Skip to main content

Advertisement

Log in

Polypyrrole: a reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The last two decades have witnessed attractive, innovative aspects of conductive polymers (CPs) in monitoring environmental pollution. In this regard, CP-based electrode materials were designed for the selective recognition of heavy metal ions in the environment (e.g. waste, river or tap water) or in simulated polluted environmental samples. In this review, the emphasis is on polypyrrole (PPy), an interesting electrosensing electrode material for heavy metals due to its facile preparation, versatile chemistry and physicochemical features. Indeed, health issues raised by metal ion pollutants require an urgent holistic approach for environmental problem solving. In this review, we will summarize the existing knowledge on the use of PPy as electrode material for the detection of heavy metals. We will report strategies of preparation of polypyrrole that exhibit selectivity towards heavy metal ions: (i) choice of dopant, (ii) functionalization of polymer backbone by chelatant groups, and (iii) preparation of ion imprinted polypyrrole. It is clear from this review that dopants could act as chelatant of metal ions and increase the selectivity. Such improvement could also be achieved by copolymerization of pyrrole with pyrrole-bearing chelatant groups (e.g. EDTA-like) or finally by the imprinting technique. The latter imparts artificial receptor sites for the recognition of metal ions combining the shape of the receptor site within the polypyrrole matrix that fit in well with the size of the metal ion, on the one hand, and the receptor site–ion interactions, on the other hand. Regardless, the method employed to design polypyrrole sensing layers for heavy metal nanostructuration seems to definitely improve the sensitivity of polypyrrole-based sensor devices. The review finishes by concluding remarks and indication of possible challenging new directions exploring polypyrrole in tracking occurrence of heavy metal ions in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Hu, W. Zhang, G. Chen, H. Cheng, S. Tao, Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in southern China. Environ. Pollut. 234, 667–676 (2018)

    CAS  Google Scholar 

  2. N. Gaura, K. Narasimhulua, P. Setty, Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 198, 1602–1631 (2018)

    Google Scholar 

  3. https://sustainabledevelopment.un.org/?menu=1300 , last accessed 2 April 2020

  4. B. He, Z. Jun, Y. Jian, B. Shi, G.B. Jiang, Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 58, 134–140 (2013)

    CAS  Google Scholar 

  5. E.N. Verla, A.W. Verla, C.E. Enyoh, Bioavailability, Average Daily Dose and Risk of Heavy Metals in Soils from Children Playgrounds Within Owerri (Imo State, 2020). https://doi.org/10.1007/s42250-020-00124-9

  6. A.O. Ogunfowokan, A.S. Adekunle, B.A. Oyebode, J.A.O. Oyekunle, A.O. Komolafe, G.O. Omoniyi-Esan, Determination of heavy metals in urine of patients and tissue of corpses by atomic absorption spectroscopy. Chem. Afr. 2, 699–712 (2019)

    CAS  Google Scholar 

  7. N. Meuniera, P. Drogui, C. Montané, R. Hausler, G. Mercier, J.-F. Blais, Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J. Hazard. Mater. 137, 581–590 (2006)

    Google Scholar 

  8. H. Rekhi, S. Rani, N. Sharma, A.K. Malik, A review on recent applications of high-performance liquid chromatography in metal determination and speciation analysis. Crit. Rev. Anal. Chem. 47, 524–537 (2017)

    CAS  Google Scholar 

  9. M. Güney, A. Elik, Comparison of probe with bath ultrasonic leaching procedures for preparation to heavy metal analysis of bio-collectors prior to atomic absorption spectrometry. Commun. Soil Sci. Plant Anal. 48, 1741–1752 (2017)

    Google Scholar 

  10. O.V. Kuznetsova, Y.V. Bychkova, A.R. Timerbaev, Development and validation of a sector-field inductively coupled plasma–mass spectrometry (ICP-MS) method for analyzing the diagenesis-designating metals in marine sediments. Anal. Lett. 53, 563–573 (2020)

    CAS  Google Scholar 

  11. M. Lo, A.K. Diaw, D. Gningue-Sall, M.A. Oturan, M.M. Chehimi, J.J. Aaron, A novel fluorescent sensor based on electrosynthesized benzene sulfonic acid-doped polypyrrole for determination of Pb (II) and Cu (II). Luminescence 34, 489–499 (2019)

    CAS  Google Scholar 

  12. J.H. Cho, Y. Gao, S. Choi, A portable, single-use, paper-based microbial fuel cell sensor for rapid, on-site water quality monitoring. Sensors 19, 5452 (2019)

