Skip to main content
Log in

In situ synthesis of MgWO4–GO nanocomposites and their catalytic effect on the thermal decomposition of HMX, RDX and AP

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

For solving phase separation of nanoparticles and graphene oxide (GO) in the application process, MgWO4–GO nanocomposites were successfully synthesized using three different dispersants via a facile solvothermal-assisted in situ synthesis method. The structure and morphology of the prepared samples were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, Fourier transform infrared and Raman techniques. The experimental results show that MgWO4 nanoparticles are tightly anchored on the surfaces of GO sheets and the agglomeration of MgWO4 nanoparticles is significantly weakened. Additionally, MgWO4–GO nanocomposites are more stable than self-assembly MgWO4/GO, which there is no separation of MgWO4 nanoparticles and GO sheets by ultrasound after 10 min. The catalytic results show that, compared with bare MgWO4, MgWO4–GO nanocomposites present better catalytic activities on the thermal decomposition of cyclotetramethylenete tranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ammonium perchlorate (AP). The enhanced catalytic activity is mainly attributed to the synergistic effect of MgWO4 nanoparticles and GO. MgWO4–GO prepared using urea as the dispersant has the smallest diameter and possesses the best catalytic action among the three MgWO4–GO nanocomposites, which make the decomposition temperature of HMX, RDX and AP reduce by 10.71, 11.09 and 66.6 °C, respectively, and the apparent activation energy of RDX decrease by 68.6 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang M, Zhao FQ, Yang YJ, Zhang JK, Li N, Gao HX (2018) Effect of rGO–Fe2O3 nanocomposites fabricated in different solvents on the thermal decomposition properties of ammonium perchlorate. Cryst Eng Commun 20:7010

    CAS  Google Scholar 

  2. Wang WR, Guo SS, Zhang DX, Yang Z (2019) One-pot hydrothermal synthesis of reduced graphene oxide/zinc ferrite nanohybrids and its catalytic activity on the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc 23:133

    CAS  Google Scholar 

  3. Zheng ZL, Zhang WC, Chen L, Xiong WH, Zeng GW, Liu JQ, Wu RH, Wang JX, Ye JH, Zhu JW (2019) In-situ synthesis of MnCo2O4.5 nanosheets on reduced graphene oxide for a great promotion in the thermal decomposition of ammonium perchlorate. Appl Surf Sci 483:496

    CAS  Google Scholar 

  4. Chen LJ, Li LP, Li GS (2008) Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd 464:532

    CAS  Google Scholar 

  5. Zhang Y, Wei TT, Xu KZ, Ren ZY, Xiao LB, Song JR, Zhao FQ (2015) Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7. RSC Adv 5:75630

    CAS  Google Scholar 

  6. Lan YF, Li XY, Li GP, Luo YJ (2015) Sol-gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J Nanoparticle Res 17:395

    Google Scholar 

  7. Elbasuney S, Yehia M (2019) Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Def Technol. https://doi.org/10.1016/j.dt.2019.03.004

    Article  Google Scholar 

  8. Wannapop S, Thongtem T, Thongtem S (2012) Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning–calcination combinations. Appl Surf Sci 258:4971

    CAS  Google Scholar 

  9. Zhang LZ, Chen WD, Lu JL, Lin HF, Li LY, Wang GF, Zhang G, Lin ZB (2016) Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal. Opt Mater Express 6:1627

    CAS  Google Scholar 

  10. Zu YQ, Zhang Y, Xu KZ, Zhao FQ (2016) A graphene oxide-MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. RSC Adv 6:31046

    CAS  Google Scholar 

  11. Zhang LZ, Huang YS, Sun SJ, Zhang J, Yuan FF, Lin ZB, Wang GF (2016) Thermal and spectral characterization of Cr3+:MgWO4—a promising tunable laser material. J Lumin 169:161

    CAS  Google Scholar 

  12. Danevich FA, Chernyak DM, Dubovik AM, Grinyov BV, Henry S, Kraus H, Kudovbenko VM, Mikhailik VB, Nagornaya LL, Podviyanuk RB, Polischuk OG, Tupitsyna IA, Vostretsov YY (2009) MgWO4—a new crystal scintillator. Nucl Instrum Methods Phys Res 608:107

    CAS  Google Scholar 

  13. He HY, Wang Y (2013) Comparative study on photoluminescence efficiencies of Sm3+-doped MeWO4 (Me = Ba, Sr, Ca, and Mg) phosphors. J Mater Sci Mater Electron 24:4847

    CAS  Google Scholar 

  14. Mikhailik VB, Kraus H, Kapustyanyk V, Panasyuk M, Prots Y, Tsybulskyi V, Vasylechko L (2008) Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system. J Phys Condens Matter 20:365219

    Google Scholar 

  15. Krol DM, Jong DKP, Blasse G (1981) The luminescence spectra of Li4WO5-U and MgWO4-U. Chem Phys Lett 77:1

    CAS  Google Scholar 

  16. Huang JB, Lu W, Wang J, Li QF, Tian BS, Li CY (2018) Strategy to enhance the luminescence of lanthanide ions doped MgWO4 nanosheets through incorporation of carbon dots. Inorg Chem 57:8662

    CAS  Google Scholar 

  17. Pullar RC, Farrah S, Alford NM (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J Eur Ceram Soc 27:1059

    CAS  Google Scholar 

  18. Zhang MW, Zhai JW, Zhang JJ, Jiang HT, Yao X (2011) Effect of MgWO4 content on properties of Ba0 5Sr0 5TiO3 composite ceramics for tunable microwave applications. Mater Res Bull 46:1102

