Skip to main content

Advertisement

Log in

Origin, fate, and risk assessment of emerging contaminants in groundwater bodies: a holistic review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Groundwater is one of the primary and most safe sources of freshwater supplies to sustain human life. Emerging contaminants (ECs) including pharmaceutical contaminants (PhACs), personal care products (PCPs), endocrine-disrupting compounds (EDCs), synthetic chemicals, and artificial sweeteners (ASWs) are detected in groundwater supplies in trace amounts, raising concerns about the possible adverse effects on humans and the ecosystem; thus, surveillance of contaminants is important to minimize risks. Therefore, this paper reviews more than 50 studies (2000–2020) that provide accurate and analytical information on PhACs and their composition in groundwater. In specific, detailed data on the occurrence and impact of ECs in various water body matrices are systematically analyzed and classified with respect to distinct groups (PhACs, PCPs, EDCs, ASWs, etc.). The main objective of this study is to (1) evaluate groundwater contamination via depicting occurrence and classification of PhACs as ECs, (2) analyze the health and ecological risk due to emerging PhACs, and (3) showcase challenges faced by industries and future prospects for further research on PhACs. The correlation between the occurrence of PhACs and their related health and ecological risks can be easily understood by this paper, which opens a new gateway to discover analytical strategies for future surveillance research works and to fill in the research gaps found in the existing state of knowledge on PhACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All relevant data and material are presented in the main paper.

Abbreviations

ECs:

emerging contaminants

PhACs:

pharmaceutical contaminants

PPCPs:

pharmaceuticals and personal care products

PCPs:

personal care products

EDCs:

endocrine-disrupting compounds

ASWs:

artificial sweeteners

WWTPs:

wastewater treatment plants

DWTPs:

drinking water treatment plants

RQ:

risk quotient

HQ:

hazardous quotient

MDL:

method detection limit

PECs:

predicted environmental concentrations

PNECs:

predicted no effect concentration

References

  1. Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (2016). Integrated groundwater management: concepts, approaches and challenges. Integr Groundw Manag Concepts, Approaches Challenges. Published online 1-762. https://doi.org/10.1007/978-3-319-23576-9

  2. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76(2), 122–159 (2006). https://doi.org/10.1016/j.aquatox.2005.09.009

    Article  CAS  Google Scholar 

  3. National Groundwater Association. (2013) Facts about global groundwater usage. (2):7-8. http://www.ngwa.org/Fundamentals/use/Documents/global-groundwater-use-fact-sheet.pdf. accessed 28 Nov 2020

  4. V. Geissen, H. Mol, E. Klumpp, et al., Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res. 3(1), 57–65 (2015). https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  5. David W. Clark and David W. Briar What is ground water? Open-File Report 93–643. https://doi.org/10.3133/ofr93643

  6. M.J. Benotti, B.J. Brownawell, Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ. Pollut. 157(3), 994–1002 (2009). https://doi.org/10.1016/j.envpol.2008.10.009

    Article  CAS  Google Scholar 

  7. M. Giordano, Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 34, 153–178 (2009). https://doi.org/10.1146/annurev.environ.030308.100251

    Article  Google Scholar 

  8. M.B. Tahir, H. Kiran, T. Iqbal. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environmental Science and Pollution Research 26, 10515–10528 (2019)

  9. A. Togola, H. Budzinski, Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A 1177(1), 150–158 (2008). https://doi.org/10.1016/j.chroma.2007.10.105

    Article  CAS  Google Scholar 

  10. Néstor M.C., Mariana C. Impact of Pharmaceutical Waste on Biodiversity. In: Gómez-Oliván L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham (2017). https://doi.org/10.1007/698_2017_151

  11. M. la Farré, S. Pérez, L. Kantiani, D. Barceló, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC - Trends Anal Chem. 27(11), 991–1007 (2008). https://doi.org/10.1016/j.trac.2008.09.010

    Article  CAS  Google Scholar 

  12. A. Pal, K.Y.H. Gin, A.Y.C. Lin, M. Reinhard, Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci. Total Environ. 408(24), 6062–6069 (2010). https://doi.org/10.1016/j.scitotenv.2010.09.026

    Article  CAS  Google Scholar 

  13. S.K. Sharma, R. Sanghi, Wastewater reuse and management. Wastewater Reuse Manag. Published online 1-500 (2013). https://doi.org/10.1007/978-94-007-4942-9

  14. T. Yin, H. Chen, M. Reinhard, X. Yi, Y. He, K.Y. Gin, Perfluoroalkyl and polyfluoroalkyl substances removal in a fullscale tropical constructed wetland system treating landfill leachate. Water Res. 125, 418–426 (2017). https://doi.org/10.1016/j.watres.2017.08.071

    Article  CAS  Google Scholar 

  15. B.A. Wilson, V.H. Smith, F. Denoyelles, C.K. Larive, Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ. Sci. Technol. 37(9), 1713–1719 (2003). https://doi.org/10.1021/es0259741

    Article  CAS  Google Scholar 

  16. P. Rezka, W. Balcerzak, Z. Naukowe, et al., The occurrence of non-steroidal anti-inflammatory drugs in wastewater and water environment and methods of their removal – selected issues. Arch Waste Manag Environ Prot. 7(2), 6–11 (2013)

    Google Scholar 

  17. C.B. Patneedi, P.K. Durga, Impact of pharmaceutical wastes on human life and environment. Rasayan J. Chem. 8(1), 67–70 (2015)

    CAS  Google Scholar 

  18. J. Wu, J. Yue, R. Hu, Z. Yang, L. Zhang, Use of caffeine and human pharmaceutical compounds to identify sewage contamination. World Acad. Sci. Eng. Technol. 44, 438–442 (2008)

    Google Scholar 

  19. B. Halling-Sørensen, Algal toxicity of antibacterial agents used in intensive farming. Chemosphere. 40(7), 731–739 (2000). https://doi.org/10.1016/S0045-6535(99)00445-2

    Article  Google Scholar 

  20. S.S.D. Foster, P.J. Chilton, Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R.Soc, B, Biol, Sci. 358(1440), 1957–1972 (2003). https://doi.org/10.1098/rstb.2003.1380

    Article  CAS  Google Scholar 

  21. M. Xu, H. Huang, N. Li, F. Li, D. Wang, Q. Luo, Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol. Environ. Saf. 175(October 2018), 289–298 (2019). https://doi.org/10.1016/j.ecoenv.2019.01.131

