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Abstract
This research aims at identifying the appropriate lean and/or agile practice(s) to improve the performance of filling pro-
cess in a pharmaceutical industry. Initially, the As-Is simulation model of production processes was built and then run to 
estimate the process’s output measures; averages of input bottle, work in process, waiting time, cycle time, and output 
bottles. The simulation results showed overall equipment effectiveness (OEE) score for some production processes were 
smaller than the recommended minimum world-class values. Consequently, agile and/or lean practices were utilized 
to generate nine To-Be improvement scenarios. Simulation was run to evaluate the process’s output measures and OEE 
score for each scenario. Finally, the slack based model (SBM) in data envelopment analysis was adopted to determine 
the best improvement alternative. The SBM results revealed that the lean practice “adding another head to the labeler 
machine” is the best alternative that may result in anticipated improvement in the OEE by 13.5%. In conclusion, the lean 
and/or agile practices can result in significant savings in production and quality costs.
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1  Introduction

To survive and prosper in today’s competitive environ-
ment of unpredictable changes, pharmaceuticals industry 
should continually enhance performance of existing man-
ufacturing processes to respond effectively to changing 
markets and reduce efficiently non-value added activities.

The agile and lean manufacturing have been found 
effective practices for achieving such goals [1, 2]. The 
objective of agile manufacturing is to respond to rapidly 
changing markets, global competitive pressure, decreas-
ing new product time to market, and increasing value 
of information or service [3, 4]. Agile practices include 
adding resources and buffers, outsourcing, and utilize 
existing machine for more time [5–8]. On the other hand, 
lean manufacturing employs the advantages of mass 
production in concert with the principles of Just-in-time 
and elimination of waste (non-value added activities) in 

order to reduce total production costs [9, 10]. Lean prac-
tices focus on cost reduction by improving quality and 
throughput [11–13], including purchasing new machines, 
and performing rework [14, 15]. In practice, a combina-
tion of agile and lean practices might be appropriate, or so 
called “leagile” [16–19]. The leagile concept combines lean 
strategy with agile strategy and realizes the quick response 
to the changeable demand and optimizes cost, time, and 
profitability.

Once lean, agile, or leagile practices have been applied, 
there is a need to adopt performance measures that can 
provide a very valuable insight of how effectively the 
manufacturing process is running. The Overall Equip-
ment Effectiveness (OEE) is a lean business metric tool 
commonly used to measure three critical manufacturing 
performance indicators (availability, quality, performance) 
[20–25].

Received: 30 March 2019 / Accepted: 29 August 2019 / Published online: 31 August 2019

 *  Abbas Al‑Refaie, abbas.alrefai@ju.edu.jo | 1Department of Industrial Engineering, University of Jordan, Amman 11942, 
Jordan. 2Industrial Engineering, University of Jordan, Amman, Jordan.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1199-4&domain=pdf
http://orcid.org/0000-0002-3291-0805


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1131 | https://doi.org/10.1007/s42452-019-1199-4

In this research, the OEE scores are compared with 
the world class values to determine the machines of the 
filling processes that need improvement. Then, each of 
agile and lean alternatives is treated as a decision making 
unit (DMU) with multiple inputs and multiple outputs. To 
identify the best one, an appropriate data envelopment 
analysis (DEA) technique will be employed. Typically, DEA 
a nonparametric for assessing the relative efficiency of a 
set of homogeneous units, usually referred to as decision 
making units (DMUs) that uses multiple inputs to produce 
multiple outputs [30–32]. Slack-based method (SBM) is a 
DEA technique that evaluates DMU’s efficiency evaluation 
invariant to the units of measure used for the different 
inputs and outputs; i.e., dimension free or units invariant 
[26–31]. In this research, each improvement scenario will 
be treated as a decision making unit (DMU).

