Skip to main content
Log in

Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have generated remarkable interests in a wide range of research fields due to their excellent electrical properties. However, achieving the CNTs arrangement with high quality in a short time remains a challenge. Herein we studied the in-situ assembly of CNTs based on macroscopic dielectrophoresis by using a centimeter scale electrode, which overcome the limitation of small size in traditional method for manipulating nanoparticles. Ordered CNTs chains could be obtained under the action of alternating current dielectrophoresis by optimizing the voltage and frequency. Besides, the ordered chains were able to restore immediately upon powering up after being damaged. Furthermore, a CNTs chain was prepared for conducting the wet circuit and powering a LED, and different conductive patterns on the non-woven fabric were achieved by controlling the position of the electrodes in wet environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang Y, Duan XF, Wei QQ, Lieber CM. Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001;291:630–3.

    Article  CAS  Google Scholar 

  2. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao ZN. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol. 2011;6:788–92.

    Google Scholar 

  3. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol. 2011;6:296–301.

    Article  CAS  Google Scholar 

  4. Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano. 2010;4:6587–98.

    Article  CAS  Google Scholar 

  5. Pinto AM, Moreira S, Goncalves IC, Gama FM, Mendes AM, Magalhaes FD. Biocompatibility of poly (lactic acid) with incorporated graphene-based materials. Colloids Surf B Biointerfaces. 2013;104:229–38.

    Article  CAS  Google Scholar 

  6. Hou HL, Shao G, Yang WY, Wong WY. One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog Mater Sci. 2020;113:100671.

    Article  CAS  Google Scholar 

  7. Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012;12:758–62.

    Article  CAS  Google Scholar 

  8. Lee CS, Pop E, Franklin AD, Haensch W, Wong HSP. A compact virtual-source model for carbon nanotube field-effect transistors in the sub-10-nm regime-part I intrinsic elements. IEEE Trans Electron Devices. 2015;62:3061–9.

    Article  CAS  Google Scholar 

  9. Lundstrom MS, Antoniadis DA. Compact models and the physics of nanoscale FETs. IEEE Trans Electron Devices. 2014;61:225–33.

    Article  Google Scholar 

  10. Avouris P, Chen ZH, Perebeinos V. Carbon-based electronics. Nat Nanotechnol. 2007;2:605–15.

    Article  CAS  Google Scholar 

  11. Bai YX, Zhang RF, Ye X, Zhu ZX, Xie HH, Shen BY, Cai DL, Liu BF, Zhang CX, Jia Z, Zhang SL, Li XD, Wei F. Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol. 2018;13:589–97.

    Article  CAS  Google Scholar 

  12. Li LP, Fan HW, Hou CY, Zhang QH, Li YG, Yu H, Wang HZ. Highly aligned molybdenum trioxide nanobelts for flexible thin-film transistors and supercapacitors: macroscopic assembly and anisotropic electrical properties. ACS Appl Nano Mater. 2019;2:1466–71.

    Article  CAS  Google Scholar 

  13. Xiong L, Dai JH, Song Y, Wen GW, Xia L, Wu X. Effects of doping on photoelectrical properties of one-dimensional α-Si3N4 nanomaterials: a first-principles stud. Phys B. 2018;550:32–8.

    Article  CAS  Google Scholar 

  14. Zhang RF, Zhang YY, Wei F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc Chem Res. 2017;50:179–89.

    Article  CAS  Google Scholar 

  15. Peng B, Locascio M, Zapol P, Li SY, Mielke SL, Schatz GC, Espinosa HD. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol. 2008;3:626–31.

    Article  CAS  Google Scholar 

  16. Zhao QZ, Nardelli MB, Bernholc J. Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B. 2002;65:144105.

    Article  CAS  Google Scholar 

  17. Zhang R, Wen Q, Qian W, Su DS, Zhang Q, Wei F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater. 2011;23:3387–91.