    Article  CAS  Google Scholar 

  22. D.G.J. Larsson, Antibiotics in the environment. Ups. J. Med. Sci. 119(2), 108–112 (2014). https://doi.org/10.3109/03009734.2014.896438

    Article  Google Scholar 

  23. A. Hossaina, S. Nakamichia, M. Habibullah-Al-Mamuna, K. Tania, S. Masunagac, H. Matsuda, Environ. Res. 165, 258–266 (2018)

    Article  Google Scholar 

  24. I. Hantoro, A.J. Löhr, F.G.A.J. Van Belleghem, B. Widianarko, A.M.J. Ragas, Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 36(5), 674–711 (2019). https://doi.org/10.1080/19440049.2019.1585581

    Article  CAS  Google Scholar 

  25. Q. Zhang, P. Xu, H. Qian, Groundwater quality assessment using improved Water Quality Index (WQI) and Human Health Risk (HHR) evaluation in a semi-arid region of Northwest China. Expo Health. 12(3), 487–500 (2020). https://doi.org/10.1007/s12403-020-00345-w

    Article  CAS  Google Scholar 

  26. C.S.H. Tan, K.D. Go, X. Bisteau, et al., Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science (80-)359(6380), 1170–1177 (2018). https://doi.org/10.1126/science.aan0346

    Article  CAS  Google Scholar 

  27. K. Kümmerer, The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J. Environ. Manag. 90(8), 2354–2366 (2009a). https://doi.org/10.1016/j.jenvman.2009.01.023

    Article  CAS  Google Scholar 

  28. C. Ding, J. He. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87, 925–941 (2010). https://doi.org/10.1007/s00253-010-2649-5

  29. X. Peng, Y. Yu, C. Tang, J. Tan, Q. Huang, Z. Wang, Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta. South China. Sci. Total. Environ. 397(1-3), 158–166 (2008). https://doi.org/10.1016/j.scitotenv.2008.02.059

    Article  CAS  Google Scholar 

  30. P.K. Bishop, B.D. Misstear, M. White, N.J. Harding, Impacts of sewers on groundwater quality. Water. Environ. J. 12(3), 216–223 (1998). https://doi.org/10.1111/j.1747-6593.1998.tb00176.x

    Article  CAS  Google Scholar 

  31. L. Minguez, J. Pedelucq, E. Farcy, C. Ballandonne, H. Budzinski, M.P. Halm-Lemeille, Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 23(6), 4992–5001 (2016). https://doi.org/10.1007/s11356-014-3662-5

    Article  CAS  Google Scholar 

  32. L. Ahrens, H. Gashaw, M. Sjöholm, et al., Poly- and perfluoroalkylated substances (PFASs) in water, sediment and fish muscle tissue from Lake Tana, Ethiopia and implications for human exposure. Chemosphere. 165, 352–357 (2016a). https://doi.org/10.1016/j.chemosphere.2016.09.007

    Article  CAS  Google Scholar 

  33. P.K. Jjemba, Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf. 63(1), 113–130 (2006). https://doi.org/10.1016/j.ecoenv.2004.11.011

    Article  CAS  Google Scholar 

  34. R. Akhbarizadeh, S. Dobaradaran, T.C. Schmidt, I. Nabipour, J. Spitz, Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature. J. Hazard. Mater. 392(February), 122271 (2020). https://doi.org/10.1016/j.jhazmat.2020.122271

    Article  CAS  Google Scholar 

  35. H. Arfaeinia, I. Nabipour, A. Ostovar, et al., Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ. Sci. Pollut. Res. 23(10), 9871–9890 (2016). https://doi.org/10.1007/s11356-016-6189-0

    Article  CAS  Google Scholar 

  36. J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environ. Pollut. 231, 954–970 (2017b). https://doi.org/10.1016/j.envpol.2017.08.032

    Article  CAS  Google Scholar 

  37. J.O. Williams, S.P. White, Impact of disinfectants on antimicrobial potentials of some microorganisms impact of disinfectants on antimicrobial potentials of some microorganisms. J Pharm Biol Sci. 11(6), 104–107 (2016). https://doi.org/10.9790/3008-110606104107

    Article  Google Scholar 

  38. S. Fattorini, B. Fiasca, T. Di Lorenzo, M. Di Cicco, D.M.P. Galassi, A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30(8), 1483–1504 (2020). https://doi.org/10.1002/aqc.3411

    Article  Google Scholar 

  39. R. Akhbarizadeh, F. Moore, B. Keshavarzi, Investigating microplastics bioaccumulation and biomagnification in seafood from the Persian Gulf: a threat to human health? Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 36(11), 1696–1708 (2019). https://doi.org/10.1080/19440049.2019.1649473

    Article  CAS  Google Scholar 

  40. A. Gogoi, P. Mazumder, V.K. Tyagi, G.G. Tushara Chaminda, A.K. An, M. Kumar, Occurrence and fate of emerging contaminants in water environment: a review. Groundw. Sustain. Dev. 6(December 2017), 169–180 (2018). https://doi.org/10.1016/j.gsd.2017.12.009

    Article  Google Scholar 

  41. M.C.V.M. Starling, C.C. Amorim, M.M.D. Leão, Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. J. Hazard. Mater.. Published online 372, 17–36 (2019). https://doi.org/10.1016/j.jhazmat.2018.04.043

    Article  CAS  Google Scholar 

  42. K.L. Del Rosario, S. Mitra, C.P. Humphrey, M.A. O’Driscoll, Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer. Sci. Total Environ. 487, 216–223 (2014)

    Article  Google Scholar 

  43. P. Bottoni, S. Caroli, A.B. Caracciolo, Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 92(3), 549–565 (2010). https://doi.org/10.1080/02772241003614320

    Article  CAS  Google Scholar 

  44. K.A. Ahrens, B.A. Haley, L.M. Rossen, P.C. Lloyd, Y. Aoki, Housing assistance and blood lead levels: children in the United States, 2005-2012. Am. J. Public Health 106(11), 2049–2056 (2016b). https://doi.org/10.2105/AJPH.2016.303432

    Article  Google Scholar 

  45. B. Soulet, A. Tauxe, J. Tarradellas, Analysis of acidic drugs in Swiss wastewaters. Int. J. Environ. Anal. Chem. 82(10), 659–667 (2002). https://doi.org/10.1080/0306731021000075384