Generally, the pharmaceutical industry is an important 
element of health care system that demands strict adher-
ence to safety and quality standards. Therefore, it is crucial 
that pharmaceutical manufacturing machine comply with 
good manufacturing practices. One of the important pro-
cesses in this industry is the filling processes. A study of a 
pharmaceutical industry in Jordan showed that existing 
filling processes suffer long cycle time with low production 
rates, long average waiting times, high average number 
waiting in queue, and thereby a low overall equipment 
effectiveness (OEE). The objectives of this research is, 
therefore, twofold: (1) assessing improvement scenarios of 
lean and agile practices to enhance performance of the fill-
ing processes and (2) identifying the best alternative using 
appropriate multiple-criteria decision-making technique. 
The results of this research enables process engineering 
identifying the best improvement practice that enhances 
performance and saves costly production and quality 
costs. The remaining of this paper including the introduc-
tion is outlined in the following sequence. Section two 
presents research methodology. Section three conducts 
improvement of filling processes using agile and lean prac-
tices. Section four presents research results and discussion. 
Finally, conclusions are made in section five.

2 � Literature review

Lean manufacturing has been examined in several 
research studies. For example, Sohal and Egglestone [32] 
examined lean production among Australian organi-
zations. Bonavia and Marin [33] conducted an empiri-
cal study of lean production in the ceramic tile industry 
in Spain. Mahapatra and Mohanty [34] carried out an 
empirical study on lean manufacturing in continuous 
process industry. Wong et al. [35] performed a study on 
lean manufacturing implementation in the Malaysian 

electrical and electronics industry. Ferdousi and Ahmed 
[36] conducted manufacturing performance improvement 
through lean production in Bangladeshi garment firms. 
Yogesh et al. [37] applied lean in electronics and electri-
cal manufacturing industry in India. Devakim and Jayanthi 
[38] examined barriers to implementation of lean princi-
ples in the Indian construction industry. Khlat et al. [39] 
studied lean manufacturing: implementation and assess-
ment in the Lebanese pharmaceutical industry. Hu et al. 
[40] reviewed literature on lean implementation within 
small and medium sized firms. Kafuku [41] investigated 
factors for effective implementation of lean manufacturing 
practice in selected industries in Tanzania.

Further, several studies examined the implementa-
tion of agile manufacturing. For instance, Sharp et  al. 
[7] assessed  agile  manufacturing  in the UK industry. 
Gunasekaran et  al. [42] investigated the application 
of agile manufacturing in an aerospace company. Vázquez-
Bustelo [43] presented case studies on agile manufactur-
ing in Spain. Francisco and Manuela [44] explored agile 
methods in construction small & medium enterprises: a 
case study. Zhang [45] presented case studies of an agil-
ity taxonomy. Iqbal et al. [46] examined the relationship 
among agile manufacturing, total quality management, 
just-in-time and firm performance in apparel export 
industry of Pakistan. Fritzsche [47] presented implica-
tions of agile manufacturing in the automotive industry 
for order management in the factories-evidence from the 
practitioner’s perspective.

It is noticed that some of the previous work focused 
on developing and evaluating conceptual and explora-
tory models on lean and agile manufacturing. Other 
studies applied lean and/agile practices to improve per-
formance. This research, however, proposes and assesses 
the effectiveness of adopting alternatives of lean/agile 
practices using simulation, which helps decision makers 
in determining the effect of implementing each practice 
on processes’ performance before physical changes are 
made. Moreover, it measures the improvement in the 
output measures of production line’s processes in each 
alternative, which helps in early identification of potential 
problems in subsequent processes. Finally, it utilizes the 
DEA approach to identify the best alternative other than 
acceptable solution.

3 � Research methodology development 
and implementation

3.1 � Research methodology development

The research methodology is divided into three phases as 
depicted in Fig. 1 and described as follows:
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3.1.1 � Phase I: Describe the filling processes and build 
the As‑Is simulation model

In this phase, the layout of the production processes is 
constructed. Then, the important information regarding 
processing times, moving times, and inspection stages are 
collected. Finally, the As-Is simulation model is developed at 
the current process conditions and then run to estimate the 
output measures of process performance; measures; cycle 
time, average waiting time, and average of filled bottles. In 
addition, the OEE measure is calculated for each process to 
identify the processes that needs improvement. Typically, 
the OEE measure is calculated using Eq. (1).

where A, P, and Q denote availability, performance, and 
quality, respectively. Figure 2 illustrates the required times 
for OEE calculation in a particular production system.