    CAS  Google Scholar 

  13. J. Holmes, P. Pathirathna, P. Hashemi, Novel frontiers in voltammetric trace metal analysis: towards real time, on-site, in situ measurements. TrAC Trends Anal. Chem. 111, 206–219 (2019)

    CAS  Google Scholar 

  14. G. Xu, X. Li, C. Cheng, J. Yang, Z. Liu, Z. Shi, L. Zhu, Y. Lu, S.S. Low, Q. Liu, Fully integrated battery-free and flexible electrochemical tag for on-demand wireless in situ monitoring of heavy metals. Sens. Actuators B 310, 127809 (2020)

    CAS  Google Scholar 

  15. Z. Ait-Touchente, H.E.E.Y. Sakhraoui, N. Fourati, C. Zerrouki, N. Maouche, R. Touzani, N. Yaakoubi, M.M. Chehimi, Zinc Oxide Nanorods Wrapped With Ion-Imprinted Polypyrrole Polymer for Picomolar Selective and Electrochemical Detection of Mercury II Ions. Proceedings 2, 1004–1008 (2018)

    Google Scholar 

  16. V. Suvina, S.M. Krishna, H. Nagaraju, J.S. Melo, R.G. Balakrishna, Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater. Lett. 232, 209–212 (2018)

  17. S. Selvarajan, A. Suganthia, M. Rajarajan, A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode. Ultrason. Sonochem. 44, 319–330 (2018)

    CAS  Google Scholar 

  18. W. Zhang, L. Zong, G. Geng, Y. Li, Y. Zhang, Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sens. Actuators B Chem. 257, 1099–1109 (2018)

    CAS  Google Scholar 

  19. T.A. Ferreira, J.A. Rodríguez, C.A. Galán-Vidala, Y. Castrillejo, E. Barrado, Flow based determination of Cr(VI) by adsorptive cathodic stripping voltammetry on an immobilized magnetic poly(ionic liquid) modified electrode. Talanta 183, 172–176 (2018)

    CAS  Google Scholar 

  20. C.B. Breslin, D. Branagan, L.M. Garry, Electrochemical detection of Cr(VI) with carbon nanotubes decorated with gold nanoparticles. J. Appl. Electrochem. 49, 195–205 (2019)

    CAS  Google Scholar 

  21. A. Karimi, S.W. Husain, M. Hosseini, P.A. Azar, M.R. Ganjali, Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens. Actuators B Chem. 271, 90–96 (2018)

    CAS  Google Scholar 

  22. T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, Application of a polypyrrole/carboxy methyl cellulose ion imprinted polymer in the electrochemical detection of mercury in water. Electroanalysis 30, 2612–2619 (2018)

    CAS  Google Scholar 

  23. Y. Song, C. Bian, J. Hu, Y. Li, J. Tong, J. Sun, G. Gao, S. Xia, Porous polypyrrole/graphene oxide functionalized with carboxyl composite for electrochemical sensor of trace cadmium (II) J. Electrochem. Soc. 166, B95–B102 (2019)

    CAS  Google Scholar 

  24. X.-W. Gao, J.-Z. Wang, S.-L. Chou, H.-K. Liu, Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. J. Power Sources 220, 47–53 (2012)

    CAS  Google Scholar 

  25. M. Raicopol, C. Andronescu, R. Atasiei, A. Hanganu, L. Pilan, Post-polymerization electrochemical functionalization of a conducting polymer: diazonium salt electroreduction at polypyrrole electrodes. J. Electrochem. Soc. 161, G103–G113 (2014)

    Google Scholar 

  26. D.N. Nguyen, H. Yoon, Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, 118 (2016). https://doi.org/10.3390/polym8040118

    Article  CAS  Google Scholar 

  27. A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim. Acta 51, 6025–6037 (2006)

    Google Scholar 

  28. R. Jain, N. Jadon, A. Pawaiy, Polypyrrole based next generation electrochemical sensors and biosensors: a review. Trends Anal. Chem. 97, 363–373 (2017)

    CAS  Google Scholar 

  29. A.R. Sadrolhosseini, A.S.M. Noor, M.M. Moksin, M.M. Abdi, A. Mohammadi, Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance. Int. J. Polym. Mater. Polym. Biomater. 62, 284–287 (2013)

    CAS  Google Scholar 

  30. H. Nabi, M.E. Mahmud, A.K.O. Huq, R.B. Yahya, The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 6, 14778–14791 (2016)

    Google Scholar 

  31. S. Geetha, C.R.K. Rao, M. Vijayan, D.C. Trivedi, Biosensing and drug delivery by polypyrrole. Anal. Chim. Acta 568, 119–125 (2006)