    Article  CAS  Google Scholar 

  46. O.A.H. Jones, N. Voulvoulis, J.N. Lester, Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Environ. Sci. Technol. 35(4), 401–427 (2005). https://doi.org/10.1080/10643380590956966

    Article  CAS  Google Scholar 

  47. W. Petersen, 2016 exploring the occurrence and distribution of contaminants of emerging concern through unmanned sampling from ships of opportunity in the North Sea. J Mar Syst 162, 47–56 (2016). https://doi.org/10.1016/j.jmarsys.2016.03.004

    Article  Google Scholar 

  48. I.Y. López-Pacheco, A. Silva-Núñez, C. Salinas-Salazar, et al., Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci. Total Environ. 690, 1068–1088 (2019a). https://doi.org/10.1016/j.scitotenv.2019.07.052

    Article  CAS  Google Scholar 

  49. J.O. Tijani, O.O. Fatoba, O.O. Babajide, L.F. Petrik, Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ. Chem. Lett. 14(1), 27–49 (2016). https://doi.org/10.1007/s10311-015-0537-z

    Article  CAS  Google Scholar 

  50. J.E. Drewes, P. Fox, M. Jekel, Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 36(9), 1633–1645 (2001). https://doi.org/10.1081/ESE-100106248

    Article  CAS  Google Scholar 

  51. M. Ahmadi, R. Akhbarizadeh, N.J. Haghighifard, G. Barzegar, S. Jorfi, Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran 05 Environmental Sciences 0503 Soil Sciences. J. Environ. Health Sci. Eng. 17(2), 657–669 (2019). https://doi.org/10.1007/s40201-019-00379-6

    Article  CAS  Google Scholar 

  52. K.O. K’oreje, M. Okoth, H. Van Langenhove, K. Demeestere, Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: literature review and a look ahead. J. Environ. Manag. 254(February 2019), 109752 (2020). https://doi.org/10.1016/j.jenvman.2019.109752

    Article  CAS  Google Scholar 

  53. E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere. 174, 437–446 (2017). https://doi.org/10.1016/j.chemosphere.2017.01.101

    Article  CAS  Google Scholar 

  54. A. Helenkár, Á. Sebk, G. Záray, I. Molnár-Perl, A. Vasanits-Zsigrai, The role of the acquisition methods in the analysis of the non-steroidal anti-inflammatory drugs in Danube River by gas chromatography-mass spectrometry. Talanta. 82(2), 600–607 (2010). https://doi.org/10.1016/j.talanta.2010.05.014

    Article  CAS  Google Scholar 

  55. J. Li, Y. Wang, X. Xie, C. Su, Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China. J. Geochem. Explor. 118, 77–89 (2012). https://doi.org/10.1016/j.gexplo.2012.05.002

    Article  CAS  Google Scholar 

  56. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 387(4), 1225–1234 (2007). https://doi.org/10.1007/s00216-006-1035-8

    Article  CAS  Google Scholar 

  57. J. Li, Y. Wang, X. Xie, C. Su, Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China. J. Geochem. Explor. 118, 77–89 (2012). https://doi.org/10.1016/j.gexplo.2012.05.002

    Article  CAS  Google Scholar 

  58. S. Dobaradaran, T.C. Schmidt, I. Nabipour, et al., Cigarette butts abundance and association of mercury and lead along the Persian Gulf beach: an initial investigation. Environ. Sci. Pollut. Res. 25(6), 5465–5473 (2018b). https://doi.org/10.1007/s11356-017-0676-9

    Article  CAS  Google Scholar 

  59. D. Ghernaout, N. Elboughdiri, Water reuse: emerging contaminants elimination—progress and trends. OALib. 06(12), 1–9 (2019a). https://doi.org/10.4236/oalib.1105981

    Article  Google Scholar 

  60. M. Boy-Roura, B.T. Nolan, A. Menico, J. Mas-Pla, Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol. 505, 150–162 (2013)

    Article  CAS  Google Scholar 

  61. A.L. Baker, J.M. Warner, Burkholderia pseudomallei is frequently detected in groundwater that discharges to major watercourses in northern Australia. Folia Microbiol. 61, 301–305 (2016). https://doi.org/10.1007/s12223-015-0438-3

    Article  CAS  Google Scholar 

  62. H. Bouwman, C. Bezuidenhout, S. Horn, T. Vogt, L. Bothma, E. Gerber, D. van Aswegen, K. Blom, D. Fouché, J. Potgieter, M. Spies, L. van der Merwe, R. Muller, R. Pieters, M. Muller, S. Cilliers, F. Wafawanaka, T. Erasmus, P. Bester, et al., Quantification, fate and hazard assessment of hiv-arvs in water resources. Report to the Water Research Commission 2, 1–124 (2020)

  63. T. Di Lorenzo, G.C. Hose, D.M.P. Galassi, Assessment of different contaminants in freshwater: origin, fate and ecological impact. Water 12(6), 1810 (2020). https://doi.org/10.3390/w12061810

    Article  CAS  Google Scholar 

  64. S. Corsolini, G. Sarà, The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere. 177, 189–199 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.116

    Article  CAS  Google Scholar 

  65. A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3(1), 1–16 (2017). https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  66. K.O. K’oreje, L. Vergeynst, D. Ombaka, et al., Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu City. Kenya. Chemosphere. 149, 238–244 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.095

    Article  CAS  Google Scholar 

  67. Ahmad AA et al. (2017) Book. 2019;(December 2017).

  68. M. Abtahi, A. Mohseni-Bandpei, A. Koolivand, et al., Defluoridation of synthetic and natural waters by polyaluminum chloride-chitosan(PACl-Ch) composite coagulant. Water Sci. Technol. Water Supply 18(1), 259–269 (2018). https://doi.org/10.2166/ws.2017.085

    Article  CAS  Google Scholar 

  69. Z. Visanji, S.M.K. Sadr, M.B. Johns, D. Savic, F.A. Memon, Optimising wastewater treatment solutions for the removal of contaminants of emerging concern: a case study for application in India. J. Hydroinf. 22(1), 93–110 (2020). https://doi.org/10.2166/hydro.2019.031

    Article  Google Scholar 

  70. K. Balakrishna, A. Rath, Y. Praveenkumarreddy, K.S. Guruge, B. Subedi, A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 137, 113–120 (2017). https://doi.org/10.1016/j.ecoenv.2016.11.014

