Skip to main content
Log in

Structural, Electrical and Optical Properties for (Polyvinyl Alcohol–Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Preparation of polyvinyl alcohol (PVA)–polyethylene oxide (PEO)–magnesium oxide (MgO) nanocomposites and studying their structural, AC electrical and optical properties for dielectric and optoelectronic applications have been investigated. The nanocomposites have been fabricated with different concentrations of (PVA–PEO) blend and MgO nanoparticles. The experimental results showed that the dielectric constant, dielectric loss and AC electrical conductivity of (PVA–PEO) blend are increased with the increase in MgO nanoparticles concentrations. The dielectric constant and dielectric loss of (PVA–PEO) blend are decreased while the AC electrical conductivity increases with the increase in frequency. The optical measurements are showed that the absorbance of (PVA–PEO–MgO) nanocomposites is increased with increasing of the magnesium oxide nanoparticles concentrations. The indirect energy gap (Eg) of (PVA–PEO) blend decreases with an increase inconcentrations of magnesium oxide nanoparticles. The optical constants as absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants of nanocomposites are variation with increasing of the magnesium oxide nanoparticles weight percentages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Kasım, M. Yazıcı, Electrical properties of graphene/natural rubber nanocomposites coated nylon fabric under cyclic loading. Period. Polytech. Chem. Eng. 63(1), 160–169 (2019). https://doi.org/10.3311/PPch.12122

    Article  Google Scholar 

  2. H.R. Hiziroglu, I.E. Shkolnik, Electrical characteristics of polypropylene mixed with natural nanoclay. Polymers (2018). https://doi.org/10.3390/polym10090942

    Google Scholar 

  3. A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch–copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017)

    Article  Google Scholar 

  4. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Google Scholar 

  5. H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Google Scholar 

  6. Y. Gong, W. Zhou, Z. Wang, L. Xu, Y. Kou, H. Cai, X. Liu, Q. Chen, Z.-M. Dang, Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA–Fe coordination complexes as an interface layer. J. Mater. Sci. Technol. 34, 2415–2423 (2018). https://doi.org/10.1016/j.jmst.2018.06.007

    Article  Google Scholar 

  7. R. Nangia, N.K. Shukla, A. Sharma, Preparation, structural and dielectric properties of solution grown polyvinyl alcohol (PVA) film. In: IOP Conference Series: Materials Science and Engineering, vol. 225 (2017)

  8. A. Hashim, M.A. Habeeb, Structural and optical properties of (biopolymer blend-metal oxide) bionanocomposites for humidity sensors. J. Bionanosci. 12(5), 660–663 (2018)

    Article  Google Scholar 

  9. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  Google Scholar 

  10. B.H. Rabee, A. Hashim, Synthesis and characterization of carbon nanotubes-polystyrene composites. Eur. J. Sci. Res. 60(2), 247–254 (2011). https://doi.org/10.21608/ejchem.2018.2563.1207

    Google Scholar 

  11. M.A. Habbeb, A. Hashim, A.R.K. AbidAli, The dielectric properties for (PMMA-LiF) composite. Eur. J. Sci. Res. 61(3), 367–371 (2011)

    Google Scholar 

  12. B.B. Bohara, A. Kassu, J. Brinkley, A.K. Batra, M.D. Aggarwal, Dielectric properties of lead magnesium niobate–lead titanate/cement nanocomposites. Adv. Sci. Eng. Med. 10, 1260–1264 (2018)

    Article  Google Scholar 

  13. F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)

    Google Scholar 

  14. F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. Appl. Sci. 8(9), 439–441 (2013)

    Google Scholar 

  15. F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    Google Scholar 

  16. A.I. Abbo, H.S. Abdulla, Optical and electrical properties of thin films of polyaniline and polypyrrole. Int. J. Electrochem. Sci. 7, 10666–10678 (2012)

    Google Scholar 

  17. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170–176 (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  Google Scholar 

