Skip to main content

Advertisement

Log in

Innovative and sustainable approach for phytoremediation of mine tailings: a review

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

A review is designed to innovate a sustainable solution for the treatment of mine tailings using bioremediation and phytoremediation. It emphasizes on achieving the geochemical stability of tailings through the establishment of microbes or plants. It highlights the gaps in achieving the geochemical stability of tailings. Lack of nutrients and low pH discourage the survival of microorganisms and the growth of plants on tailings. Treatment of tailings with agricultural waste (wheat and mustard stalks) would nourish tailings which promote the growth of microorganism and plants. Application of agricultural waste in remediation process is cost-effective. The role of microorganisms such as cyanobacteria, fungi, and algae are well known for mineralogical transformation. Microorganism converts unavailable fraction of nutrient into available form and important initiative to drive tailings towards natural soil. It would support the growth of plants on tailings to achieve successful phytoremediation. Biofuel generation from tailings through high lipid and protein producing plants is important for sustainable development. Phytoremediation will reduce the environmental impact caused by mine tailings. For phytoremediation, use of biofuel producing plants, i.e., Jatropha curcus and Brassica juncea, is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Wang P, Sun Z, Hu Y, et al. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci Total Environ. 2019;695:33893.

    Google Scholar 

  2. Gong X, Chen Z, Luo Z. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China. Environ Mon Assess. 2014;186:9101–16.

    Article  CAS  Google Scholar 

  3. Hatje V, Pedreira RMA, de Rezende CE, et al. The environmental impacts of one of the largest tailings dam failures worldwide. Sci Rep. 2017;7:10706. https://doi.org/10.1038/s41598-017-11143-x.

    Article  CAS  Google Scholar 

  4. Mehrabani JV, Noaparast M, Mousavi SM, et al. Process optimization and modelling of sphalerite flotation from a low-grade Zn–Pb ore using response surface methodology. Sep Purif Technol. 2010;72:242–9.

    Article  CAS  Google Scholar 

  5. Punia A, Siddaiah NS, Singh SK. Source and assessment of heavy metal pollution at Khetri copper mine tailings and surrounding soil, Rajasthan, India. Bull Environ Contam Toxicol. 2017;99:633–41.

    Article  CAS  Google Scholar 

  6. Sharma RS, Al-Busaidi TS. Groundwater pollution due to tailings dam. Eng Geol. 2001;60:235–44.

    Article  Google Scholar 

  7. Olivares AR, Carrillo-González R, González-Chávez MCA, et al. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag. 2013;114:316–23.

    Article  CAS  Google Scholar 

  8. Aggangan N, Cadiz N, Llamado A, et al. Jatropha curcas for bioenergy and bioremediation in mine tailing area in Mogpog, Marinduque, Philippines. Energy Proc. 2017;110:471–8.

    Article  CAS  Google Scholar 

  9. Lee S, Ji W, Lee W, et al. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J Environ Manag. 2014;139:15–21.

    Article  CAS  Google Scholar 

  10. Park JH, Lamb D, Paneerselvam P, et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater. 2011;185:549–74.

    Article  CAS  Google Scholar 

  11. Tordoff GM, Baker AJM, Willis AJ. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere. 2000;41:219–28.

    Article  CAS  Google Scholar 

  12. Hudson-Edwards KA, Macklin MG, Miller JR, et al. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. J Geochem Explor. 2001;72:229–50.

    Article  CAS  Google Scholar 

  13. Lottermoser B. Mine wastes: characterization, treatment and environmental impacts. Berlin: Springer; 2007.

    Google Scholar 

  14. Esdaile LJ, Chalker JM. The mercury problem in artisanal and small-scale gold mining. Chemistry. 2018;24(27):6905–16.

    Article  CAS  Google Scholar 

  15. Guo Y, Huang P, Zhang W, et al. Leaching of heavy metals from Dexing copper mine tailings pond. Trans Nonferrous Met Soc China. 2013;23:3068–75.

    Article  CAS  Google Scholar 

  16. Kazakou E, Dimitrakopoulos P, Baker A, et al. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev. 2008;83:495–508.

    CAS  Google Scholar 

  17. Mendez MO, Neilson JW, Maier RM. Characterization of a bacterial community in an abandoned semiarid lead–zinc mine tailing site. Appl Environ Microbiol. 2008;74:3899–907.