    Article  CAS  Google Scholar 

  71. S. Dobaradaran, T.C. Schmidt, N. Lorenzo-Parodi, et al., Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water. Environ. Pollut. 259, 113916 (2020b). https://doi.org/10.1016/j.envpol.2020.113916

    Article  CAS  Google Scholar 

  72. U. Eriksson, A. Kärrman, A. Rotander, B. Mikkelsen, M. Dam, Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environ. Sci. Pollut. Res. 20(11), 7940–7948 (2013). https://doi.org/10.1007/s11356-013-1700-3

    Article  CAS  Google Scholar 

  73. X. Yang, R.C. Flowers, H.S. Weinberg, P.C. Singer, Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res. 45(16), 5218–5228 (2011). https://doi.org/10.1016/j.watres.2011.07.026

    Article  CAS  Google Scholar 

  74. W.C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 187, 193–201 (2014). https://doi.org/10.1016/j.envpol.2014.01.015

    Article  CAS  Google Scholar 

  75. P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, M. Al Aukidy, E. Zambello, Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed — analysis of their respective contributions. Sci Total Environ., ISSN: 0048-9697 454, 411–425 (2013). https://doi.org/10.1016/j.scitotenv.2013.03.044

    Article  CAS  Google Scholar 

  76. M. Lei, L. Zhang, J. Lei, et al., Overview of emerging contaminants and associated human health effects. Biomed. Res. Int. 2015, 404796 (2015). https://doi.org/10.1155/2015/404796

    Article  CAS  Google Scholar 

  77. G. Lofrano, G. Libralato, S. Meric, et al., Occurrence and potential risks of emerging contaminants in water. Elsevier Inc. (2020). https://doi.org/10.1016/b978-0-12-818334-2.00001-8

  78. S. Weigel, U. Berger, E. Jensen, R. Kallenborn, H. Thoresen, H. Hühnerfuss, Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere. 56(6), 583–592 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.015

    Article  CAS  Google Scholar 

  79. J.L. Wilkinson, P.S. Hooda, J. Swinden, J. Barker, S. Barton, Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water. Sci. Total Environ 593-594, 487–497 (2017a). https://doi.org/10.1016/j.scitotenv.2017.03.167

    Article  CAS  Google Scholar 

  80. N.H. Tran, J. Li, J. Hu, S.L. Ong, Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environ. Sci. Pollut. Res. 21(6), 4727–4740 (2014). https://doi.org/10.1007/s11356-013-2428-9

    Article  CAS  Google Scholar 

  81. J.K. Sial, S. Mahmood, Groundwater contamination from agro-chemicals in irrigated environment: field trials. Groundw Updat. 3(5), 129–134 (2000). https://doi.org/10.1007/978-4-431-68442-8_22

    Article  Google Scholar 

  82. R. Rahman, A.J. Plater, P.J. Nolan, B. Mauz, P.G. Appleby, Potential health risks from radioactive contamination of saltmarshes in NW England. J. Environ. Radioact. 119, 55–62 (2013). https://doi.org/10.1016/j.jenvrad.2011.11.011

    Article  CAS  Google Scholar 

  83. B.L.L. Tan, D.W. Hawker, J.F. Müller, F.D.L. Leusch, L.A. Tremblay, H.F. Chapman, Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in South East Queensland, Australia. Chemosphere. 69(4), 644–654 (2007). https://doi.org/10.1016/j.chemosphere.2007.02.057

    Article  CAS  Google Scholar 

  84. N. Lindqvist, T. Tuhkanen, L. Kronberg, Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 39(11), 2219–2228 (2005). https://doi.org/10.1016/j.watres.2005.04.003

    Article  CAS  Google Scholar 

  85. J. Lienert, M. Koller, J. Konrad, C.S. McArdell, N. Schuwirth, Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environ. Sci. Technol. 45(9), 3848–3857 (2011). https://doi.org/10.1021/es1031294

    Article  CAS  Google Scholar 

  86. M. Kajta, J. Rzemieniec, E. Litwa, et al., The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience. 238, 345–360 (2013). https://doi.org/10.1016/j.neuroscience.2013.02.005

    Article  CAS  Google Scholar 

  87. D.B. Huggett, J.C. Cook, J.F. Ericson, R.T. Williams, A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish. Hum. Ecol. Risk. Assess. 9(7), 1789–1799 (2003). https://doi.org/10.1080/714044797

    Article  CAS  Google Scholar 

  88. I.B. Gomes, L.C. Simões, M. Simões, The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Sci. Total Environ. 643, 1348–1356 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.263

    Article  CAS  Google Scholar 

  89. D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal. Bioanal. Chem. 399(1), 251–275 (2011). https://doi.org/10.1007/s00216-010-4300-9

    Article  CAS  Google Scholar 

  90. S.S.D. Foster, P.J. Chilton, Downstream of downtown: urban wastewater as groundwater recharge. Hydrogeol. J. 12(1), 115–120 (2004). https://doi.org/10.1007/s10040-003-0296-y

    Article  Google Scholar 

  91. S. Bartelt-Hunt, D.D. Snow, P.T. Damon, D. Miesbach, Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J. Contam. Hydrol. 123(3–4), 94–103 (2011)

    Article  CAS  Google Scholar 

  92. A.J. Barbera, V.D. McConnell, The impact of environmental regulations on industry productivity: direct and indirect effects. J. Environ. Econ. Manag. 18(1), 50–65 (1990). https://doi.org/10.1016/0095-0696(90)90051-Y

    Article  Google Scholar 

  93. E. Mohle, S. Horvath, W. Merz, J.W. Metzger, Determination of hardly degradable organic compounds in wastewater—identification of drugs. Vom Wasser 92, 207–223

  94. H. Bártíková, L. Skálová, L. Stuchlíková, I. Vokřál, T. Vaněk, R. Podlipná, Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 47(3), 374–387 (2015 Aug). https://doi.org/10.3109/03602532.2015.1076437

    Article  CAS  Google Scholar 

  95. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J.J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619–641 (2013). ISSN: 0048-9697, https://doi.org/10.1016/j.scitotenv.2013.12.065

  96. S. Esplugas, D.M. Bila, L. Gustavo, T. Krausec, M. Dezottic, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater. 149(3), 631–642 (2007)