    CAS  Google Scholar 

  19. Ding GH, Zhang NN, Wang CC, Li XY, Zhang J, Li WR, Li RJ, Yang ZN (2018) Effect of the size on the aggregation and sedimentation of graphene oxide in seawaters with different salinities. J Nanoparticle Res 20:313

    Google Scholar 

  20. Ton NNT, Dao ATN, Kato K, Ikenaga T, Trinh DX, Taniike T (2018) One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133:109

    CAS  Google Scholar 

  21. Harish M, Varsha J, Sweta R, Mohmd Ghulam HZ, Sarfaraz A (2014) Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Lett 15:171

    Google Scholar 

  22. Mahdavi M, Farrokhpour H, Tahriri M (2017) In situ formation of MxOy nano-catalysts (M¼ Mn, Fe) to diminish decomposition temperature and enhance heat liberation of ammonium perchlorate. Mater Chem Phys 196:9

    CAS  Google Scholar 

  23. Zu YQ, Zhao YQ, Xu KZ, Tong Y, Zhao FQ (2016) Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites. Ceram Int 42:18844

    CAS  Google Scholar 

  24. Gu YQ, Fu XP, Du PP, Gu D, Jin Z, Huang YY, Si R, Zheng LQ, Song QS, Jia CJ, Weidenthaler C (2015) In situ X-ray diffraction study of Co–Al nanocomposites as catalysts for ammonia decomposition. J Phys Chem C 119:17102

    CAS  Google Scholar 

  25. Wang WW, Liu B, Xu KZ, Zu YQ, Song JR, Zhao FQ (2018) In situ preparation of MgFe2O4–GO nanocomposite and its enhanced catalytic reactivity on decomposition of AP and RDX. Ceram Int 44:19016

    CAS  Google Scholar 

  26. Lee SY, Chong MH, Park M, Kim HY, Park SJ (2014) Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors. Carbon Lett 15:67

    Google Scholar 

  27. Annamalai KP, Gao JP, Liu LL (2015) Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J Mater Chem A 22:11740

    Google Scholar 

  28. Li JQ, Yang CT, Meng JX (2009) Hydrothermal synthesis of MgWO4 and its luminescence. Chin J Lumin 30:327 (in Chinese)

    Google Scholar 

  29. Chu JP, Xiao IJ, Hsieh SQ, Chen JT, Feng MS (1998) Growth of MgWO4 phosphor by RF magnetron sputtering. Mater Chem Phys 33:172

    Google Scholar 

  30. Zhu JW, Zeng GY, Nie FD, Xu XM, Chen S, Han QF, Wang X (2010) Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. Nanoscale 2:988

    CAS  Google Scholar 

  31. Chen P, Xing X, Xie HF, Sheng Q, Qu HX (2016) High catalytic activity of magnetic CuFe2O4/graphene oxide composite for the degradation of organic dyes under visible light irradiation. Chem Phys Lett 660:176

    CAS  Google Scholar 

  32. Liu B, Wang WM, Wang JJ, Zhang Y, Xu KZ, Zhao FQ (2019) Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition. J Nanoparticle Res 21:48

    Google Scholar 

  33. Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30:6556

    CAS  Google Scholar 

  34. Parisa M, Reza J, Milad M (2018) Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene. Carbon Lett 27:81

    Google Scholar 

  35. Yuan Y, Jiang W, Wang YJ, Shen P, Li FS, Li PY, Zhao FQ, Gao HX (2014) Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 303:354

    CAS  Google Scholar 

  36. Shakir I, Sarfraz M, Ali Z, Aboud MFA, Agboola PO (2016) Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. J Alloys Compd 660:450

    CAS  Google Scholar 

  37. Gan L, Shang SM, Yuen CWM, Jiang SX, Hu EL (2015) Hydrothermal synthesis of magnetic CoFe2O4/graphene nanocomposites with improved photocatalytic activity. Appl Surf Sci 351:140

    CAS  Google Scholar 

  38. Li N, Geng ZF, Cao MH, Ren L, Zhao XY, Liu B, Tian Y, Hu CW (2013) Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54:124

    CAS  Google Scholar 

  39. Konstantin NK, Bulent O, Hannes CS, Robert KP, Ilhan AA, Roberto C (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36

    Google Scholar 

  40. Tiano AL, Papaefthymiou GC, Lewis CS, Han JK, Zhang C, Li Q, Shi CY, Abeykoon AMM, Billinge SJL, Stach E, Thomas J, Guerrero K, Munayco P, Munayco J, Scorzelli RB, Burnham P, Viescas AJ, Wong SS (2015) Correlating size and composition-dependent effects with magnetic mossbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem Mater 27:3572

    CAS  Google Scholar 

  41. Rosser WA, Inami SH (1968) Thermal of ammonium perchlorate. Combust Flame 12:427

    CAS  Google Scholar 

  42. Yu CP, Zhang WC, Gao Y, Chen YJ, Ma KF, Ye JH, Shen RQ, Yang Y (2018) Shape-controlled syntheses of Co3O4 nanowires arrays with excellent catalytic performances upon ammonium perchlorate decomposition. Mater Res Bull 97:483

    CAS  Google Scholar 

  43. Fitzgerald RP, Brewster MQ (2004) Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame 136:313

    CAS  Google Scholar 

  44. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    CAS  Google Scholar 

Download references

Acknowledgements

This investigation received financial assistance from the National Natural Science Foundation of China (21673178), the Natural Science Foundation of Shaanxi Province (2018JM5181) and the Fund of the National Defense Science and Technology Key Laboratory (614270C*01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangzhen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, W., Wang, J. et al. In situ synthesis of MgWO4–GO nanocomposites and their catalytic effect on the thermal decomposition of HMX, RDX and AP. Carbon Lett. 30, 425–434 (2020). https://doi.org/10.1007/s42823-019-00112-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00112-1

Keywords

Navigation