    Article  CAS  Google Scholar 

  18. He XW, Gao WL, Xie LJ, Li B, Zhang Q, Lei SD, Robinson JM, Haroz EH, Doorn SK, Wang WP, Vajtai R, Ajayan PM, Adams WW, Hauge RH, Kono J. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat Nanotechnol. 2016;11:633–39.

    Article  CAS  Google Scholar 

  19. Headrick RJ, Tsentalovich DE, Berdegue J, Bengio EA, Liberman L, Kleinerman O, Lucas MS, Talmon Y, Pasquali M. Structure-Property relations in carbon nanotube fibers by downscaling solution processing. Adv Mater. 2018;30:1704482.

    Article  CAS  Google Scholar 

  20. Liu LJ, Han J, Xu L, Zhou JS, Zhao CY, Ding SJ, Shi HW, Xiao MM, Ding L, Ma Z, Jin CH, Zhang ZY, Peng LM. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science. 2020;368:850–6.

    Article  CAS  Google Scholar 

  21. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol. 2007;2:230–6.

    Article  CAS  Google Scholar 

  22. Mcnicholas TP, Ding L, Yuan D, Liu J. Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis. Nano Lett. 2009;9:3646–50.

    Article  CAS  Google Scholar 

  23. Hong SW, Banks T, Rogers JA. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater. 2010;22:1826–30.

    Article  CAS  Google Scholar 

  24. Kocabas C, Hur SH, Gaur A, Meitl MA, Shim M, Rogers JA. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small. 2005;1:1110–6.

    Article  CAS  Google Scholar 

  25. Zhou WW, Rutherglen C, Burke PJ. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008;1:158–65.

    Article  CAS  Google Scholar 

  26. Fischer JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R, Casavant MJ, Walters DE, Smalley RE. Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J Appl Phys. 2003;93:2157–63.

    Article  CAS  Google Scholar 

  27. Smith BW, Benes Z, Luzzi DE, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl Phys Lett. 2000;77:663–5.

    Article  CAS  Google Scholar 

  28. Bubke K, Gnewuch H, Hempstead M, Hammer J, Green MLH. Optical anisotropy of dispersed carbon nanotubes induced by an electric field. Appl Phys Lett. 1997;71:1906–8.

    Article  CAS  Google Scholar 

  29. Chen XQ, Saito T, Yamada H, Matsushige K. Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett. 2001;78:3714–6.

    Article  CAS  Google Scholar 

  30. Kiani K. Application of nonlocal higher-order beam theory to transverse wave analysis of magnetically affected forests of single-walled carbon nanotubes. Int J Mech Sci. 2018;138:1–16.

    Article  Google Scholar 

  31. Hobbie EK, Wang H, Kim H, Han CC, Grulke EA, Obrzut J. Optical measurements of structure and orientation in sheared carbon-nanotube suspensions. Rev Sci Instrum. 2003;74:1244–50.

    Article  CAS  Google Scholar 

  32. Yu GH, Cao AY, Lieber CM. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol. 2007;2:372–7.

    Article  CAS  Google Scholar 

  33. Yu GH, Li XL, Lieber CM, Cao AY. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J Mater Chem. 2008;18:728–34.

    Article  CAS  Google Scholar 

  34. Azoz S, Exarhos AL, Marquez A, Gilbertson LM, Nejati S, Cha JJ, Zimmerman JB, Kikkawa JM, Pfefferle LD. Highly conductive single-walled carbon nanotube thin film preparation by direct alignment on substrates from water dispersions. Langmuir. 2015;31:1155–63.

    Article  CAS  Google Scholar 

  35. Mclean RS, Huang XY, Khripin C, Jagota A, Zheng M. Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. Nano Lett. 2006;6:55–60.

    Article  CAS  Google Scholar 

  36. Vijayaraghavan D. Self-assembled ordering of single-walled carbon nanotubes in a lyotropic liquid crystal system. J Mol Liq. 2014;199:128–32.