The components of the OEE measure are calculated as 
follows. The availability (A) is given as:

(1)OEE = A × P × Q

(2)

A =
Toperating

Tplanned production
× 100% =

Run time

Run time + stop time
× 100%

Further, the performance (P) is estimated using Eq. (3).

(3)

P =
Tnet operating

Toperating
× 100% =

Ideal cycle time × total count

Run time
× 100%

Fig. 1   Research methodology
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Finally, the quality (Q) is calculated by Eq. (4).

The obtained values are then compared with the world 
class values. Then, a process of OEE value smaller than the 
world class values is identified as key process that requires 
improvement.

3.1.2 � Phase II: Propose and assess lean/agile improvement 
alternatives (To‑Be models)

In this phase, several applicable alternatives based on lean 
and/or agile practice(s) will be introduced to the As-Is simu-
lation models. Then, the To-Be simulation model is run to 
estimate the process’s output measures. The number of 
To-Be simulation models is equal to the number of sug-
gested alternatives.

3.1.3 � Phase III: Identify and implement the best 
improvement alternative

This phase utilizes the slack-based model (SBM) to identify 
the best improvement alternative. The SBM is presented as 
follows. Each alternative for process improvement is treated 
as a decision making unit (DMU). Then, the process’s output 
measures are divided into inputs and output for each DMU. 
In this research, the number of input bottles, average work 
in progress, average waiting time, and average cycle time 
are treated as inputs, whereas the number of output bottles 
and OEE are set as the outputs for each DMU. Consider a set 
of n DMUs. For DMU k , let yrk(r = 1,… , s) denote the level 
of rth output, and xik(i = 1,… ,m) the level of the ith input. 
Then, the optimal efficiency, �∗ , score can be obtained using 
input-oriented SBM as follows:

Subject to:

(4)Q =
Tvaluable operating

T
net operating

× 100% =
Good count

Total count
× 100%

(5)�∗ = Min 1 −
1

m

m
∑

i=1

s−
i

x
ik

(6)xik =

n
∑

j=1

�jxij
+ s−

i
i = 1,… ,m

(7)yrk ≤

n
∑

j=1

�jyrj r = 1,… , s

(8)�j , s
−
i
≥ 0 j = 1,… , n; i = 1,… , m

where si
− is slack variable. If the optimal efficiency, ρ*, is 

equal to one, then the DMU is considered efficient; other-
wise, it is inefficient. However, there sometimes exist mul-
tiple efficient DMUs. To discriminate between SBM efficient 
DMUs, the Super Slack-Based Model (Super-SBM) is used 
by introducing a positive scalar variable t as follows:

Subject to:

where si
+ is slack variable. The super SBM model excludes 

the DMUk under consideration and calculates its efficiency 
score using the inputs and outputs of the other DMUs. 
Solving the model, then the DMUj that corresponds to 
larger θ* will be set a lower rank.

3.2 � Research methodology application on filling 
processes

3.2.1 � In phase I

The layout of filling processes in a pharmaceutical indus-
try is depicted as shown Fig. 3. Samples of the detailed 
layout are depicted in Fig. 4. Illustration of machine and 
conveyor charcteristics are shown in Fig. 5. The produc-
tion line is described as follows. The unscramble pro-
cess aligns and orients empty bottles correctly. Then, 
the blower process uses vacuum system to clean up the 
bottles from dirt. The Blower’s inspection sensor (num-
ber 1 in the layout) removes incorrectly aligned bottles. 
Fillers consists of two identical Fillers A and B, which are 
placed with the purpose of filling the bottles with pre-
determined amount of powder. Each filler contains two 
inspection sensors (numbered 2, 3 and 4, 5); called check 
weigher or load cell, sensor 2 and 4 are located before 
filling the bottle, to weigh the empty bottles, whereas 

