Skip to main content

Advertisement

Log in

Phenolic Composition, Enzyme Inhibitory and Anti-quorum Sensing Activities of Cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum Linn)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Cinnamomum zeylanicum and Ocimum basilicum are two plants used by many cultures for food and medicinal purposes. The phenolic composition of ethanol extracts of both plants were determined by HPLC–DAD. A total of seventeen compounds were identified in C. zeylanicum with trans cinnamic acid (179.90 ± 0.45 µg/g) and coumarin (84.50 ± 0.41 µg/g) as major constituents while ten compounds were detected in O. basilicum with rosmarinic acid (360.40 ± 1.28 µg/g) and vanillic acid (36.30 ± 0.25 µg/g) as major constituents. C. zeylanicum exhibited higher inhibition on AChE (54.30 ± 0.97%) and BChE (66.43 ± 0.84%) than O. basilicum with lower AChE (23.43 ± 0.51%) and BChE (33.83 ± 0.75%) inhibitions. Both extracts showed moderate inhibition of tyrosinase and urease enzymes. The quorum sensing (QS) inhibition of O. basilicum and C. zeylanicum was evaluated by two assays: violacein inhibition on Chromobacterium violaceum CV12472 and QS inhibition on Chromobacterium violaceum CV026. Excellent inhibition of violacein synthesis in CV12472 was exhibited by C. zeylanicum with 100% inhibtion at MIC to MIC/4 and further inhibitions of 48.0 ± 2.0% (MIC.8) and 27.9 ± 1.2% (MIC/16). QS inhibition diameter zones on C. violaceum CV026 at MIC were 13.0 ± 1.0 mm and 10.5 ± 1.0 mm for C. zeylanicum and O. basilicum respectively. Since both extracts could inhibit violacein synthesis in CV12472 and QS in CV026, they could block signal production and signal reception in QS mediated processes in bacteria. These results indicate that both plants can be used to remedy microbial resistance and Alzheimer’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data obtained and analyzed during this research are provided and included within the manuscript data and the authors will make available any other related information supporting the findings upon reasonable request.

References

  1. Tamfu AN, Ceylan O, Fru GC, Ozturk M, Duru ME, Shaheen F (2020) Antibiofilm, antiquorum sensing and antioxidant activity of secondary metabolites from seeds of Annona senegalensis. Persoon Microbial Pathogen 144:104191. https://doi.org/10.1016/j.micpath.2020.104191

    Article  CAS  Google Scholar 

  2. Boudiba S, Tamfu AN, Berka B, Hanini K, Hioun S, Allaf K, Boudiba L, Ceylan O (2021) Anti-quorum sensing and antioxidant activity of essential oils extracted from juniperus species, growing spontaneously in Tebessa Region (East of Algeria). Nat Prod Commun 16(6):1–11. https://doi.org/10.1177/1934578X211024039

    Article  Google Scholar 

  3. Ngenge AT, Ceylan O, Fru GC, Arab Y, Emin DM, Ozturk M (2021) Antimicrobial, antibiofilm, anti-quorum sensing and motility inhibition activities of essential oil from seeds of food spice Xylopia aethiopica (Dunal) A. Rich. on some pathogenic bacteria. Res J Biotechnol. 16(6):68–76

    Google Scholar 

  4. Owokotomo IA, Ekundayo O, Abayomi TG, Chukwuka AV (2015) In-vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicol Rep 2:850–857. https://doi.org/10.1016/j.toxrep.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tehrani MB, Rezaei Z, Asadi M, Behnammanesh H, Nadri H, Afsharirad F, Moradi A, Larijani B, Mohammadi-Khanaposhtani M, Mahdavi M (2019) Design, synthesis, and cholinesterase ınhibition assay of Coumarin-3-carboxamide-N-morpholine hybrids as new anti-Alzheimer agents. Chem Biodivers 16(7):e1900144. https://doi.org/10.1002/cbdv.201900144

    Article  CAS  PubMed  Google Scholar 

  6. Tamfu AN, Fotsing MT, Talla E, Ozturk M, Mbafor JT, Duru ME, Shaheen F (2019) Chemical composition and evaluation of anticholinesterase activity of essential oil from Cameroonian propolis. Issues Biol Sci Pharm Res 7(3):58–63. https://doi.org/10.15739/ibspr.19.007