    Article  CAS  Google Scholar 

  97. J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7), 1268–1287 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  98. C. Sonnenschein, A.M. Soto, An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol. 65(1-6), 143–150 (1998). https://doi.org/10.1016/S0960-0760(98)00027-2

    Article  CAS  Google Scholar 

  99. C. Ding, J. He, Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 87(3), 925–941 (2010). https://doi.org/10.1007/s00253-010-2649-5

    Article  CAS  Google Scholar 

  100. S. Sauvé, M. Desrosiers, A review of what is an emerging contaminant. Chemistry Central Journal 8, 15 (2014). https://doi.org/10.1186/1752-153X-8-15

    Article  CAS  Google Scholar 

  101. L. Yang, J.-T. He, S.-H. Su, Y.-F. Cui, D.-L. Huang, G.-C. Wang, Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environ. Sci. Pollut. Res. 24(18), 15838–15851 (2017)

    Article  CAS  Google Scholar 

  102. M.A.M. Mahmoud, A. Kärrman, S. Oono, K.H. Harada, A. Koizumi, Polyfluorinated telomers in precipitation and surface water in an urban area of Japan. Chemosphere. 74(3), 467–472 (2009). https://doi.org/10.1016/j.chemosphere.2008.08.029

    Article  CAS  Google Scholar 

  103. L. Jiang, X. Hu, T. Xu, H. Zhang, D. Sheng, D. Yin, Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci. Total Environ. 458-460, 267–272 (2013). https://doi.org/10.1016/j.scitotenv.2013.04.038

    Article  CAS  Google Scholar 

  104. L.M. Boström, B. Olof, Influence of pH-dependent aquatic toxicity of ionizable pharmaceuticals on risk assessments over environmental pH ranges. Water Res., ISSN: 0043-1354 72, 154–161 (2014). https://doi.org/10.1016/j.watres.2014.08.040

    Article  CAS  Google Scholar 

  105. F. Pomati, A.G. Netting, D. Calamari, B.A. Nelian, Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat. Toxicol. 67(4), 387–396 (2004). https://doi.org/10.1016/j.aquatox.2004.02.001

    Article  CAS  Google Scholar 

  106. K. Kümmerer, Antibiotics in the aquatic environment - a review - Part I. Chemosphere. 75(4), 417–434 (2009b). https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  107. R.A. Mathew, S. Kanmani, A review on emerging contaminants in Indian waters and their treatment technologies. Nat. Environ. Pollut. Technol. 19(2), 549–562 (2020). https://doi.org/10.46488/NEPT.2020.V19I02.010

    Article  CAS  Google Scholar 

  108. J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157(11), 2893–2902 (2009). https://doi.org/10.1016/j.envpol.2009.05.051

    Article  CAS  Google Scholar 

  109. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices - a review. J. Environ. Manag. 92(10), 2304–2347 (2011). https://doi.org/10.1016/j.jenvman.2011.05.023

    Article  CAS  Google Scholar 

  110. X.S. Miao, B.G. Koenig, C.D. Metcalfe, Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 952(1-2), 139–147 (2002). https://doi.org/10.1016/S0021-9673(02)00088-2

    Article  CAS  Google Scholar 

  111. N.J. Velez-Ruiz, K.J. Meador, Neurodevelopmental effects of fetal antiepileptic drug exposure. Drug Saf. 38(3), 271–278 (2015). https://doi.org/10.1007/s40264-015-0269-9

    Article  CAS  Google Scholar 

  112. S. Kim, D.S. Aga, Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Heal - Part B Crit Rev. 10(8), 559–573 (2007). https://doi.org/10.1080/15287390600975137

    Article  CAS  Google Scholar 

  113. P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere. 251, 126351 (2020). https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  CAS  Google Scholar 

  114. R. López-Serna, A. Jurado, E. Vázquez-Suñé, J. Carrera, M. Petrović, D. Barceló, Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ Pollut. 174, 305–315 (2013). https://doi.org/10.1016/j.envpol.2012.11.022

    Article  CAS  Google Scholar 

  115. G. Prasannamedha, P.S. Kumar, A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J. Clean. Prod. 250, 119553 (2020). https://doi.org/10.1016/j.jclepro.2019.119553

    Article  CAS  Google Scholar 

  116. D. Chapman, Groundwater pollution - developments in water science. Water Qual Assessments - A Guid to Use Biota, Sediments Water Environ Monit - Second Ed Ed 5(21), 273 (1996) http://www.who.int/water_sanitation_health/resourcesquality/wqachapter9.pdf. accessed 17 October 2020

  117. M. Stuart, D. Lapworth, Smart Sensors for Real-Time Water Quality Monitoring. 4, 259–284 (2013). https://doi.org/10.1007/978-3-642-37006-9

    Article  Google Scholar 

  118. N. Nakada, K. Kiri, H. Shinohara, et al., Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ. Sci. Technol. 42(17), 6347–6353 (2008). https://doi.org/10.1021/es7030856

    Article  CAS  Google Scholar 

  119. Bonavigo M. De Salve, M. Zucchetti, D. Annunziata, Radioactivity release and dust production during the cutting of the primary circuit of a nuclear power plant: the case of E. Fermi NPP, Prog. Nucl. Energy. 52(4), 59–366 (2010). https://doi.org/10.1016/j.pnucene.2009.07.009

  120. F. Baquero, J.L. Martínez, R. Cantón, Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19(3), 260–265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006

    Article  CAS  Google Scholar 

  121. S. Dobaradaran, T.C. Schmidt, I. Nabipour, et al., Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste Manag. 78, 649–658 (2018a). https://doi.org/10.1016/j.wasman.2018.06.037

    Article  CAS  Google Scholar 

  122. J.L. Liu, M.H. Wong, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ. Int. 59, 208–224 (2013). https://doi.org/10.1016/j.envint.2013.06.012

    Article  CAS  Google Scholar 

  123. N.S. Rao, Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh. India. Environ Geol. 51(4), 631–645 (2006). https://doi.org/10.1007/s00254-006-0358-2

    Article  CAS  Google Scholar 

  124. G.E. Cordy, N.L. Duran, H. Bouwer, R.C. Rice, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, D.W. Kolpin, Do pharmaceuticals, pathogens, and other organic waste water compounds persist when waste water is used for recharge? 24(2), 58–69 (2004). https://doi.org/10.1111/j.1745-592.2004.tb00713.x