    Article  CAS  Google Scholar 

  37. Joo Y, Brady GJ, Arnold MS, Gopalan P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir. 2014;30:3460–6.

    Article  CAS  Google Scholar 

  38. Bornhoeft LR, Castillo AC, Smalley PR, Kittrell C, James DK, Brinson BE, Rybolt TR, Johnson BR, Cherukuri TK, Cherukuri P. Teslaphoresis of carbon nanotubes. ACS Nano. 2016;10:4873–81.

    Article  CAS  Google Scholar 

  39. House DL, Luo HX, Chang SY. Numerical study on dielectrophoretic chaining of two ellipsoidal particles. J Colloid Interface Sci. 2012;374:141–9.

    Article  CAS  Google Scholar 

  40. Pethig R. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. 2010;4:022811.

    Article  CAS  Google Scholar 

  41. Shekhar S, Stokes P, Khondaker SI. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano. 2011;5:1739–46.

    Article  CAS  Google Scholar 

  42. Freer EM, Grachev O, Duan XF, Martin S, Stumbo DP. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol. 2010;5:525–30.

    Article  CAS  Google Scholar 

  43. Velev OD, Bhatt KH. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter. 2006;2:738–50.

    Article  CAS  Google Scholar 

  44. Rouhi N, Jain D, Burke PJ. High-performance semiconducting nanotube inks: progress and prospects. ACS Nano. 2011;5:8471–8.

    Article  CAS  Google Scholar 

  45. Velev OD, Gupta S. Materials fabricated by micro- and nanoparticle assembly- the challenging path from science to engineering. Adv Mater. 2009;21:1897–905.

    Article  CAS  Google Scholar 

  46. Kim B, Norman TJ, Jones RS, Moon DI, Han JW, Meyyappan M. Carboxylated single-walled carbon nanotube sensors with varying pH for the detection of ammonia and carbon dioxide using an artificial neural network. ACS Appl Nano Mater. 2019;2:6445–51.

    Article  CAS  Google Scholar 

  47. Shannahan JH, Brown JM, Chen R, Ke PC, Lai X, Mitra S, Witzmann FA. Comparison of nanotube–protein corona composition in cell culture media. Small. 2013;9:2171–81.

    Article  CAS  Google Scholar 

  48. Khodadadian A, Hosseini K, Manzour-Ol-Ajdad A, Hedayati M, Kalantarinejad R, Heitzinger C. Optimal design of nanowire field-effect troponin sensors. Comput Biol Med. 2017;87:46–56.

    Article  CAS  Google Scholar 

  49. Khodadadian A, Parvizi M, Heitzinger C. An adaptive multilevel Monte Carlo algorithm for the stochastic drift-diffusion-Poisson system. Comput Method Appl M. 2020;368:113163.

    Article  Google Scholar 

  50. Khodadadian A, Stadlbauer B, Heitzinger C. Bayesian inversion for nanowire field-effect sensors. J Comput Electron. 2020;19:147–59.

    Article  CAS  Google Scholar 

  51. Khodadadian A, Taghizadeh L, Heitzinger C. Three-dimensional optimal multi-level Monte-Carlo approximation of the stochastic drift-diffusion-Poisson system in nanoscale devices. J Comput Electron. 2018;17:76–89.

    Article  Google Scholar 

  52. Mirsian S, Khodadadian A, Hedayati M, Manzour-ol-Ajdad A, Kalantarinejad R, Heitzinger C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens Bioelectron. 2019;142:11527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Fundamental Research Funds for the Central Universities (2232019A3-02), DHU Distinguished Young Professor Program (LZB2019002), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00055), China Postdoctoral Science Foundation Grant (2019M651324), State Key Laboratory for Space Power Sources Technology (No. YF07050117F0768), and Shanghai Industrial Technology Center of Graphene.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Guo or Yaogang Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 KB)

Supplementary file2 (MP4 3795 KB)

Supplementary file3 (MP4 14437 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, R., Luo, C. et al. Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. Adv. Fiber Mater. 3, 312–320 (2021). https://doi.org/10.1007/s42765-021-00084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00084-w

Keywords

Navigation