  18. A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blendvia γ-rays irradiation. J. Nucl. Instrum. Methods Phys Res. B Beam Interact. Mater. Atoms 321, 41–48 (2014). https://doi.org/10.1016/j.nimb.2013.12.020

    Article  Google Scholar 

  19. H. Bai, Y. Li, W. Wang, G. Chen, O.J. Rojas, W. Dong, X. Liu, Interpenetrated polymer networks in composites with polyvinyl alcohol, micro- and nano-fibrillated cellulose (M/NFC) and polyhema to develop packaging materials. J. Cellulose 22, 3877–3894 (2015). https://doi.org/10.1007/s10570-015-0748-2

    Article  Google Scholar 

  20. B.Y. Lee, Y.C. Kim, Effect of graphene oxide (GO) dispersion on basic properties of polycarbonate/GO composites. Int. J. Digit. Content Technol. Appl. (JDCTA) 7(11), 287–297 (2013)

    Article  Google Scholar 

  21. L.A. Abdelwahab, A.E. Ali, R.A. Zaghlool, N.A. Mohsen, Dielectric properties, impedance analysis, and electrical conductivity of Ag doped radiation grafted polypropylene. Egypt. J. Radiat. Sci. Appl. 30(1), 95–107 (2017)

    Article  Google Scholar 

  22. M.A. Habeeb, A. Hashim, A. Hadi, Fabrication of new nanocomposites: CMC–PAA–PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sens. Lett. 15(9), 785–790 (2017)

    Article  Google Scholar 

  23. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Google Scholar 

  24. A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. 15(12), 998–1002 (2017)

    Article  Google Scholar 

  25. Z. Al-Ramadhan, A. J. K. Algidsawi, A. Hashim, The D.C Electrical Properties of (PVC-Al2O3) Composites, AIP Conf. Proc. (2011). https://doi.org/10.1063/1.3663109

    Google Scholar 

  26. A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/PVA nanocomposites. J. Appl. Phys. 7, 60–69 (2015)

    Google Scholar 

  27. I.Y. Jeon, J.B. Baek, Nanocomposites derived from polymers and inorganic nanoparticles. J. Mater. 3, 3654–3674 (2010)

    Article  Google Scholar 

  28. T.K. Kundu, N. Karak, P. Barik, S. Saha, Optical properties of Zno nanoparticles prepared by chemical method using poly (vinylalcohol) (PVA) as capping agent. Int. J. Soft Comput. Eng. (IJSCE) 1, 19–24 (2011)

    Google Scholar 

  29. J.L. Chau, Y.M. Lin, A.-K. Li, W.-F. Su, K.S. Chang, H.S. Hsu, T.L. Li, Transparent high refractive index nanocomposite thin films. J. Mater. Lett. 61, 2908–2910 (2007)

    Article  Google Scholar 

  30. M.M. Abutalib, Effect of additive concentration and X-ray irradiation on the thermal and color properties of polyvinyl alcohol. J. Life Sci. 11(9), 512–517 (2014)

    Google Scholar 

  31. H.K. Chitte, N.V. Bhat, N.S. Karmakar, D.C. Kothari, GN Shinde,” Synthesis and characterization of polymeric composites embeded with silver nanoparticles. World J. Nano Sci. Eng. 2, 19–24 (2012)

    Article  Google Scholar 

  32. K. Vimala, Y.M. Mohan, K. Varaprasad, N.N. Redd, S.R. Neppalli, S. Naidu, K.M. Raju, Fabrication of curcumin encapsulatedchitosan-PVA silver nanocomposite films for improved antimicrobial activity. J. Biomater. Nanobiotechnol. 2, 55–64 (2012)

    Article  Google Scholar 

  33. A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inf. 7(1), 28–34 (2018). https://doi.org/10.11591/eei.v7i1.839

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebur, Q.M., Hashim, A. & Habeeb, M.A. Structural, Electrical and Optical Properties for (Polyvinyl Alcohol–Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications. Trans. Electr. Electron. Mater. 20, 334–343 (2019). https://doi.org/10.1007/s42341-019-00121-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00121-x

Keywords

Navigation