(9)�∗ = Min t −
t

m

m
∑

i=1

s−
i

x
ik

(10)t +
t

s

s
∑

r=1

s+
r

y
rk

= 1

(11)
n
∑

j=1,≠k

�jxij
+ s−

i
= xik i = 1,… ,m

(12)
n
∑

j=1,≠k

�jyrj − s+
r
= yrk r = 1,… , s

(13)

�j , s
−
i
, s+

r
≥ 0 j = 1,… , n; i = 1,… ,m; r = 1,… , s
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sensors 3 and 5 are located after filling the powder to 
weigh the bottles after being filled. The net weight of 
powder should be within a predetermined range many 
out of range weigh, the bottle will be rejected. Inspec-
tion sensors 6 and 7 reassure the rejection fillers capacity 
and processing time are 14 bottles and 7 s, respectively. 
The bottles pass to metal detector, which radiates waves 
to detect any passing metal. Inspection sensor (8) rejects 
a bottle if it contains any metal this machine capacity is 1 
bottles as well as its processing time is 0.0001 Sec. Then, 
capping process attaches caps to bottles. While, inspec-
tion sensor (9) orders a cap for each passing bottle, sen-
sor (10) inspects if the cap positioned in the right place 

of the top of the bottle, sensor (11) makes sure that cap 
liner, the foil slice inside the cap, is available inside the 
cap, sensor (12) reassures the rejection from sensors (10 
and 11). The sealing process follows to stick the cap liner 
to the top of bottle at high temperatures. Recapping pro-
cess then adjusts the changes due to the exposure to 
high temperatures in sealing stage that leads to minor 
changes in the cap’s dimensions may happen. Recap-
ping share the same characteristics with the capping 
machine. Sensor (13) checks the tightness of the caps 
and rejects bottles if their cap is loose. Then, labeling 
process attaches labels to bottles. Sensor (14) orders a 
label for every passing bottle, sensor (15) inspects the 

Fig. 3   Layout of filling pro-
cesses in a pharmaceutical 
industry
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availability of the required mentioned, and sensor (16) 
reassures the rejection caused by sensor (15). Top serter 
process follows to stick the description of the medicine 
on the top of the bottles. Inspection sensor (17) rejects 
any bottle without a description placed on the bottle’s 
top. Next, the check weigher process ensures the per-
fect fit and accurate weight result. Inspection sensor 
(18) check final range of weight, which must be between 
minimum and maximum ranges are 63.8 g and 68.7 g, 

respectively. Finally, bundling and stretch banding pro-
cesses package 24 bottles together by using a plastic 
cover, to be ready for finial package by the operator at 
the packaging area.

Minimum/Maximum load sensors are located 
between each two machines. It works according to the 
number of accumulated bottles in the queue, following 
these conditions. For illustration, the operating mecha-
nism of the Minimum/Maximum load sensors in the 

Fig. 4   Samples of the detailed 
layout

Fig. 5   Sample of machine and 
conveyor characteristics
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filling line is illustrated in Fig. 6. If queue reaches only 
the minimum load sensor (i.e., a slight load on machine 
two occurs), then there is no need to keep working until 
the accumulation bottles exceed the minimum load sen-
sor. If queue reaches the maximum load sensor; i.e., a 
heavy load on machine two occurs), then machine one 
needs to pause until machine two accomplish part of 
the queue. If (minimum load sensor < queue < maximum 
load sensor), then both machines will be working. 

Then, the As-Is model is built at the current condition 
of the filling processes as also shown in Fig. 2. Motion and 
time study is then conducted to measure the character-
istics of machines, load sensors, and conveyors. Data for 

filling processes were collected as summarized in Table 1. 
Conveyor speeds are identical and equal to (200 bottles/
min), but they vary in lengths and capacities (Table 2). The 
characteristics of conveyors and load sensors are displayed 
in Tables 3 and 4, respectively.

