Skip to main content
Log in

Computational Simulations of Nanomechanical Resonators for Understanding their Frequency Dynamics and Sensing Performances

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Nanomechanical resonators have received the attention due to their ability to perform as a high-frequency device and/or a (bio)sensor that exhibits the unprecedented detection limit even down to a single-molecule or atomic resolution. For effective design of nanomechanical resonators, it is necessary to quantitatively understand the dynamic behavior of nanomechanical resonators based on theoretical models and/or computational models. In this article, we address the current state-of-arts in the theoretical modeling and/or computational modeling of nanomechanical resonators for characterizing their dynamic behavior and their sensing performances. In particular, we present the different types of models at multiple length scales ranging from continuum models to coarse-grained and atomistic models for characterizing the dynamics and sensing performances of nanomechanical resonators. In addition, we discuss the role of finite size effect, nonlinear dynamics, and stiffness effect in the dynamic behavior and/or sensing performances of nanomechanical resonators. Our article sheds light on the theoretical/computational models, which are able to predict and characterize the dynamics and sensing performances of nanomechanical resonators for effective design of them acting as an actuator and/or a sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Figure is adapted with permission from Ref.[6] (color figure online)

Fig. 3

Figure is adapted with permission from Ref. [23]

Fig. 4

Figure is adapted from Ref [25] under Creative Commons Attribution License

Fig. 5

Figure is adapted with permission from Ref.[21]

Similar content being viewed by others

References

  1. K. Eom, H.S. Park, D.S. Yoon, T. Kwon, Phys. Rep. 503, 115 (2011)

    Google Scholar 

  2. J.L. Arlett, E.B. Myers, M.L. Roukes, Nat. Nano. 6, 203 (2011)

    Google Scholar 

  3. P.S. Waggoner, H.G. Craighead, Lab Chip 7, 1238 (2007)

    Google Scholar 

  4. R. Datar et al., MRS Bull. 34, 449 (2009)

    Google Scholar 

  5. X.L. Feng, R. He, P. Yang, M.L. Roukes, Nano Lett. 7, 1953 (2007)

    Google Scholar 

  6. Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, M.L. Roukes, Nano Lett. 6, 583 (2006)

