Skip to main content
Log in

Synthesis, Characterization and Antifungal Activity of Fe(III) Metal–Organic Framework and its Nano-composite

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have gained developing interest due to their high specific surface area and pore volume, which has been exploited for gas storage, sensors and, drug delivery. This study presents the synthesis of a non-toxic, biocompatible and thermally stable MIL-53(Fe) and the preparation of its silver(I) nitrate nano-composite. This MIL-53(Fe) is a three-dimensional porous solid composed of infinite FeO4(OH)2 cluster connected by 1,4-benzenedicarboxylate (H2BDC) ligand using solvothermal method of synthesis and the encapsulation process was also carried out to produce a composite composed of silver nanoparticle (AgNP). The synthesized materials were characterized using Powder X-ray Diffractometer (PXRD), Scanning Electron Microscope coupled with Electron Diffraction X-ray Spectrometer (SEM–EDS) and Fourier Transform Infrared (FT-IR) Spectroscopy. The Ag@MIL-53(Fe) composite exhibits a remarkable antifungal activity against Aspergillus flavus using a poison plate method. This can be attributed to the therapeutic nature of nanoparticle with a range of 55–64% growth inhibition rate as the concentration of the Ag@MIL-53(Fe) was increased. Minimum lethal concentrations (MLC) were observed to be 40 μg/mL and 15 μg/mL for the prepared MIL-53(Fe) and the Ag@MIL-53(Fe) composite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roswell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous material. Microporous Mesoporous Mater 73:3–14

    Article  Google Scholar 

  2. Kuppler RJ, Timmons DJ, Fang Q-R, Li JR, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou HC (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066

    Article  CAS  Google Scholar 

  3. Huxford RC, Rocca JD, Lin W (2010) Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol 14(2):262–268

    Article  CAS  Google Scholar 

  4. Liu Y, Ng Z, Khan EA, Jeong HK, Ching CB, Lia Z (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater 118:296–301

    Article  CAS  Google Scholar 

  5. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, Garcıa-Martınez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43:7681–7717

    Article  CAS  Google Scholar 

  6. Hirscher M, Panella B, Schmitz B (2010) Metal-organic frameworks for hydrogen storage. Microporous Mesoporous Mater 129:335–339

    Article  Google Scholar 

  7. Tella AC, Isaac AY (2012) Syntheses and applications of metal-organic frameworks materials: a review. Acta Chim Pharm Indica 2(2):75–81

    CAS  Google Scholar 

  8. Hermes S, Schröter MK, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chemie Int Ed 44(38):6237–6241

    Article  CAS  Google Scholar 

  9. Chiericatti C, Basilico JC, Basilico MLZ, Zamaro JM (2012) Novel application of HKUST-1 metal–organic framework as antifungal: biological tests and physicochemical characterizations. Microporous Mesoporous Mater 162:60–63

    Article  CAS  Google Scholar 

  10. Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, Zhao Q, Ning G (2014) Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem 138:114–121

    Article  CAS  Google Scholar 

  11. Firouzjaei MD, Shamsabadi AA, Sharifian GhM, Rahimpour A, Soroush M (2018) A novel nanocomposite with superior antibacterial activity: a silver-based metal organic framework embellished with graphene oxide. Adv Mater Interfaces 5:1701365

    Article  Google Scholar 

  12. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 128:4271–4275

    Article  Google Scholar 

  13. Liang R, Shen L, Jing F, Qin N, Wu L (2015) Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts. ACS Appl Mater Interfaces 7(18):9507–9515

    Article  CAS  Google Scholar 

  14. Ai L, Zhang C, Li L, Jiang J (2014) Iron terephthalate metal organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ 148–149:191–200

    Article  Google Scholar 

  15. Millange F, Guillou N, Medina ME, Ferey G, CarlinSinclair A, Golden KM, Walton RI (2010) Selective sorption of organic molecules by the flexible porous hybrid metal–organic framework MIL-53(Fe) controlled by various host–guest interactions. Chem Mater 22:4237–4245

    Article  CAS  Google Scholar 

  16. Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Amer Chem Soc 132(9):2991–2997

    Article  CAS  Google Scholar 

  17. Esken D, Zhang X, Lebedev OI, Schröder F, Fischer RA (2009) Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles. J Mater Chem 19(9):1314–1319

    Article  CAS  Google Scholar 

  18. Schröder F, Esken D, Cokoja M, Van-Den-Berg MWE, Lebedev OI, Van-Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (2008) Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. Amer Chem Soc 130(19):6119–6130

    Article  Google Scholar 

  19. Houk RJ, Jacobs BW, Gabaly FE, Chang NN, Talin AA, Graham DD, Allendorf MD (2009) Silver cluster formation, dynamics, and chemistry in metal–organic frameworks. Nano Lett 9(10):3413–3418

    Article  CAS  Google Scholar 

  20. Jacobs BW, Houk RJ, Anstey MR, House SD, Robertson IM, Talin AA, Allendorf MD (2011) Ordered metal nanostructure self-assembly using metal–organic frameworks as templates. Chem Sci 2(3):411–416