Under current machine conditions, simulation model 
was run for a shift length of one batch (390 min) with two 
short breaks each of 15 min and a meal break of 60 min. 
The down time is determined to be 0 min. Simulation was 
run ten times, where the results showed that the values of 
standard deviations divided by the corresponding aver-
ages are very small (< 0.01) for all measured simulation 
outputs. Further, to validate simulation model the average 

Fig. 6   Minimum/maximum 
load sensors

Table 1   Machine characteristics

Machine Processing time (s) Processing 
time (bottles)

Maximum 
capacity (bot-
tle)

Input (bottle) Output (bottle) Rejected (bottle) Reject (%)

Unscrambler 0.15000 1 56 52,188 52,188 0.00 0.00
Blower 0.27000 1 25 52,188 52,188 0.00 0.00
Filler A 7.00000 14 14 52,188 51,196 992 1.90
Filler B 7.00000 14 14
Metal detector 0.00010 1 1 51,196 51,196 0.00 0.00
Capper 0.25400 1 20 51,196 50,326 870 1.70
Sealing 0.00010 1 1 50,326 50,326 0.00 0.00
Recapping 0.25400 1 20 50,326 50,321 5.00 0.01
Labeler 0.40000 1 16 50,321 48,559 1761 3.50
Top serter 0.30000 1 20 48,559 45,063 3496 7.20
Check weigher 0.00010 1 1 45,063 42,810 2253 5.00
Bundling and 

stretch band-
ing

5.00000 24 24 42,810 42,810 0.00 0.00

Table 2   Conveyors’ characteristics

Conveyor located between Length (m) Capacity 
(bottles)

Conveyor located between Length (m) Capacity 
(bottles)

Unscrambler, blower 2.40 53 Metal detector, capping 4.60 102
Blower, distributer 2.80 62 Capping, sealing 1.00 22
Distributer, filler A 4.00 88 Sealing, recapping 3.80 84
Distributer, filler B 4.00 88 Recapping, labeling 4.80 107
Filler A, station after filling 3.40 75 Labeling, top serting 2.00 44
Filler B, station after filling 3.40 75 Top serting, check weigher 2.60 55
Station after fillers and metal detector 5.50 121 Check weigher, bundling 3.50 77
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output values were compared with their correspond-
ing actual values as shown in Table 4. For example, the 
expected total number of bottles entered to the system is 
about 53,437 bottles, while the actual number of bottles is 
52,188 bottles. It is found that largest error percentage (%) 
does not exceed 5%. Hence, simulation model is concluded 
reliable and can be further used to conduct improvement 
analysis. Further, the overall OEE is calculated as follows. 
The scheduled time (= 390 min − 90 min = 300 min) is the 

shift Length minus the breaks. Then, the operating time 
(= 300 min − 0 min = 300 min) is equal to scheduled time 
minus down time. Accordingly, availability is calculated 
and found equal to 100% (= (300 min/300 min) × 100%). 
Further, number of good bottles (= 53,437 − 6421 = 47,016) 
bottles is equal to the total number of produced bottles 
minus defective one. Consequently, the performance 
(= [47,016/300)/157 bottle/min)]) and quality (= Good 
pieces/total pieces) are calculated and found equal to 
99.82% and 87.98%, respectively. Finally, the OEE is calcu-
lated and found equal to 87.83% (= (1.00 × 0.9982 × 0.879
8) × 100%). In a similar manner, the OEE scores are calcu-
lated for all machines of the filling lines and the results are 
displayed in Table 5. 

Comparing between the OEE scores and the world-class 
values in Table 5, it is clear that three machines possess 
OEE scores smaller than the word class values, including 
the labeler, top serter, and check weigher machines. The 
labeler machine corresponds to the lowest OEE percentage 
(= 67.80%); due to bar code visibility problem which leads 
to low performance (P = 78.70%). The second lowest OEE 
score (= 83.12%) corresponds to the top serter machine 
has an OEE percentage of, because of its poor performance 
(P = 86.85%) that is affected by labeler machine. Finally, 
the third lowest OEE (= 81.2%) score corresponds to the 
check weigher, which is caused by poor performance 
(P = 87.99%) and quality problems (Q = 92.00%). Conse-
quently, agile and lean practices should be employed to 
enhance the performance of these processes.