    Google Scholar 

  7. M.S. Hanay et al., Nat. Nano. 7, 602 (2012)

    Google Scholar 

  8. G. Lee et al., Angew. Chem. Int. Ed. 51, 5837 (2012)

    Google Scholar 

  9. J.W. Choi et al., Theranostics 7, 2878 (2017)

    Google Scholar 

  10. T. Kwon, S. Gunasekaran, K. Eom, B.B.A. Rev, Cancer 1871, 367 (2019)

    Google Scholar 

  11. H. Ibach, Surf. Sci. Rep. 29, 193 (1997)

    Google Scholar 

  12. W. Haiss, Rep. Prog. Phys. 64, 591 (2001)

    Google Scholar 

  13. S. Jun, Phys. Rev. B. 78, 073405 (2008)

    Google Scholar 

  14. H.S. Park, J. Appl. Phys. 103, 123504 (2008)

    Google Scholar 

  15. H.S. Park, P.A. Klein, J. Mech. Phys. Solids 56, 3144 (2008)

    Google Scholar 

  16. H.S. Park, Nanotechnology 20, 115701 (2009)

    Google Scholar 

  17. S.Y. Kim, H.S. Park, Nano Lett. 9, 969 (2009)

    Google Scholar 

  18. H. Jiang, M.F. Yu, B. Liu, Y. Huang, Phys. Rev. Lett. 93, 185501 (2004)

    Google Scholar 

  19. T. Braun et al., Phys. Rev. E. 72, 031907 (2005)

    Google Scholar 

  20. M.D. Dai, K. Eom, C.-W. Kim, Appl. Phys. Lett. 95, 203104 (2009)

    Google Scholar 

  21. M.D. Dai, K. Eom, C.-W. Kim, Appl. Phys. Lett. 100, 179901 (2012)

    Google Scholar 

  22. M. Dai, C.-W. Kim, K. Eom, Nanoscale Res. Lett. 7, 499 (2012)

    Google Scholar 

  23. M.D. Dai, C.-W. Kim, K. Eom, Nanotechnology 22, 265502 (2011)

    Google Scholar 

  24. P. Lu, H.P. Lee, C. Lu, S.J. O’Shea, Phys. Rev. B. 72, 085405 (2005)

    Google Scholar 

  25. C.-W. Kim, M.D. Dai, K. Eom, Beilstein J. Nanotechnol. 7, 685 (2016)

    Google Scholar 

  26. J. Tamayo, D. Ramos, J. Mertens, M. Calleja, Appl. Phys. Lett. 89, 224104 (2006)

    Google Scholar 

  27. K. Eom, T.Y. Kwon, D.S. Yoon, H.L. Lee, T.S. Kim, Phys. Rev. B. 76, 113408 (2007)

    Google Scholar 

  28. G.-Y. Huang, W. Gao, S.-W. Yu, Appl. Phys. Lett. 89, 043506 (2006)

    Google Scholar 

  29. X. Yi, H.L. Duan, J. Mech. Phys. Solids 57, 1254 (2009)

    Google Scholar 

  30. N.-H. Zhang, J.-Y. Shan, J. Mech. Phys. Solids 56, 2328 (2008)

    Google Scholar 

  31. M.R. Begley, M. Utz, U. Komaragiri, J. Mech. Phys. Solids 53, 2119 (2005)

    MathSciNet  Google Scholar 

  32. X. Zheng, L. Zhu, Appl. Phys. Lett. 89, 153110 (2006)

    Google Scholar 

  33. K. Eom, Multiscale Sci. Eng. 1, 1 (2019)

    Google Scholar 

  34. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  35. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, New York, 2002)

    MATH  Google Scholar 

  36. K. Eom, Simulations in Nanobiotechnology (CRC Press, Boca Raton, 2011)

    Google Scholar 

  37. Q. Cui, I. Bahar, Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems (CRC Press, Boca Raton, 2005)

    Google Scholar 

  38. I. Bahar, A.J. Rader, Curr. Opin. Struct. Biol. 15, 586 (2005)

    Google Scholar 

  39. I. Bahar, T.R. Lezon, A. Bakan, I.H. Shrivastava, Chem. Rev. 110, 1463 (2010)

    Google Scholar 

  40. L. Meirovitch, Computational Methods in Structural Dynamics (Sijthoff & Noordhoff, Rockville, 1980)

    MATH  Google Scholar 

  41. L. Meirovitch, Analytical Methods in Vibrations (Macmillan, New York, 1967)

    MATH  Google Scholar 

  42. A. Ghysels, D. Van Neck, B.R. Brooks, V. Van Speybroeck, M. Waroquier, J. Chem. Phys. 130, 084107 (2009)

    Google Scholar 

  43. B. Liu et al., Phys. Rev. B. 72, 035435 (2005)

    Google Scholar 

  44. C. Li, T.-W. Chou, Phys. Rev. B. 68, 073405 (2003)

    Google Scholar 

  45. M.M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)

    Google Scholar 

  46. K. Eom, G. Yoon, J.-I. Kim, S. Na, J. Comput. Theor. Nanosci. 7, 1210 (2010)

    Google Scholar 

  47. S. Feng, M.F. Thorpe, E. Garboczi, Phys. Rev. B. 31, 276 (1985)

    Google Scholar 

  48. E.J. Garboczi, M.F. Thorpe, Phys. Rev. B. 31, 7276 (1985)

    Google Scholar 

  49. I. Kozinsky, H.W.C. Postma, I. Bargatin, M.L. Roukes, Appl. Phys. Lett. 88, 253101 (2006)

    Google Scholar 

  50. C. Ke, J. Appl. Phys. 105, 024301 (2009)

    Google Scholar 

  51. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  52. C. Hayashi, Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  53. J. Atalaya, A. Isacsson, J.M. Kinaret, Nano Lett. 8, 4196 (2008)

