. Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 20:311–321

    Article  CAS  Google Scholar 

  7. Pu NW, Wang CA, Sung Y, Liu YM, Der GM (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989. https://doi.org/10.1016/j.matlet.2009.06.031

    Article  CAS  Google Scholar 

  8. Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346. https://doi.org/10.1016/j.matlet.2012.08.104

    Article  CAS  Google Scholar 

  9. Lee SY, Park SJ (2014) Isothermal exfoliation of graphene oxide by a new carbon dioxide pressure swing method. Carbon N Y 68:112–117. https://doi.org/10.1016/j.carbon.2013.10.068

    Article  CAS  Google Scholar 

  10. Wang W, Wang Y, Gao Y, Zhao Y (2014) Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries. J Supercrit Fluids 85:95–101. https://doi.org/10.1016/j.supflu.2013.11.005

    Article  CAS  Google Scholar 

  11. Li L, Xu J, Li G, Jia X, Li Y, Yang F, Zhang L, Xu C, Gao J, Liu Y, Fang Z (2016) Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem Eng J 284:78–84. https://doi.org/10.1016/j.cej.2015.08.077

    Article  CAS  Google Scholar 

  12. Gao H, Zhu K, Hu G, Xue C (2017) Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium. Chem Eng J 308:872–879. https://doi.org/10.1016/j.cej.2016.09.132

    Article  CAS  Google Scholar 

  13. Gai Y, Wang W, Xiao D, Zhao Y (2018) Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: simulation and experiment. Ultrason Sonochem 41:181–188. https://doi.org/10.1016/j.ultsonch.2017.09.007

    Article  CAS  Google Scholar 

  14. Wang Y, Chen Z, Wu Z, Li Y, Yang W, Li Y (2018) High-efficiency production of graphene by supercritical CO2 exfoliation with rapid expansion. Langmuir. https://doi.org/10.1021/acs.langmuir.8b01030

    Article  Google Scholar 

  15. Rangappa D, Sone K, Wang M, Gautam UK, Golberg D, Itoh H, Ichihara M, Honma I (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem A Eur J 16:6488–6494. https://doi.org/10.1002/chem.201000199

    Article  CAS  Google Scholar 

  16. Hadi A, Karimi-Sabet J, Moosavian SMA, Ghorbanian S (2016) Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. J Supercrit Fluids 107:92–105. https://doi.org/10.1016/j.supflu.2015.08.022

    Article  CAS  Google Scholar 

  17. Sasikala SP, Huang K, Giroire B, Prabhakaran P, Henry L, Penicaud A, Poulin P, Aymonier C (2016) Simultaneous graphite exfoliation and n doping in supercritical ammonia. ACS Appl Mater Interfaces 8:30964–30971. https://doi.org/10.1021/acsami.6b10570

    Article  CAS  Google Scholar 

  18. Liu C, Hu G, Gao H (2012) Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. J Supercrit Fluids 63:99–104. https://doi.org/10.1016/j.supflu.2012.01.002

    Article  CAS  Google Scholar 

  19. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673. https://doi.org/10.1021/nl061420a

    Article  CAS  Google Scholar 

  20. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  21. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  22. Tomai T, Tamura N, Honma I (2013) One-step production of anisotropically etched graphene using supercritical water. ACS Macro Lett 2:794–798. https://doi.org/10.1021/mz400186t

    Article  CAS  Google Scholar 

  23. Belyaeva LA, van Deursen PMG, Barbetsea KI, Schneider GF (2018) Hydrophilicity of graphene in water through transparency to polar and dispersive interactions. Adv Mater. https://doi.org/10.1002/adma.201703274

    Article  Google Scholar 

  24. Goto M (2009) Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids 47:500–507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universidad Autonoma de Nuevo Leon for consent of research leave for the corresponding author, and to Nagoya University/Venture Business Laboratory for providing with materials, equipment and facilities for conducting the research here described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Morales Ibarra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales Ibarra, R., Goto, M., García-Serna, J. et al. Graphene exfoliation with supercritical fluids. Carbon Lett. 31, 99–105 (2021). https://doi.org/10.1007/s42823-020-00153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00153-x

Keywords

Navigation