3.2.2 � In phase II

Alternatives of lean and agile practices are suggested to 
enhance the filling processes. Four agile scenarios shown 
in Fig. 7 are proposed including: A1: Adding a WIP buffer 

Table 3   Sensors’ characteristics

Sensor located between Sensor capacity

Minimum value Maxi-
mum 
value

Unscrambler, blower 5 48
Distributer, fillers 18 _
Fillers, metal detector 12 109
Metal detector, capping 10 92
Capping, sealing 2 20
Sealing, recapping 2 76
Recapping, labeling 11 96
Labeling, top serting 4 40
Top serting, check weigher 5 50
Check weigher, bundling 7 70

Table 4   Simulation results for filling line (As-Is model)

Measure Expected Actual Error (%)

Average input 53,437 52,188 (bottle) 2.33
Average output 47,016 45,000 (bottle) 4.28
Work in process (WIP) 6563 6682 (bottle) 1.81
Average waiting time 1908 1912 (s) 0.20

Table 5   The OEE values for all machines (As-Is model)

Machine name Availability (%) Performance (%) Quality (%) OEE value (%) World class (%) Suggested action

Unscrambler 100.00 89.79 100.00 89.79 85.00 No improvement
Blower 100.00 89.87 100.00 89.77 85.00 No improvement
Fillers 100.00 96.69 99.00 95.72 85.00 No improvement
Metal detector 100.00 88.17 98.00 86.45 85.00 No improvement
Capper 100.00 88.03 100.00 88.00 85.00 No improvement
Sealing 100.00 86.52 98.00 85.04 85.00 No improvement
Recapper 100.00 86.52 100.00 86.58 85.00 No improvement
Labeler 100.00 78.70 86.00 67.80 85.00 Needs improvement
Top serter 100.00 86.85 96.00 83.12 85.00 Needs improvement
Check weigher 100.00 87.99 92.00 81.27 85.00 Needs improvement
Bundling and 

stretch banding
100.00 98.68 100.00 98.59 85.00 No improvement
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before labeler, A2: Adding a WIP buffer before labeler plus 
working over time to label bottles in the buffer.

A3: suggests outsource for a percentage of 15% of 
labeled bottles, and A4: adds a new identical labeler 

machine. On the other hand, four lean practices as 
shown in Fig. 8 are considered involving: L1: Reworking 
rejected bottles of check weigher machine, L2: Rework-
ing the rejected bottles of labeler machine, L3: Adding 

Fig. 7   Suggested agile practices

Fig. 8   Suggested lean practices
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another head to the labeler machine, and L4: Installing a 
bar code camera sensor between check weigher and top 
serter machines to control barcode distance, angles, and 
orientation.

The To-Be simulation model for each alternative is run 
for a shift length of one batch and repeated ten times, 
where the results showed that the values of coefficient 
of variations are very small (< 0.01). Further, several appli-
cable leagile combinations are considered as shown in 
Table 6. Simulation for each To-Be simulation of leagile 
model was conducted in a similar manner, where it is 
found that the leagile combination (L2, A2) is the most 
cost-effective and results in high OEE score of 99.35%. 
Table 7 displays the estimated average of To-Be simula-
tion output measures for the alternatives of agile (A1–A4), 
lean (L1–L4), and the leagile (L2, A2) practices. 

3.2.3 � In phase III

Ten improvement alternatives shown in Table 7, including 
the As-Is condition, will be evaluated with respect to aver-
ages of input bottles, cycle time, WIP, waiting time, OEE%, 
and output bottles. Each alternative of agile, lean, and 

leagile practices, including the As-Is condition, is treated 
as a decision making unit (DMU) with averages of input 
bottles, cycle time, work-in-process (WIP), and waiting 
time are set as the inputs to be reduced, whereas OEE and 
average output bottles are outputs for all DMUs as also 
shown in Table 7. Then, the SBM is solved to estimate the 
efficiency score and rank of each of the ten alternatives. It 
is found that only DMU8 (L3) and DMU10 (A1–L2) are SBM-
efficient (efficiency score = 1).