    Article  Google Scholar 

  7. Tamfu AN, Ceylan O, Kucukaydin S, Ozturk M, Duru ME, Dinica RM (2020) Antibiofilm and enzyme inhibitory potentials of two annonaceous food spices, African Pepper (Xylopia aethiopica) and African Nutmeg (Monodora myristica). Foods 9(12):1768. https://doi.org/10.3390/foods9121768

    Article  CAS  PubMed Central  Google Scholar 

  8. Jahangir MA, Shehzad A, Butt MS, Shahid M (2018) Influence of supercritical fluid extract of Cinnamomum zeylanicum bark on physical, bioactive and sensory properties of innovative cinnamaldehyde-enriched chocolates. Czech J Food Sci. 36:1–9. https://doi.org/10.17221/237/2016-CJFS

    Article  Google Scholar 

  9. Tamfu AN, Ceylan O, Kucukaydin S, Duru ME (2020) HPLC-DAD phenolic profiles, antibiofilm, anti-quorum sensing and enzyme inhibitory potentials of Camellia sinensis (L.) O. Kuntze and Curcuma longa L. LWT Food Sci Technol 133:110150

    Article  CAS  Google Scholar 

  10. Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of “true” cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Comp Altern Med 13:275. https://doi.org/10.1186/1472-6882-13-275

    Article  CAS  Google Scholar 

  11. Husain I, Ahmad R, Chandra A, Raza ST, Shukla Y, Mahdi F (2018) Phytochemical characterization and biological activity evaluation of ethanolic extract of Cinnamomum zeylanicum. J Ethnopharmacol 219:110–116. https://doi.org/10.1016/j.jep.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Muchuweti M, Kativu E, Mupure CH, Chidewe C, Ndhlala AR, Benhura MAN (2007) Phenolic composition and antioxidant properties of some spices. Am J Food Technol 2:414–420. https://doi.org/10.3923/ajft.2007.414.420

    Article  CAS  Google Scholar 

  13. Kumar S, Kumari R, Mishra S (2019) Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol 71:1735–1761. https://doi.org/10.1111/jphp.13173

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Su B, Jiang H, Cui N, Yu Z, Yang Y, Sun Y (2020) Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): a review. Fitoterapia 146:104675. https://doi.org/10.1016/j.fitote.2020.104675

    Article  CAS  PubMed  Google Scholar 

  15. Balakrishnan P, Ramalingam PS, Purushothaman S, Balu R, Jolius G, Kumaran S (2018) A comprehensive review on Ocimum basilicum. J Natl Remed 18(3):71–85. https://doi.org/10.18311/jnr/2018/21324

    Article  Google Scholar 

  16. Joshi RK (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Ancient Sci Life 33(3):151–156. https://doi.org/10.4103/0257-7941.144618

    Article  Google Scholar 

  17. Vina A, Murillo E (2003) Essential oil composition from twelve varieties of basil (Ocimum spp.) grown in Colombia. J Braz Chem Soc 14:744–749. https://doi.org/10.1590/S0103-50532003000500008

    Article  CAS  Google Scholar 

  18. Tangpao T, Chung HH, Sommano SR (2018) Aromatic profiles of essential oils from five commonly used Thai basils. Foods 7(11):175. https://doi.org/10.3390/foods7110175

    Article  CAS  PubMed Central  Google Scholar 

  19. Gebrehiwot H, Bachetti RK, Dekebo A (2015) Chemical composition and antimicrobial activities of leaves of sweet basil (Ocimum basilicum L.) herb. Int J Basic Clin Pharmacol 4(5):869–875. https://doi.org/10.18203/2319-2003.ijbcp20150858

    Article  Google Scholar 

  20. Gülçin I, Elmastaş M, Aboul-Enein HY (2007) Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother Res. 21(4):354–361. https://doi.org/10.1002/ptr.2069

    Article  CAS  PubMed  Google Scholar 

  21. Barros L, Dueñas M, Ferreira ICFR, Baptista P, Santos-Buelga C (2009) Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol 47:1076–1079. https://doi.org/10.1016/j.fct.2009.01.039

