Skip to main content
Log in

Scalable Process to Develop Durable Conductive Cotton Fabric

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Developing a scalable process is critical to manufacture conductive fabric for commercial applications. This paper describes a scalable coating process that is compatible with existing industrial finishing processes of fabrics. In this process, the fabric is continuously dipped in water-based metal salt and the reducing agent solution to impart conductive particles on the fiber surface. After 10 consecutive cycles of dip coating, the fabric shows 6 Ω/in. of resistance. The process is tuned to minimize process cost and material cost, and maximize the durability of the fabric. This paper also introduces an easy protective coating technique of the conductive fabric that improves the durability of the conductive fabric without sacrificing the comfort properties of textile fabrics such as breathability and flexibility. The encapsulated conductive fabric shows good air-permeability and it is 6.96 cm3/cm2/s. Moreover, the conductivity of the encapsulated fabric is quite stable after four accelerated washing cycles. Additionally, the fabric remains conductive on the surfaces and is suitable for using as a conductive track and connectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Figure 10

Similar content being viewed by others

References

  1. Steim R, Chabrecek P, Sonderegger U, Kindle-Hasse B, Siefert W, Kroyer T, Reinecke P, Lanz T, Geiger T, Hany R, Nüesch F. Laminated fabric as top electrode for organic photovoltaics. Appl Phys Lett. 2015;106(19):51. https://doi.org/10.1063/1.4919940.

    Article  CAS  Google Scholar 

  2. Salvado R, Loss C, Gonçalves R, Pinho P. Textile materials for the design of wearable antennas: a survey. Sensors. 2012;12(11):15841–57. https://doi.org/10.1177/0040517507080679.

    Article  CAS  Google Scholar 

  3. Cho J, Moon J, Sung M, Jeong K, Cho G. Design and evaluation of textile-based signal transmission lines and keypads for smart wear. In: International conference on human–computer interaction. Berlin: Springer; 2007; p. 1078–1085. https://doi.org/10.1007/978-3-540-73107-8_118

  4. Cottet D, Grzyb J, Kirstein T, Troster G. Electrical characterization of textile transmission lines. IEEE Trans Adv Packag. 2003;26(2):182–90. https://doi.org/10.1109/TADVP.2003.817329.

    Article  Google Scholar 

  5. Rais NH, Soh PJ, Malek F, Ahmad S, Hashim NB, Hall PS. A review of wearable antenna. In: 2009 Loughborough antennas and propagation conference. p. 225–228. IEEE. https://doi.org/10.1109/LAPC.2009.5352373.

  6. Shahariar H, Soewardiman H, Jur JS. Fabrication and packaging of flexible and breathable patch antennas on textiles. In: SoutheastCon; 2017. p. 1–5. IEEE. https://doi.org/10.1109/SECON.2017.7925306.

  7. Björninen T, Virkki J, Sydänheimo L, Ukkonen L. Manufacturing of antennas for passive UHF RFID tags by direct write dispensing of copper and silver inks on textiles. In: 2015 international conference on electromagnetics in advanced applications (ICEAA); 2015. p. 589–592. IEEE. https://doi.org/10.1109/ICEAA.2015.7297183.

  8. Chen T, Qiu L, Yang Z, Peng H. Novel solar cells in a wire format. Chem Soc Rev. 2013;42(12):5031–41. https://doi.org/10.1039/c3cs35465b.

    Article  CAS  Google Scholar 

  9. Hatamvand M, Kamrani E, Lira-Cantú M, Madsen M, Patil BR, Vivo P, Mehmood MS, Numan A, Ahmed I, Zhan Y. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy. 2020;S2211–S2855(20):30167–71. https://doi.org/10.1016/j.nanoen.2020.104609.

    Article  CAS  Google Scholar 

  10. Das A, Krishnasamy J, Alagirusamy R, Basu A. Electromagnetic interference shielding effectiveness of SS/PET hybrid yarn incorporated woven fabrics. Fibers Polym. 2014;15(1):169–74. https://doi.org/10.1007/s12221-014-0169-0.

    Article  CAS  Google Scholar 

  11. Jung S, Lee J, Hyeon T, Lee M, Kim DH. Fabric-based integrated energy devices for wearable activity monitors. Adv Mater. 2014;26(36):6329–34. https://doi.org/10.1002/adma.201402439.

    Article  CAS  Google Scholar 

  12. Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O. Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater. 2009;21(5):573–7. https://doi.org/10.1002/adma.200802681.

    Article  CAS  Google Scholar 

  13. Maity S, Chatterjee A, Singh B, Pal Singh A. Polypyrrole based electro-conductive textiles for heat generation. J Text Inst. 2014;105(8):887–93. https://doi.org/10.1080/00405000.2013.861149.

    Article  CAS  Google Scholar 

  14. Yang X, Shang S, Li L, Tao XM, Yan F. Vapor phase polymerization of 3, 4-ethylenedioxythiophene on flexible substrate and its application on heat generation. Polym Adv Technol. 2011;22(6):1049–55. https://doi.org/10.1002/pat.1614.

    Article  CAS  Google Scholar 

  15. Chhetry A, Park JY. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J Mater Chem C. 2017. https://doi.org/10.1039/c7tc02926h.