4 � Results and discussion

Table 8 displays the resulted projection (Proj.) differences 
(Diff. %) and efficiency scores using SBM. For illustration, 
for DMU3 to become efficient the averages of input bot-
tles, cycle time, WIP, and waiting time have to be reduced 
from the projected values by 2.711%, 90.59%, 97.614%, 
and 97.214%, respectively. However, the average output 
bottles should be increased by 10.221%.

To discriminate between the two SBM-efficient DMUs, 
the super-SBM is solved for each alternative and then 
the efficiency results are also listed in Table 9. It is found 
that DMU8 is the most efficient DMU (super-SBM effi-
ciency = 1.012016). Table 9 also displays the input and 
output slacks using SBM, where it is found that DMU8 
results in excesses in average input bottles (S1

−), waiting 
time (S2

−), WIP (S3
−) and waiting time (S4

−) of 6.018054, 
0.133009, 2.018355, and 0.250802, respectively. Moreo-
ver, the shortages S1

+ and S2
+ in OEE and average output 

are both equal to zero. Consequently, the most prefer-
able improvement alternative is to the third lean practice 
(L3), which suggests adding another head to the labeler 
machine. The anticipated performance improvement in 
filling processes compared to As-Is condition are calcu-
lated and then displayed in Table 10.

Table 6   Feasibility matrix of agile and lean practices’ combinations

Lean Agile

A1 buffer (%) A2 over time (%)

L1: Rework check weigher rejec-
tion

92.61 97.82

L2: Rework labeler rejections 89.95 99.35
L3: Add parallel header 99.71 –
L4: Using a barcode camera 

sensor
87.85 97.97

Table 7   Estimated averages 
of To-Be simulation output 
measures

DMU Alternative Input (1) Input (2) Input (3) Input (4) Output (1) Output (2)
Average 
input (bot-
tle)

Cycle time (s) WIP (bottle) Average 
waiting time 
(s)

OEE (%) Average out-
put (bottle)

1 Current 53,437 2011.70 6563 1908 87.83 47,016
3 A1 53,427 275 6573 241 86.38 47,021
2 A2 55,519 1197 4481 205 97.17 53,992
4 A3 57,766 720 2234 616 96.23 55,670
5 A4 60,000 30 183 8 99.70 59,823
6 L1 53,451 2019 6549 1904 92.64 49,788
7 L2 53,469 2011 6531 1898 90.13 48,667
8 L3 60,000 29.87 181 7.75 99.71 59,825
9 L4 53,470 2012 6530 1898 87.92 50,131
10 A2–L2 56,000 1203 4000 209 99.35 55,640
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From Table 10, it found that adding another head to the 
labeler machine results in increasing the ratio of the aver-
age output to input is from 87.98 to 99.71% and reduc-
ing the averages of cycle time, WIP, and waiting time by 
98.52%, 97.24%, and 99.59%, respectively. Moreover, 
the OEE score is increased by 13.53%. Definitely, such 

improvement in process performance are sufficient to 
justify investment costs and results in significant savings 
in production and quality costs.

Table 8   Projection and efficiency scores using SBM

DMU Average input bottles Cycle time WIP Waiting time

Data Proj. Diff. (%) Data Proj. Diff. (%) Data Proj. Diff. (%) Data Proj. Diff. (%)

(a) Input projection
1: Current 53,437 52,851.3 − 1.096 2011.7 26.3111 − 98.692 6563 159.435 − 97.571 1908 6.82662 − 99.642
2: A1 53,427 51,978.7 − 2.711 275 25.8767 − 90.59 6573 156.803 − 97.614 241 6.71392 − 97.214
3. A2 55,519 55,519 0 1197 944.711 − 21.077 4481 3157.27 − 29.541 205 164.631 − 19.692
4. A3 57,766 57,766 0 720 72.2194 − 89.97 2234 3,15.952 − 85.857 616 14.9237 − 97.577
5. A4 60,000 59,998 − 0.003 30 29.869 − 0.437 183 180.994 − 1.096 8 7.74974 − 3.128
6. L1 53,451 53,451 0 2019 739.336 − 63.381 6549 2484.83 − 62.058 1904 129.278 − 93.21
7. L2 53,469 53,469 0 2011 264.627 − 86.841 6531 937.241 − 85.649 1898 47.7721 − 97.483
8. L3 60,000 60,000 0 29.87 29.87 0 181 181 0 7.75 7.75 0
9. L4 53,470 52,905.4 − 1.056 2012 26.3381 − 98.691 6530 159.598 − 97.556 1898 6.83362 − 99.64
10. A2–L2 56,000 56,000 0 1203 1203 0 4000 4000 0 209 209 0