  125. M. Silvia Díaz-Cruz, D. Barceló, Trace organic chemicals contamination in groundwater recharge. 72(3), 0–342 (2008). https://doi.org/10.1016/j.chemosphere.2008.02.031

  126. G. Massmann, J. Greskowiak, U. Dünnbier, S. Zuehlke, A. Knappe, A. Pekdeger, The impact of variable temperatures on the redox conditions and the behavior of pharmaceutical residues during artificial recharge. 328(1–2), 0–156 (2006). https://doi.org/10.1016/j.jhydrol.2005.12.009

  127. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 42(13), 3498–3518 (2008). https://doi.org/10.1016/j.watres.2008.04.026

    Article  CAS  Google Scholar 

  128. J.K. Böhlke, Groundwater recharge and agricultural contamination. Hydrogeol. J. 10(1), 153–179 (2002). https://doi.org/10.1007/s10040-001-0183-3

    Article  CAS  Google Scholar 

  129. J.L. Shuster, A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic clonic seizures in adults. Psychosomatics. 34(5), 464 (1993). https://doi.org/10.1056/nejm199209103271104

    Article  Google Scholar 

  130. K.V. Thomas, M.J. Hilton, The occurrence of selected human pharmaceutical compounds in UK estuaries. Mar. Pollut. Bull. 49(5-6), 436–444 (2004). https://doi.org/10.1016/j.marpolbul.2004.02.028

    Article  CAS  Google Scholar 

  131. S.H. Campbell, P.R. Williamson, B.D. Hall, Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. FACETS 2, 395–409 (2017). https://doi.org/10.1139/facets-2017-0008

  132. D.N.R. de Sousa, S. Insa, A.A. Mozeto, M. Petrovic, T.F. Chaves, P.S. Fadini, Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere. 205, 137–146 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.085

    Article  CAS  Google Scholar 

  133. T.A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 32(11), 3245–3260 (1998). https://doi.org/10.1016/S0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  134. A.B.A. Boxall, M.A. Rudd, B.W. Brooks, D.J. Caldwell, K. Choi, S. Hickmann, E. Innes, K. Ostapyk, J.P. Staveley, T. Verslycke, G.T. Ankley, K.F. Beazley, S.E. Belanger, J.P. Berninger, P. Carriquiriborde, A. Coors, P.C. DeLeo, S.D. Dyer, J.F. Ericson, et al., Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 120(9), 1221–1229 (2012). https://doi.org/10.1289/ehp.1104477

  135. B.F. da Silva, A. Jelic, R. López-Serna, A.A. Mozeto, M. Petrovic, D. Barceló, Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere. 85(8), 1331–1339 (2011). https://doi.org/10.1016/j.chemosphere.2011.07.051

    Article  CAS  Google Scholar 

  136. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 122(November 2018), 52–66 (2019). https://doi.org/10.1016/j.envint.2018.11.038

    Article  CAS  Google Scholar 

  137. Y. Chen, G. Yu, Q. Cao, H. Zhang, Q. Lin, Y. Hong, Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. Chemosphere. 93(9), 1765–1772 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.007

    Article  CAS  Google Scholar 

  138. J. Sanchís, L. Kantiani, M. Llorca, et al., Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 402(7), 2335–2345 (2012). https://doi.org/10.1007/s00216-011-5541-y

    Article  CAS  Google Scholar 

  139. M.S. Fram, K. Belitz, Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. 409(18), 3409–3417 (2011). https://doi.org/10.1016/j.scitotenv.2011.05.053

  140. E. Godfrey, W.W. Woessner, M.J. Benotti, Pharmaceuticals in on-site sewage effluent and ground water, Western Montana. 45(3), 263–271 (2007). https://doi.org/10.1111/j.1745-6584.2006.00288.x

  141. P. Paíga, L.H.M.L.M. Santos, S. Ramos, S. Jorge, J.G. Silva, C. Delerue-Matos, Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci. Total Environ. 573, 164–177 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.0

    Article  Google Scholar 

  142. S. Kar, K. Roy, Risk assessment for ecotoxicity of pharmaceuticals an emerging issue. Expert Opin. Drug Saf. 11(2), 235–274 (2012). https://doi.org/10.1517/14740338.2012.644272

    Article  CAS  Google Scholar 

  143. E. Vulliet, C. Cren-Olivé, Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ. Pollut. 159(10), 2929–2934 (2011). https://doi.org/10.1016/j.envpol.2011.04.033

    Article  CAS  Google Scholar 

  144. Y.C. Lin, W.W.P. Lai, T.H. Hsin, L. AYC, Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environ. Monit. Assess. 187(5), 256 (2015). https://doi.org/10.1007/s10661-015-4497-3

    Article  CAS  Google Scholar 

  145. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 329(1-3), 99–113 (2004). https://doi.org/10.1016/j.scitotenv.2004.03.015

    Article  CAS  Google Scholar 

  146. P. Paíga, C. Delerue-Matos, Determination of pharmaceuticals in groundwater collected in five cemeteries’ areas (Portugal). Sci. Total Environ. 569-570, 16–22 (2016). https://doi.org/10.1016/j.scitotenv.2016.06.090

    Article  CAS  Google Scholar 

  147. S. Banzhaf, K. Nödler, T. Licha, A. Krein, T. Scheytt, Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Sci. Total Environ. 438, 113–121 (2012)

    Article  CAS  Google Scholar 

  148. A.C. Collier, Pharmaceutical contaminants in potable water: potential concerns for pregnant women and children. Ecohealth. 4(2), 164–171 (2007). https://doi.org/10.1007/s10393-007-0105-5

    Article  Google Scholar 

  149. R.J. Phillips, E.J. Kieffer, T.L. Powley, Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. Anat. Embryol (Berl)209(1), 19–30 (2004). https://doi.org/10.1007/s00429-004-0426-x

    Article  Google Scholar 

  150. A. Kumar, I. Xagoraraki, Human health risk assessment of pharmaceuticals in water: an uncertainty analysis for meprobamate, carbamazepine, and phenytoin. Regul. Toxicol. Pharmacol. 57(2-3), 146–156 (2010). https://doi.org/10.1016/j.yrtph.2010.02.002

    Article  CAS  Google Scholar 

  151. M. Kumar, S. Jaiswal, K.K. Sodhi, et al., Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environ. Int. 124(October 2018), 448–461 (2019). https://doi.org/10.1016/j.envint.2018.12.065