    Google Scholar 

  54. A.B. Kaul, E.W. Wong, L. Epp, B.D. Hunt, Nano Lett. 6, 942 (2006)

    Google Scholar 

  55. W.G. Conley, A. Raman, C.M. Krousgrill, S. Mohammadi, Nano Lett. 8, 1590 (2008)

    Google Scholar 

  56. J.O. Island, V. Tayari, A.C. McRae, A.R. Champagne, Nano Lett. 12, 4564 (2012)

    Google Scholar 

  57. V. Sazonova et al., Nature 431, 284 (2004)

    Google Scholar 

  58. C. Li, T.-W. Chou, Appl. Phys. Lett. 84, 121 (2004)

    Google Scholar 

  59. C. Li, T.-W. Chou, Appl. Phys. Lett. 84, 5246 (2004)

    Google Scholar 

  60. M. Choi et al., J. Mech. Sci. Technol. 31, 2385 (2017)

    Google Scholar 

  61. A. Husain et al., Appl. Phys. Lett. 83, 1240 (2003)

    Google Scholar 

  62. H.W.C. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005)

    Google Scholar 

  63. R. Almog, S. Zaitsev, O. Shtempluck, E. Buks, Appl. Phys. Lett. 88, 213509 (2006)

    Google Scholar 

  64. C. Stampfer, S. Rotter, J. Burgdorfer, Appl. Phys. Lett. 88, 036101 (2006)

    Google Scholar 

  65. M. Imboden, P. Mohanty, A. Gaidarzhy, J. Rankin, B.W. Sheldon, Appl. Phys. Lett. 90, 173502 (2007)

    Google Scholar 

  66. M. Li, H.X. Tang, M.L. Roukes, Nat. Nano. 2, 114 (2007)

    Google Scholar 

  67. E. Gil-Santos et al., Nat. Nano. 5, 641 (2010)

    Google Scholar 

  68. A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M.L. Roukes, Nat. Nano. 4, 445 (2009)

    Google Scholar 

  69. S. Cherian, T. Thundat, Appl. Phys. Lett. 80, 2219 (2002)

    Google Scholar 

  70. A.W. McFarland, M.A. Poggi, M.J. Doyle, L.A. Bottomley, J.S. Colton, Appl. Phys. Lett. 87, 053505 (2005)

    Google Scholar 

  71. K.S. Hwang et al., Appl. Phys. Lett. 89, 173905 (2006)

    Google Scholar 

  72. J. Dorignac, A. Kalinowski, S. Erramilli, P. Mohanty, Phys. Rev. Lett. 96, 186105 (2006)

    Google Scholar 

  73. M.E. Gurtin, X. Markenscoff, R.N. Thurston, Appl. Phys. Lett. 29, 529 (1976)

    Google Scholar 

  74. M.J. Lachut, J.E. Sader, Phys. Rev. Lett. 99, 206102 (2007)

    Google Scholar 

  75. M.J. Lachut, J.E. Sader, Appl. Phys. Lett. 95, 193505 (2009)

    Google Scholar 

  76. B. Wu, A. Heidelberg, J.J. Boland, Nat. Mater. 4, 525 (2005)

    Google Scholar 

  77. B. Wen, J.E. Sader, J.J. Boland, Phys. Rev. Lett. 101, 175502 (2008)

    Google Scholar 

  78. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)

    Google Scholar 

  79. G. Stan et al., Appl. Phys. Lett. 92, 241908 (2008)

    Google Scholar 

  80. G. Wang, X. Li, Appl. Phys. Lett. 91, 231912 (2007)

    Google Scholar 

  81. M.T. McDowell, A.M. Leach, K. Gall, Nano Lett. 8, 3613 (2008)

    Google Scholar 

  82. G.-F. Wang, X.-Q. Feng, Appl. Phys. Lett. 90, 231904 (2007)

    Google Scholar 

  83. G.-F. Wang, X.-Q. Feng, Appl. Phys. Lett. 94, 141913 (2009)

    Google Scholar 

  84. J. He, C.M. Lilley, Nano Lett. 8, 1798 (2008)

    Google Scholar 

  85. J. He, C.M. Lilley, Appl. Phys. Lett. 93, 263108 (2008)

    Google Scholar 

  86. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  87. H. Lamb, Statics: Including Hydrostatics and the Elements of the Theory of Elasticity, 3rd edn. (Cambridge University Press, Cambridge, 1928)

    MATH  Google Scholar 

  88. M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57, 291 (1975)

    Google Scholar 

  89. J.R. Rice, T.-J. Chuang, J. Am. Ceram. Soc. 64, 46 (1981)

    Google Scholar 

  90. J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger, Malabar, 1992)

    MATH  Google Scholar 

  91. R.E. Miller, V.B. Shenoy, Nanotechnology 11, 139 (2000)

    Google Scholar 

  92. H. Sadeghian, J.F.L. Goosen, A. Bossche, F. van Keulen, Appl. Phys. Lett. 94, 231908 (2009)

    Google Scholar 

  93. B. Lee, R.E. Rudd, Phys. Rev. B. 75, 195328 (2007)

    Google Scholar 

  94. Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Nano Lett. 9, 3934 (2009)

    Google Scholar 

  95. S.Y. Kim, H.S. Park, Phys. Rev. Lett. 101, 215502 (2008)

    Google Scholar 

  96. V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, Y.W. Zhang, Phys. Rev. Lett. 101, 245501 (2008)

    Google Scholar 

  97. C.D. Reddy, A. Ramasubramaniam, V.B. Shenoy, Y.-W. Zhang, Appl. Phys. Lett. 94, 101904 (2009)

    Google Scholar 

  98. A.K. Gupta et al., Proc. Natl. Acad. Sci. USA. 103, 13362 (2006)

    Google Scholar 

  99. V.H. Ho, D.T. Ho, S.Y. Kim, Multiscale Sci. Eng. 2, 1 (2020)

    Google Scholar 

  100. G.H. Wu et al., Proc. Natl. Acad. Sci. USA. 98, 1560 (2001)

    Google Scholar 

  101. M.F. Hagan, A. Majumdar, A.K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002)

    Google Scholar 

  102. M. Zheng, K. Eom, C. Ke, J. Phys. D Appl. Phys. 42, 145408 (2009)

    Google Scholar 

  103. R. Phillips, M. Dittrich, K. Schulten, Annu. Rev. Mater. Res. 32, 219 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Science and Technology Information (KISTI) under Grant no. KSC-2018-C2-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilho Eom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, K. Computational Simulations of Nanomechanical Resonators for Understanding their Frequency Dynamics and Sensing Performances. Multiscale Sci. Eng. 2, 214–226 (2020). https://doi.org/10.1007/s42493-020-00051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-020-00051-4

Keywords

Navigation