    Article  CAS  Google Scholar 

  18. Baker LR, White PM, Pierzynski GM. Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Appl Soil Ecol. 2011;48:1–10.

    Article  Google Scholar 

  19. Liu M, Zhao X, Zhan J, et al. Cyanobacterial diversity in biological soil crusts on wastelands of copper mine tailings. Shengtai Xuebao Acta Ecol Sin. 2011;31:6886–95.

    CAS  Google Scholar 

  20. Babu AG, Shima J, Sheab PJ, et al. Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecol Eng. 2014;69:186–91.

    Article  Google Scholar 

  21. Ochs M. Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol. 1996;132:119–24.

    Article  CAS  Google Scholar 

  22. Barker WW, Welch SA, Chu S, et al. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner. 1998;83:1551–63.

    Article  CAS  Google Scholar 

  23. Landeweert R, Hoffland E, Finlay RD, et al. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol. 2001;16:248–54.

    Article  CAS  Google Scholar 

  24. Huang YY. Research progress of wastewater treatment by agricultural wastes as biological adsorbent. Appl Chem Ind. 2017;46(2):372–638.

    Google Scholar 

  25. Liu K. The practical significance and countermeasures of agricultural waste utilization. Environ Dev. 2017;5:254–6.

    Google Scholar 

  26. Hulshof AHM, Blowes DW, Gould WD. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res. 2006;40:1816–26.

    Article  CAS  Google Scholar 

  27. Seaker E, Sopper WE. Municipal sludge for minespoil reclamation: I. Effects on microbial populations and activity. J Environ Qual. 1988;17:591–7.

    Article  Google Scholar 

  28. Pepper IL, Zerzghi HG, Bengson SA, et al. Bacterial populations within copper mine tailings: long-term effects of amendment with class A biosolids. J Appl Microbiol. 2012;113:569–77.

    Article  CAS  Google Scholar 

  29. Alburquerque J, De La Fuente C, Bernal M. Improvement of soil quality after “alperujo” compost application to two contaminated soils characterised by differing heavy metal solubility. J Environ Manag. 2011;92:733–41.

    Article  CAS  Google Scholar 

  30. Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv. 2015;33:745–55.

    Article  CAS  Google Scholar 

  31. Pal S, Banik SP, Khowala S. Mustard stalk and straw: a new source for production of lignocellulolytic enzymes by the fungus Termitomyces clypeatus and as a substrate for saccharification. Ind Crops Prod. 2013;41:283–8.

    Article  CAS  Google Scholar 

  32. Dziga D, Jagiełło-Flasińska D. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides. Acta Biochim Pol. 2015;62(3):395–400.

    Article  CAS  Google Scholar 

  33. Roper MM. Wheat straw: an energy source for biological nitrogen fixation. In: Veeger C, Newton WE, editors. Advances in nitrogen fixation research. Advances in agricultural biotechnology. Dordrecht: Springer; 1984. p. 4.

    Google Scholar 

  34. Abou-Shanab RAI, Angle JS, Delorme TA, et al. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 2003;158:219–24.

    Article  CAS  Google Scholar 

  35. Wu Y, Zhang L, Gao C, et al. Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. J Chem Eng Data. 2009;54:3229–34.

    Article  CAS  Google Scholar 

  36. Trivedi NS, Mandavgane SA, Kulkarni BD. Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res. 2016;23(20):20087–99.

    Article  CAS  Google Scholar 

  37. Kumari D, Pan X, Achal V, et al. Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci. 2015;74:3113–21.

    Article  CAS  Google Scholar 

  38. Rajkumar M, Prasad MNV, Freitas H. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol. 2009;29:120–30.

    Article  CAS  Google Scholar 

  39. Aka RJN, Babalola OO. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (cd, cr, and ni) uptake of Brassica juncea. Int J Phytoremediat. 2016;18(2):200–9.

    Article  CAS  Google Scholar 

  40. Kanga C, Kwon Y, So J. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng. 2016;89:64–9.

    Article  Google Scholar 

  41. Sun LN, Zhang YF, He LY, et al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on copper mine wasteland. Bioresour Technol. 2010;101:501–9.