    Article  CAS  Google Scholar 

  152. EFSA Panel on Contaminants in the Food Chain (CONTAM), Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14(6), e04501 (2016). https://doi.org/10.2903/j.efsa.2016.4501

    Article  CAS  Google Scholar 

  153. I.Y. López-Pacheco, C. Salinas-Salazar, A. Silva-Núñez, et al., Removal and biotransformation of 4-nonylphenol by Arthrospira maxima and Chlorella vulgaris consortium. Environ. Res. 179, 108848 (2019b). https://doi.org/10.1016/j.envres.2019.108848

    Article  CAS  Google Scholar 

  154. L.J. Carter, M. Williams, C. Böttcher, R.S. Kookana, Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environ. Sci. Technol. 49(20), 12509–12518 (2015). https://doi.org/10.1021/acs.est.5b03468

    Article  CAS  Google Scholar 

  155. L. Migliore, G. Brambilla, P. Casoria, C. Civitareale, S. Cozzolino, L. Gaudio, Effects of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliopsida). Agric. Ecosyst. Environ. 60, 121–128 (1996)

    Article  CAS  Google Scholar 

  156. S.M. Zainab, M. Junaid, N. Xu, R.N. Malik, Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 187, 116455 (2020). https://doi.org/10.1016/j.watres.2020.116455

    Article  CAS  Google Scholar 

  157. F.J. Peng, C.G. Pan, M. Zhang, et al., Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Sci. Total Environ. 589, 46–55 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.200

    Article  CAS  Google Scholar 

  158. M.H. Wu, C.J. Que, G. Xu, et al., Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 132, 132–139 (2016). https://doi.org/10.1016/j.ecoenv.2016.06.006

    Article  CAS  Google Scholar 

  159. D. Azanu, C. Mortey, G. Darko, J.J. Weisser, B. Styrishave, R.C. Abaidoo, Uptake of antibiotics from irrigation water by plants. Chemosphere. 157, 107–114 (2016). https://doi.org/10.1016/j.chemosphere.2016.05.035

    Article  CAS  Google Scholar 

  160. M.P. Sarva, Z.M.R. Maizatul, A.M.R. Fauzan, Y.W. Sze, Z.A. Ahmad, Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicology and Environment Saftey 180, 549–556 (2019)

    Article  Google Scholar 

  161. D. Ghernaout, N. Elboughdiri, Water reuse: emerging contaminants elimination—progress and trends. OALib. 06(12), 1–9 (2019b). https://doi.org/10.4236/oalib.1105981

    Article  Google Scholar 

  162. F.A. Kibuye, H.E. Gall, K.R. Elkin, et al., Fate of pharmaceuticals in a spray-irrigation system: from wastewater to groundwater. Sci. Total Environ. 654, 197–208 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.442

    Article  CAS  Google Scholar 

  163. M.B. Leite, R.O. Xavier, P.T.S. Oliveira, F.K.G. Silva, D.M. Silva Matos, Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426(1-2), 1–15 (2018). https://doi.org/10.1007/s11104-018-3599-4

    Article  CAS  Google Scholar 

  164. P.K. Mutiyar, A.K. Mittal, A. Pekdeger, Identification and monitoring of pesticides in a well field in Delhi, India. Chemical, Biological and Environmental Engineering. 188–191 (2009). https://doi.org/10.1142/9789814295048_0039

  165. V. Roos, L. Gunnarsson, J. Fick, D.G.J. Larsson, C. Ruden, Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Sci. Total Environ. 421-422, 102–110 (2012)

    Article  CAS  Google Scholar 

  166. J.L. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, et al., Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975), 630–633 (2004)

    Article  CAS  Google Scholar 

  167. P. Burkhardt-Holm, A. Peter, H. Segner, Decline of fish catch in Switzerland. Aquat. Sci. 64(1), 36–54 (2002)

    Article  Google Scholar 

  168. L.J. Schulman, E.V. Sargent, B.D. Naumann, E.C. Faria, D.G. Dolan, J.P. Wargo, A human health risk assessment of pharmaceuticals in the aquatic environment. Human and Ecological Risk Assessment: An International Journal 8(4), 657–680 (2002). https://doi.org/10.1080/20028091057141

    Article  CAS  Google Scholar 

  169. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: a review. J. Hazard. Mater. 262, 189–211 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.040

    Article  CAS  Google Scholar 

  170. L.F.V. Francisco, B. do Amaral Crispim, J.C.V. Spósito, et al., Metals and emerging contaminants in groundwater and human health risk assessment. Environ. Sci. Pollut. Res. 26(24), 24581–24594 (2019). https://doi.org/10.1007/s11356-019-05662-5

    Article  CAS  Google Scholar 

  171. X.I.N. Ie, X.I.W. Ang, J.U.C. Hen, V.L.Z. Itko, T.A.N. Aichen, Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin - Nie - 2009. Enviro. Toxicol Chem. Wiley OnlineLibrary 27(1), 168–173 (2008)

    Article  Google Scholar 

  172. V.L. Cunningham, S.P. Binks, M.J. Olson, Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul. Toxicol. Pharmacol. 53(1), 39–45 (2009). https://doi.org/10.1016/j.yrtph.2008.10.006

    Article  CAS  Google Scholar 

  173. C.M. de Jongh, P.J.F. Kooij, P. de Voogt, T.L. ter Laak, Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Sci. Total. Environ. 427-428, 70–77 (2012). https://doi.org/10.1016/j.scitotenv.2012.04.010

    Article  CAS  Google Scholar 

  174. J.P.R. Sorensen, D.J. Lapworth, D.C.W. Nkhuwa, et al., Emerging contaminants in urban groundwater sources in Africa. Water Res. 72, 51–63 (2015). https://doi.org/10.1016/j.watres.2014.08.002

    Article  CAS  Google Scholar 

  175. T. Di Lorenzo, M. Di Cicco, D. Di Censo, et al., Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environ. Pollut. 255, 113189 (2019). https://doi.org/10.1016/j.envpol.2019.113189

    Article  CAS  Google Scholar 

  176. N.H. Tran, M. Reinhard, E. Khan, et al., Emerging contaminants in wastewater, stormwater runoff, and surface water: application as chemical markers for diffuse sources. Sci. Total Environ. 676, 252–267 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.160