    Article  CAS  PubMed  Google Scholar 

  22. Çayan F, Deveci E, Tel-Çayan G, Duru ME (2020) Identifcation and quantifcation of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J Food Measur Charact 14:1690–1698. https://doi.org/10.1007/s11694-020-00417-0

    Article  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  24. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045

    Article  CAS  Google Scholar 

  25. Masuda T, Yamashita D, Takeda Y, Yonemori S (2005) Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem 69:197–201. https://doi.org/10.1271/bbb.69.197

    Article  CAS  PubMed  Google Scholar 

  26. CLSI (Clinical Laboratory Standards Institute) (2006) Quality control minimal inhibitory concentration (MIC) limits for broth dilution and MIC interpretative breakpoints (M27–s2). Wayne, Pennsylvania

    Google Scholar 

  27. Ceylan O, Tamfu AN, Doğaç Yİ, Teke M (2020) Antibiofilm and anti-quorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles. 3 Biotech. 10(12):513. https://doi.org/10.1007/s13205-020-02509-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kocak G, Tamfu AN, Bütün V, Ceylan O (2021) Synthesis of quaternary piperazine methacrylate homopolymers and their antibiofilm and anti-quorum sensing effects on pathogenic bacteria. J Appl Polym Sci 138:e50466. https://doi.org/10.1002/app.50466

    Article  CAS  Google Scholar 

  29. Georgiev MI, Alipieva K, Orhan IE (2012) Cholinesterases inhibitory and antioxidant activities of Harpagophytum procumbens from in vitro systems. Phytother Res 26:313–316. https://doi.org/10.1002/ptr.3555

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZY, Liu JG, Li H, Yang HM (2016) Pharmacological effects of active components of chinese herbal medicine in the treatment of Alzheimer’s disease: a Review. Am J Chin Med 44:1525–1541. https://doi.org/10.1142/S0192415X16500853

    Article  CAS  PubMed  Google Scholar 

  31. Amtul Z, Atta-ur-Rahman BSP, Siddiqui R, Choudhary M (2012) Chemistry and mechanism of urease inhibition. Curr Med Chem 9:1323–1348. https://doi.org/10.2174/0929867023369853

    Article  Google Scholar 

  32. Parvez S, Kang M, Chung H, Bae H (2007) Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phyther Res 21:805–816. https://doi.org/10.1002/ptr.2184

    Article  CAS  Google Scholar 

  33. Ruwizhi N, Aderibigbe BA (2020) Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci 21(16):5712. https://doi.org/10.3390/ijms21165712

    Article  CAS  PubMed Central  Google Scholar 

  34. Zhang WX, Wang H, Cui HR, GuoWB ZF, Cai DS, Xu B, Jia XH, Huang XM, Yang YQ (2019) Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur J Med Chem 183:1–16. https://doi.org/10.1016/j.ejmech.2019.111695

    Article  CAS  Google Scholar 

  35. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int. https://doi.org/10.1155/2013/963248

    Article  PubMed  PubMed Central  Google Scholar 

  36. Amoah SK, Sandjo LP, Kratz JM, Biavatti MW (2016) Rosmarinic acid-pharmaceutical and clinical aspects. Planta Med 82(5):388–406. https://doi.org/10.1055/s-0035-1568274

    Article  CAS  PubMed  Google Scholar 

  37. Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Rinaldi AJF, Leal LN, Lamuela-Raventos RM (2014) A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 1(154):299–307. https://doi.org/10.1016/j.foodchem.2013.12.106

    Article  CAS  Google Scholar 

  38. Omoba OS, Olagunju AI, Salawu SO, Boligon AA (2019) HPLC-DAD phenolic profiling and ın vitro antioxidant activities of three prominent Nigerian spices. Prev Nutr Food Sci 24(2):179–186. https://doi.org/10.3746/pnf.2019.24.2.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elansary HO, Szopa A, Kubica P, Ekiert H, El-Ansary DO, Al-Mana FA, Mahmoud EA (2020) Saudi Rosmarinus officinalis and Ocimum basilicum L. Polyphen Biol Act Process 8:446. https://doi.org/10.3390/pr8040446