    Article  CAS  Google Scholar 

  42. Chen LX, Li JT, Chen YT, et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol. 2013;15:2431–44.

    Article  CAS  Google Scholar 

  43. Johnson DB, Rolfe S, Hallberg KB, et al. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol. 2001;3:630–7.

    Article  CAS  Google Scholar 

  44. Zhan J, Sun K. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. J Environ Sci. 2011;23(3):476–87.

    Article  CAS  Google Scholar 

  45. Parmar A, Singh NK, Pandey A, et al. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol. 2011;102:10163–72.

    Article  CAS  Google Scholar 

  46. Fazli M, Soleimani N, Mehrasbi M, et al. Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng. 2015;13(07):19.

    Article  CAS  Google Scholar 

  47. Desai H, Patel D, Joshi B. Screening and characterization of heavy metal resistant bacteria for its prospects in bioremediation of contaminated soil. Int J Curr Microbiol Appl Sci. 2016;5(4):652–8.

    Article  CAS  Google Scholar 

  48. Akar T, Tunali S, Kiran I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem Eng J. 2005;25(3):227–35.

    Article  CAS  Google Scholar 

  49. Sun YM, Horng CY, Chang FL, et al. Biosorption of lead, mercury, and cadmium ions by Aspergillus terreus immobilized in a natural matrix. Pol J Microbiol. 2010;59(1):37–44.

    Article  CAS  Google Scholar 

  50. Gururajan K, Belur PD. Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environ Technol Innov. 2018;9:91–9.

    Article  Google Scholar 

  51. Bwapwa JK, Jaiyeola AT, Chetty R. Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem Eng. 2017;24:62–70.

    Google Scholar 

  52. Van Hille RP, Boshoff GA, Rose PD, et al. A continuous process for the biological treatment of heavy metal contaminated acid mine water. Res Conserv Recycl. 1999;27(1):157–67.

    Article  Google Scholar 

  53. Novis PM, Harding JS. Extreme Acidophiles: freshwater algae associated with acid mine drainage. In: Seckbach J, editor. Algae and cyanobacteria in extreme environment. The Netherlands: Springer; 2007. p. 443–63.

    Chapter  Google Scholar 

  54. Brake SS, Hasiotis ST, Dannely HK. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiol J. 2004;21:331–40.

    Article  CAS  Google Scholar 

  55. Das BK, Roy A, Koschorreck M, et al. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res. 2009;43(4):883–94.

    Article  CAS  Google Scholar 

  56. Verma JP, Jaiswal DK. Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol. 2016;6:1555.

    Article  Google Scholar 

  57. Bosso L, Lacatena F, Cristinzio G, et al. Biosorption of pentachlorophenol by anthracophyllum discolor in the form of live fungal pellets. New Biotechnol. 2015;32:21–5.

    Article  CAS  Google Scholar 

  58. Morto-Bermea O, Hernández AE, Gaso I, et al. Heavy metal concentrations in surface soils from Mexico City. Bull Environ Contam Toxicol. 2002;68:383–8.

    Article  CAS  Google Scholar 

  59. Galiulin RV, Galiulina RA. Removing heavy metals from soil with plants. Her Russ Acad Sci. 2008;78:141–3.

    Article  Google Scholar 

  60. Acar FN, Malkoc E. The removal of chromium (VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol. 2004;94:13–5.

    Article  CAS  Google Scholar 

  61. Jain S, Arnepalli D. Biominerlisation as a remediation technique: a critical review. In: Proceedings of the Indian Geotechnical Conference (IGC2016), Chennai, India, pp 15–17 December 2016.

  62. Danis U, Nuhoglu A, Demirbas A. Ferrous ion-oxidizing in Thiobacillus ferrooxidans batch cultures: influence of pH, temperature and initial concentration of Fe2+. Fresenius Environ Bull. 2008;17:371–7.

    CAS  Google Scholar 

  63. Brady D, Duncan JR. Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnol Lett. 1994;16:543–8.

    Article  CAS  Google Scholar 

  64. Lozano Cerezo ML, Fernandez Marcos ML, Alvarez Rodriguez E. Heavy metals in mine soils amended with sewage sludge. Land Degrad Dev. 1999;10:555–64.

    Article  Google Scholar 

  65. Chiu CC, Cheng CJ, Lin TH, et al. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. J Hazard Mater. 2009;161:1239–44.

    Article  CAS  Google Scholar 

  66. Jan AT, Azam M, Ali A, et al. Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol. 2014;44:519–60.

    Article  CAS  Google Scholar 

  67. Rajapaksha AU, Vithanage M, Ok YS, et al. Cr (VI) formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments. Environ Sci Technol. 2013;47:9722–9.