    Article  CAS  Google Scholar 

  177. T. Aus der Beek, F.A. Weber, A. Bergmann, et al., Pharmaceuticals in the environment-global occurrences and perspectives. Environ. Toxicol. Chem. 35(4), 823–835 (2016). https://doi.org/10.1002/etc.3339

    Article  CAS  Google Scholar 

  178. J.O. Straub, Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe. Environ. Toxicol. Chem. 35(4), 767–779 (2016). https://doi.org/10.1002/etc.2945

    Article  CAS  Google Scholar 

  179. Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg. Contam. 1(1), 14–24 (2015). https://doi.org/10.1016/j.emcon.2015.07.001

    Article  Google Scholar 

  180. G.V. de Jesus, C.M.M. Almeida, A. Rodrigues, E. Ferreira, M.J. Benoliel, V.V. Cardoso, Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 72, 199–208 (2015). https://doi.org/10.1016/j.watres.2014.10.027

    Article  CAS  Google Scholar 

  181. Z. Li, X. Xiang, M. Li, Y. Ma, J. Wang, X. Liu, Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China. Ecotoxicol. Environ. Saf. 119, 74–80 (2015). https://doi.org/10.1016/j.ecoenv.2015.04.031

    Article  CAS  Google Scholar 

  182. L.M. Bexfield, P.L. Toccalino, K. Belitz, W.T. Foreman, E.T. Furlong, Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ. Sci. Technol. 53(6), 2950–2960 (2019). https://doi.org/10.1021/acs.est.8b05592

    Article  CAS  Google Scholar 

  183. B.M. Sharma, J. Bečanová, M. Scheringer, et al., Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin. India. Sci Total Environ. 646, 1459–1467 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.235

    Article  CAS  Google Scholar 

  184. L.A. Kristofco, B.W. Brooks, Global scanning of antihistamines in the environment: analysis of occurrence and hazards in aquatic systems. Sci. Total Environ. 592, 477–487 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.120

    Article  CAS  Google Scholar 

  185. Murdoch K (2015) Pharmaceutical pollution in the environment: issues for Australia, New Zealand and Pacific Island countries. Natl Toxics Netw (May):36. http://www.ntn.org.au/wp/wp-content/uploads/2015/05/NTN-Pharmaceutical-Pollution-in-the-Environment-2015-05.pdf. accessed 5th January 2020

  186. L.A. Schaider, R.A. Rudel, J.M. Ackerman, S.C. Dunagan, J.G. Brody, Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 468-469, 384–393 (2014). https://doi.org/10.1016/j.scitotenv.2013.08.067

    Article  CAS  Google Scholar 

  187. L. Tong, S. Huang, Y. Wang, H. Liu, M. Li, Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. Sci. Total Environ. 497-498, 180–187 (2014). https://doi.org/10.1016/j.scitotenv.2014.07.068

    Article  CAS  Google Scholar 

  188. Maycock DS, Watts CD. (2011) Pharmaceuticals in drinking water. Encycl Environ Health. Published online 472-484. https://doi.org/10.1016/B978-0-444-52272-6.00457-8

  189. Beere W, Mullet S, Wingstedt E, Berg Ø, Savoainen S, Lahti T. (2010)Model-based condition monitoring techniques for balance of plant analysis using tempo. 7th Int Top Meet Nucl Plant Instrumentation, Control Human-Machine Interface Technol 2010, NPIC HMIT 2010 3(2):1920-1924.

  190. Groundwater P (n.d.) Protecting Groundwater for Health.

  191. M.N. Fienen, B.T. Nolan, D.T. Feinstein, Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model. Environ. Model. Softw. 77, 95–107 (2016). https://doi.org/10.1016/j.envsoft.2015.11.023

    Article  Google Scholar 

  192. P.C. Von der Ohe, V. Dulio, J. Slobodnik, E. De Deckere, R. Kühne, R.-U. Ebert, et al., A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European water framework directive. Sci. Total Environ. 409(11), 2064–2077 (2011)

    Article  Google Scholar 

  193. Mittal PKM and Atul K. Pharmaceuticals and personal care products ( PPCPs ) residues in water environment of India: a neglected but sensitive issue Pravin K Mutiyar and Atul K Mittal Department of Civil Engineering Indian Institute of Technology Delhi, Hauz Khas , New Delhi 1. 2013;110016

  194. D. Kasel, S.A. Brandford, J. Simunek, M. Heggen, H. Vereecken, E. Klumpp, Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. Water Res. 47(2), 933–944 (2013)

    Article  CAS  Google Scholar 

  195. Y. Liang, S.A. Bradford, H. Vereecken, E. Klumpp, Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res. 47(7), 2572–2582 (2013)

    Article  CAS  Google Scholar 

  196. T. Azuma, H. Ishiuchi, T. Inoyama, Y. Teranishi, M. Yamaoka, T. Sato, Y. Mino, Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo River basin. Japan Environmental Science and Pollution Research 22(23), 18676–18686 (2015)

    Article  CAS  Google Scholar 

  197. M. Abtahi, S. Dobaradaran, M. Torabbeigi, et al., Health risk of phthalates in water environment: occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran. Iran. Environ Res. 173(January), 469–479 (2019). https://doi.org/10.1016/j.envres.2019.03.071

    Article  CAS  Google Scholar 

  198. R. Kumar, P. Kumar, Wastewater stabilisation ponds: removal of emerging contaminants. J Sustain Dev Energy, Water Environ Syst 8(2), 344–359 (2020). https://doi.org/10.13044/j.sdewes.d7.0291

    Article  Google Scholar 

  199. A.J. Swallow, An introduction to radiation chemistry. Int. J. Radiat. Biol. 30(4), 399–399 (1976). https://doi.org/10.1080/09553007614551181

    Article  Google Scholar 

  200. X. Lin, J. Xu, A.A. Keller, et al., Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 744, 140977 (2020). https://doi.org/10.1016/j.scitotenv.2020.140977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, for the permission to publish this research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make a substantial contribution to this manuscript. YV, VP, PP, MG, CG, KM, and MS participated in drafting the manuscript. YV, VP, PP, MG, CG, KM, and MS wrote the main manuscript. All the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaddoriya, Y., Patel, V., Patel, P. et al. Origin, fate, and risk assessment of emerging contaminants in groundwater bodies: a holistic review. emergent mater. 4, 1275–1294 (2021). https://doi.org/10.1007/s42247-021-00268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00268-5

Keywords

Navigation