DMU OEE Average output bottles SBM Super SBM

Data Proj. Diff. (%) Data Proj. Diff. (%) Score Rank Score Rank

(b) Output projection and efficiency scores
1: Current 0.8783 0.8783 0 47,016 52,697.1 12.083 0.2575 10 0.257497 10
2: A1 0.8638 0.8638 0 47,021 51,827.1 10.221 0.2797 8 0.280097 8
3. A2 0.9717 0.9717 0 53,992 55,203.6 2.244 0.8242 4 0.824226 4
4. A3 0.9623 0.9623 0 55,670 57,590.2 3.449 0.3165 7 0.31649 7
5. A4 0.997 0.99707 0.007 59,823 59,823 0 0.9883 3 0.988339 3
6. L1 0.9264 0.9264 0 49,788 53,175.8 6.804 0.4534 5 0.453377 5
7. L2 0.9013 0.9013 0 48,667 53,273.2 9.465 0.3251 6 0.325067 6
8. L3 0.9971 0.9971 0 59,825 59,825 0 1 1 1.012016 1
9. L4 0.8792 0.8792 0 50,131 52,751.1 5.227 0.2576 9 0.257643 9
10. A2–L2 0.9935 0.9935 0 55,640 55,640 0 1 1 1.005194 2

Table 9   Estimated scores, input, and output slacks using super-SBM

DMU Score S1
−: excess S2

−: excess S3
−: excess S4

−: excess S1
+: shortage S2

+: shortage
Average input Cycle time WIP Waiting time OEE Average output

1: Current 0.257497 585.7313 1985.389 6403.565 1901.173 0 5681.119
2: A1 0.280097 1443.048 249.008 6414.449 234.0688 0 4809.599
3. A2 0.824226 0 252.2886 1323.729 40.3688 0 1211.59
4. A3 0.31649 0 647.7806 1918.048 601.0763 0 1920.242
5. A4 0.988339 2.00585 0.130999 2.006051 0.250259 6.67E−05 0
6. L1 0.453377 0 1279.664 4064.166 1774.722 0 3387.82
7. L2 0.325067 0 1746.373 5593.759 1850.228 0 4606.216
8. L3 1.012016 6.018054 0.133009 2.018355 0.250802 0 0
9. L4 0.257643 564.5743 1985.662 6370.402 1891.166 0 2620.118
10. A2–L2 1.005194 1163.44 0 0 0 0 0
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5 � Conclusions

This research aims at improving the performance of the 
filling processes in a pharmaceutical industry with six 
simulation output measures of main interest, includ-
ing averages of cycle time, average input bottles, aver-
age output bottles, average waiting time, WIP and OEE. 
Firstly, the As-Is simulation was built and run, where the 
results showed that the Labeler, Top Serter, and Check 
Weigher machines need improvement (OEE < 85%). Nine 
To-Be simulation alternatives utilizing agile and/or lean 
practices were identified and assessed using simula-
tion. To determine the best alternative, each alternative 
is treated as a DMU with four inputs and two outputs. 
The SBM in DEA was then employed to evaluate the 
efficiency score and determine the corresponding rank 
of each alternative. Results showed that the lean prac-
tice; adding another head to the labeling machine, is 
the best alternative by which the OEE score is increased 
by 13.53% from that found at the As-Is condition. In 
practice, such improvement results in huge savings in 
production as well as quality costs. In conclusion, agile 
and lean practices turn to be effective tools in improv-
ing performance of the filling processes in the studied 
pharmaceutical industry. Moreover, the SBM in DEA is 
found an effective DEA technique that enables decision 
makers in pharmaceutical industry in identifying the 
best improvement practice.
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