    Article  CAS  Google Scholar 

  68. Beiyuan J, Awad YM, Beckers F, et al. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere. 2017;178:110–8.

    Article  CAS  Google Scholar 

  69. Tandon PK, Singh SB. Redox processes in water remediation. Environ Chem Lett. 2016;14:15–25.

    Article  CAS  Google Scholar 

  70. Wakao N, Koyatsu H, Komai Y, et al. Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiol J. 1988;6:11–24.

    Article  CAS  Google Scholar 

  71. He YT, Hering JG. Enhancement of arsenic (III) sequestration by manganese oxides in the presence of iron (II). Water Air Soil Pollut. 2009;203:359–68.

    Article  CAS  Google Scholar 

  72. Chibuike G, Obiora S. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. 2014. https://doi.org/10.1155/2014/752708.

    Article  Google Scholar 

  73. Petrisor I, Dobrota S, Komnitsas K, et al. Artificial inoculation-perspectives in tailings phytostabilization. Int J Phytoremediat. 2004;6:1–15.

    Article  CAS  Google Scholar 

  74. Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 2008;116:278–83.

    Article  CAS  Google Scholar 

  75. Lottermoser BG. Mine wastes. Characterization, treatment and environmental impacts, 3rd edn, Springer, Berlin, Heidelberg; 2010.

  76. Meza-Figueroa D, Maier RM, O-Villanueva MDL, et al. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere. 2009;77:140–7.

    Article  CAS  Google Scholar 

  77. Bhunia B, Uday USP, Oinam G, et al. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym. 2018;179:228–43.

    Article  CAS  Google Scholar 

  78. Sarma MK, Kaushik S, Goswami P. Cyanobacteria: a metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass Bioenergy. 2016;90:187–201.

    Article  CAS  Google Scholar 

  79. Baroukh C, Muñoz-Tamayo R, Steyer J, et al. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production. Metab Eng. 2015;30:49–60.

    Article  CAS  Google Scholar 

  80. Yang T, Liu J, Chen W, et al. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailing. Soil Biol Biochem. 2017;114:52–8.

    Article  CAS  Google Scholar 

  81. Tapia Y, Bustos P, Salazar O, et al. Phytostabilization of Cu in mine tailings using native plant Carpobrotus aequilaterus and the addition of potassium humates. J Geochem Explor. 2017;183:102–13.

    Article  CAS  Google Scholar 

  82. González-Chávez MCA, Ruíz Olivares A, Carrillo-González R, et al. Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. Int J Environ Sci Technol. 2015;12(7):2263–72.

    Article  CAS  Google Scholar 

  83. Amin H, Arain BA, Abbasi MS, et al. Potential for phytoextraction of Cu by Sesamum indicum L. and Cyamopsis tetragonoloba L.: a green solution to decontaminate soil. Earth Syst Environ. 2018;2:133–43.

    Article  Google Scholar 

  84. VanHees PAW, Rosling A, Lundstr¨om US, et al. The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma. 2006;136:364–77.

    Article  CAS  Google Scholar 

  85. Taylor LL, Leake JR, Quirk J, et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology. 2009;7:171–91.

    Article  CAS  Google Scholar 

  86. Deo N, Natarajan KA. Interaction of bacillus polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control. Min Eng. 1997;10(12):1339–54.

    Article  CAS  Google Scholar 

  87. Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol. 2000;11:271–9.

    Article  CAS  Google Scholar 

  88. Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;111(1):3–49.

    Article  CAS  Google Scholar 

  89. Balogh-Brunstad Z, Keller CK, Gill RA, et al. The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry. 2008;88:153–67.

    Article  Google Scholar 

  90. Bonneville S, Smits MM, Brown A, et al. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology. 2009;37:615–8.

    Article  CAS  Google Scholar 

  91. Blum JD, Klaue A, Nezat CA, et al. Mycorrhizal weathering of apatite as important calcium source in base-poor forest ecosystems. Nature. 2002;417:729–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Punia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punia, A. Innovative and sustainable approach for phytoremediation of mine tailings: a review. Waste Dispos. Sustain. Energy 1, 169–176 (2019). https://doi.org/10.1007/s42768-019-00022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-019-00022-y

Keywords

Navigation