    Article  Google Scholar 

  16. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensor. 2014;14(7):11957–92. https://doi.org/10.3390/s140711957.

    Article  CAS  Google Scholar 

  17. Linz T, Gourmelon L, Langereis G. Contactless EMG sensors embroidered onto textile. In: 4th international workshop on wearable and implantable body sensor networks (BSN 2007). Berlin: Springer; 2007. p. 29–34. https://doi.org/10.1007/978-3-540-70994-7_5.

  18. Löfhede J, Seoane F, Thordstein M. Textile electrodes for EEG recording—a pilot study. Sensors. 2012;12(12):16907–19. https://doi.org/10.3390/s121216907.

    Article  CAS  Google Scholar 

  19. Jost K, Perez CR, McDonough JK, Presser V, Heon M, Dion G, Gogotsi Y. Carbon coated textiles for flexible energy storage. Energy Environ Sci. 2011;4(12):5060–7. https://doi.org/10.1039/c1ee02421c.

    Article  CAS  Google Scholar 

  20. Wang Z, Zhang L, Bayram Y, Volakis JL. Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans Antennas Propag. 2012;60(9):4141–7. https://doi.org/10.1109/TAP.2012.2207055.

    Article  Google Scholar 

  21. Atwa Y, Maheshwari N, Goldthorpe IA. Silver nanowire coated threads for electrically conductive textiles. J Mater Chem C. 2015. https://doi.org/10.1039/C5TC00380F.

    Article  Google Scholar 

  22. Jur JS, Sweet WJ III, Oldham CJ, Parsons GN. Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv Funct Mater. 2011;21(11):1993–2002. https://doi.org/10.1002/adfm.201001756.

    Article  CAS  Google Scholar 

  23. Coskun S, Aksoy B, Unalan HE. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des. 2011;11(11):4963–9. https://doi.org/10.1021/cg200874g.

    Article  CAS  Google Scholar 

  24. Liu S, Hu M, Yang J. A facile way of fabricating a flexible and conductive cotton fabric. J Mater Chem C. 2016;4(6):1320–5. https://doi.org/10.1039/b000000x.

    Article  Google Scholar 

  25. Islam R, Khair N, Ahmed DM, Shahariar H. Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications “SC”. Mater Today Commun. 2018;19:32–8.

    Article  Google Scholar 

  26. Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N. Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv Funct Mater. 2020;30(23):2000293.

    Article  CAS  Google Scholar 

  27. Wang Y, Du D, Zhou Z, Xie H, Li J, Zhao Y. Reactive conductive ink capable of in situ and rapid synthesis of conductive patterns suitable for inkjet printing. Molecules. 2019;24(19):3548.

    Article  CAS  Google Scholar 

  28. Shahariar H, Kim I, Soewardiman H, Jur JS. Inkjet printing of reactive silver ink on textiles. ACS Appl Mater Interfaces. 2019;11:6208–16.

    Article  CAS  Google Scholar 

  29. Ayoub A, Ali A, Chul K, Young J, Mengal N, Ali I, Hoon S. Fabrication of conductive and printable nano carb onink for wearable electronic and heating fabrics. J Colloid Interface Sci. 2019;539:95–106.

    Article  Google Scholar 

  30. Song KC, Lee SM, Park TS, Lee BS. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng. 2009;26(1):153–5. https://doi.org/10.1007/s11814-009-0024-y.

    Article  CAS  Google Scholar 

  31. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc. 2010;132(4):1296–301. https://doi.org/10.1021/ja906506j.

    Article  CAS  Google Scholar 

  32. Tarafdar JC, Raliya R, Rathore I. Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci. 2012;6(2):84–9. https://doi.org/10.1166/jbns.2012.1077.

    Article  CAS  Google Scholar 

  33. Umer A, Naveed S, Ramzan N, Rafique MS. Selection of a suitable method for the synthesis of copper nanoparticles. NANO. 2012;7(05):1230005. https://doi.org/10.1142/S1793292012300058.

    Article  CAS  Google Scholar 

  34. Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials. 2010;3(9):4626–38. https://doi.org/10.3390/ma3094626.

    Article  CAS  Google Scholar 

  35. Doganay D, Coskun S, Genlik SP, Unalan HE. Silver nanowire decorated heatable textiles. Nanotechnology. 2016;27(43):435201. https://doi.org/10.1088/0957-4484/27/43/435201.

    Article  CAS  Google Scholar 

  36. Islam MM, Reza MA, Ahmed DM, Mamun MA, Shahariar H. Facile metallization technique of textiles for electronic textile applications. In: Functional textiles and clothing. Singapore: Springer; 2019. p. 91–99. https://doi.org/10.1007/978-981-13-7721-1_8

Download references

Acknowledgements

This work is supported by the research grant from Bangladesh University of Textiles, Dhaka, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Shahariar.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, M.A.A., Islam, M.T., Islam, M.M. et al. Scalable Process to Develop Durable Conductive Cotton Fabric. Adv. Fiber Mater. 2, 291–301 (2020). https://doi.org/10.1007/s42765-020-00051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00051-x

Keywords

Navigation