    Article  CAS  Google Scholar 

  21. Ishida T, Kawakita N, Akita T, Haruta M (2009) One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull 42(4):267–274

    Article  CAS  Google Scholar 

  22. Ishida T, Nagaoka M, Akita T, Haruta M (2008) Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem A Euro J 14:8456–8460

    Article  CAS  Google Scholar 

  23. Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E (2008) Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catal Comm 9(6):1286–1290

    Article  CAS  Google Scholar 

  24. Gu X, Lu ZH, Jiang HL, Akita T, Xu Q (2011) Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Amer Chem Soc 133(31):11822–11825

    Article  CAS  Google Scholar 

  25. El-Shall MS, Abdelsayed V, Abd-El-Rahman SK, Hassan HMA, El-Kaderi HM, Reich TE (2009) Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J Mater Chem 19(41):7625–7631

    Article  CAS  Google Scholar 

  26. Guo H, Li H, Jarvis K, Wan H, Kunal P, Dunning SG, Liu Y, Henkelman G, Humphrey SM (2018) Microwave-assisted synthesis of classically immiscible Ag–Ir alloy nanoparticle catalysts. ACS Catal 8:11386–11397

    Article  CAS  Google Scholar 

  27. Li H, Shin K, Henkelman G (2018) Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 149:174705

    Article  Google Scholar 

  28. Li H, Guo S, Shin K, Wong MS, Henkelman G (2019) Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal. 9(9):7957–7966

    Article  CAS  Google Scholar 

  29. Pattron DD (2006) Aspergillus, health implication and recommendations for public health food safety. Internet J. Food Safety 8:19–23

    Google Scholar 

  30. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH (2001) In-vitro susceptibility testing methods for caspofungin against Aspergillus and Fusarium isolates. Antimicrob Agents Chemother 45:327–330

    Article  CAS  Google Scholar 

  31. Zhang C, Ai L, Jiang J (2015) Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J Mater Chem A 3:3074–3081

    Article  CAS  Google Scholar 

  32. Liang R, Jing F, Shen L, Qin N, Wu L (2015) M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: efficient visible-light photocatalysts for redox reactions in water. Nano Res 8(10):3237–3249

    Article  CAS  Google Scholar 

  33. Obaleye JA, Adediji JF, Adebayo MA (2011) Synthesis and biological activities on metal complexes of 2,5-Diamino-1,3,4-thiadiazole derived from semicarbazide hydrochloride. Mol. 16:5861–5874

    Article  CAS  Google Scholar 

  34. Tama SK, Dusseault J, Polizu S, Menard M, Halle JP, Yahia LH (2005) Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomater 26:6950–6961

    Article  Google Scholar 

  35. Yılmaz E, Sert E, Atalay FS (2016) Synthesis, characterization of a metal organic framework: MIL-53(Fe) and adsorption mechanisms of methyl red onto MIL-53(Fe). J Taiwan Inst Chem Eng 000:1–8

    Google Scholar 

  36. Nguyen DTC, Le HTN, Do TS, Pham VT, Tran DL, Ho VTT, Tran TV, Nguyen DC, Nguyen TD, Bach LG, Ha HKP, Doan VT (2019) Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization Hindu. J Chem Article ID. https://doi.org/10.1155/2019/5602957

    Article  Google Scholar 

  37. Banerjee R, Gokhale S, Bhatnagar J, Jog M, Bhardwaj B, Lefez B, Hannoyer B, Ogale S (2012) MOF derived porous carbon–Fe3O4 nano-composite as a high performance, recyclable environmental super-adsorbent. J Mater Chem A 22:19694–19699

    Article  CAS  Google Scholar 

  38. Li B, Chen X, Yu F, Yu W, Zhang T, Sun D (2014) Luminescent response of one anionic metal–organic framework based on novel octa-nuclear zinc cluster to exchanged cations. Cryst Growth Des 14(2):410–413

    Article  CAS  Google Scholar 

  39. Sabo M, Henschel A, Frode H, Klemm E, Kaskel S (2007) Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J Mater Chem 17(36):3827–3832

    Article  CAS  Google Scholar 

  40. Obaleye JA, Caira MR, Tella AC (2008) Crystal structure of dichlorobis (N-{4-[(2-pyrimidinyl-κN-amino)-sulfonyl]phenyl}acetamide)copper(II). Anal Sci X-ray Struc Anal Online 24:x63–x64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. A. C. Tella is grateful to the Royal Society of Chemistry for the award of 2015 research fund. Authors Dr. H. K. Okoro and Prof J. C. Ngila are grateful to the U.J. Global Excellence and Stature Scholarship for running cost paid by Water Research Commission WRC Project No; K5/2365. Dr. Caliphs Zvinowanda thanks NRF-SA/Egypt collaboration grants No; 108685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Adimula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tella, A.C., Okoro, H.K., Sokoya, S.O. et al. Synthesis, Characterization and Antifungal Activity of Fe(III) Metal–Organic Framework and its Nano-composite. Chemistry Africa 3, 119–126 (2020). https://doi.org/10.1007/s42250-019-00102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00102-w

Keywords

Navigation