    Article  CAS  Google Scholar 

  40. Wang Y, Harrington PB, Chen P (2020) Metabolomic profiling and comparison of major cinnamon species using UHPLC-HRMS. Ann Bioanal Chem 412(27):7669–7681. https://doi.org/10.1007/s00216-020-02904-1

    Article  CAS  Google Scholar 

  41. Laha S, Sarkar D (2014) Screening of inhibitory effects on acetylcholinesterase and butyrylcholinesterase enzymes by some ındian medicinal plant’s extracts. Indian Res J Genet Biotechnol 6(2):406–411

    Google Scholar 

  42. Arachchige SPG, Abeysekera WPKM, Ratnasooriya WD (2017) Antiamylase, anticholinesterases, antiglycation, and glycation reversing potential of bark and leaf of ceylon cinnamon (Cinnamomum zeylanicum Blume) In Vitro. Evidence Based Comp Altern Med. https://doi.org/10.1155/2017/5076029

    Article  Google Scholar 

  43. Danış Ö, Yuce-Dursun B, Çimen T, Demir S, Salan Ü, Yalçın G, Ogan A (2014) Evaluation of antioxidant, radical-scavenging and acetylcholinesterase ınhibitory activities of various culinary herbs cultivated in southern Turkey. J Food Biochem 38:602–611. https://doi.org/10.1111/jfbc.12095

    Article  CAS  Google Scholar 

  44. Amat-ur-Rasool H, Symes F, Tooth D, Schaffert LN, Elmorsy E, Ahmed M, Hasnain S, Carter WG (2020) Potential nutraceutical properties of leaves from several commonly cultivated plants. Biomolecules 10:1556. https://doi.org/10.3390/biom10111556

    Article  CAS  PubMed Central  Google Scholar 

  45. Lianza M, Mandrone M, Chiocchio I, Tomasi P, Marincich L, Poli F (2020) Screening of ninety herbal products of commercial interest as potential ingredients for phytocosmetics. J Enzyme Inhib Med Chem 35(1):1287–1291. https://doi.org/10.1080/14756366.2020.1774571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin CC, Yang CH, Wu PS, Kwan CC, Chen YC (2011) Antimicrobial, anti-tyrosinase and antioxidant activities of aqueous aromatic extracts from forty-eight selected herbs. J Med Plants Res 5(26):6203–6209. https://doi.org/10.5897/JMPR.9000182

    Article  CAS  Google Scholar 

  47. Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10(8):744–752. https://doi.org/10.1016/j.apjtm.2017.07.022

    Article  PubMed  Google Scholar 

  48. Alfred TN, Ceylan O, Kucukaydin S, Olmez OT, Godloves CF, Sylvain SK, Yeskaliyeva B, Duru ME, Ozturk M (2020) HPLC-DAD and GC-MS characterization of Cameroonian honey Samples and evaluation of their antibiofilm, anti-quorum sensing and antioxidant activities. Bull Environ Pharmacol Life Sci 9(10):132–142

    Google Scholar 

  49. Popova M, Gerginova D, Trusheva B, Simova S, Tamfu AN, Ceylan O, Clark K, Bankova V (2021) A Preliminary study of chemical profiles of honey, cerumen, and propolis of the african stingless bee Meliponula ferruginea. Foods 10:997. https://doi.org/10.3390/foods10050997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Chemistry and the Ula Ali Kocman Vocational School, Mugla Sitki Kocman University for material support.

Funding

The authors received no financial support for the research and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

ANT, SK and OC did the conceptualization, performed the literature search, and devised the methods, carried out the experiments as well as the formal analysis. ANT and SK wrote the original draft. OC, MED and NS did the editing, provided materials and resources. OC and MED did the supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alfred Ngenge Tamfu or Ozgur Ceylan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamfu, A.N., Kucukaydin, S., Ceylan, O. et al. Phenolic Composition, Enzyme Inhibitory and Anti-quorum Sensing Activities of Cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum Linn). Chemistry Africa 4, 759–767 (2021). https://doi.org/10.1007/s42250-021-00265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00265-5

Keywords

Navigation