    CAS  Google Scholar 

  32. M.A. Deshmukh, M.D. Shirsat, A. Ramanaviciene, A. Ramanavicius, Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing. Crit. Rev. Anal. Chem. 48, 293–304 (2018)

    CAS  Google Scholar 

  33. M.L. Sall, B. Fall, I. Diédhiou, E.-H. Dièye, M. Lo, A.K.D. Diaw, D. Gningue-Sall, N. Raouafi, M. Fall, Toxicity and electrochemical detection of lead, cadmium and nitrite ions by organic conducting polymers: a review. Chem. Afr. (2020). https://doi.org/10.1007/s42250-020-00157-0

  34. J.H. Duffus, “Heavy metals”- a meaningless term. Pure Appl. Chem. 74, 793–807 (2002)

    CAS  Google Scholar 

  35. M.B. Gumpu, S. Sethuraman, U.M. Krishnanb, J.B.B. Rayappan, A review on detection of heavy metal ions in water—an electrochemical approach. Sens. Actuators B 213, 515–533 (2015)

    CAS  Google Scholar 

  36. T.K. Hussein, Removal of cobalt ions from wastewater by batch and flowing forward osmosis processes. J. Ecol. Eng. 20, 121–126 (2019)

    Google Scholar 

  37. H.N.M. Ekramul Mahmud, A.K. Obidul Huq, R. binti Yahya, Removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 6, 14778–14791 (2016)

    Google Scholar 

  38. V.T.H. Van, T.T.X. Hang, P.T. Nam, N.T. Phuong, N.T. Thom, D. Devilliers, D.T.M. Thanh, Synthesis of silica/polypyrrole nanocomposites and application in corrosion protection of carbon steel. J. Nanosci. Nanotechnol. 18, 4189–4195 (2018)

    CAS  Google Scholar 

  39. A. Saad, E. Cabet, A. Lilienbaum, S. Hamadi, M. Abderrabba, M.M. Chehimi, Polypyrrole/Ag/mesoporous silica nanocomposite particles: design by photopolymerization in aqueous medium and antibacterial activity. J. Taiwan Inst. Chem. Eng. 80, 1022–1030 (2017)

    CAS  Google Scholar 

  40. H.R. Heydarnezhad, B. Pourabbas, M. Tayefi, Conducting electroactive polymers via photopolymerization: a review on synthesis and applications. J. Polym. Plast. Technol. Eng. 57, 1093–1109 (2018)

    CAS  Google Scholar 

  41. Y. Snoussi, S. Bastide, M. Abderrabba, M.M. Chehimi, Sonochemical synthesis of Fe3O4@ NH2-mesoporous silica@polypyrrole/Pd: a core/double shell nanocomposite for catalytic applications. Ultrason. Sonochem. 41, 551–561 (2018)

    CAS  Google Scholar 

  42. O. Hamouma, D. Oukil, M. Omastová, M.M. Chehimi, Flexible paper@ carbon nanotube@ polypyrrole composites: the combined pivotal roles of diazonium chemistry and sonochemical polymerization. Colloids Surf. A 538, 350–360 (2018)

    CAS  Google Scholar 

  43. A. Jacques, A. Saad, M.M. Chehimi, C. Poleunis, A. Delcorte, J. Delhalle, Z. Mekhalif, Nitinol modified by in situ generated diazonium salts as adhesion promoters for photopolymerized pyrrole. Chem Select 3, 11800–11808 (2018)

    CAS  Google Scholar 

  44. M. Lo, A.K.D. Diaw, D. Gningue-Sall, J.-J. Aaron, M.A. Oturan, M.M. Chehimi, The role of diazonium interface chemistry in the design of high performance polypyrrole-coated flexible ITO sensing electrodes. Electrochem. Commun. 77, 14–18 (2017)

    CAS  Google Scholar 

  45. M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, A. Chevillot-Biraud, N. Oturan, M.A. Oturan, C. Fourdrin, D. Huguenot, J.-J. Aaron, Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films. Environ. Sci. Pollut. Res. 25, 8581–8591 (2018)

    CAS  Google Scholar 

  46. M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, A. Chevillot-Biraud, N. Oturan, M.A. Oturan, C. Fourdrin, D. Huguenot, J.-J. Aaron, Removal of Cr(VI) from aqueous solution using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid doped polypyrrole as adsorbent. Environ. Sci. Pollut. Res. 24, 21111–21127 (2017)

    CAS  Google Scholar 

  47. M. Lo, A.K.D. Diaw, D. Gningue-Sall, J.-J. Aaron, M.A. Oturan, M.M. Chehimi, Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes. Environ. Sci. Pollut. Res. 25, 20012–20022 (2018)

    CAS  Google Scholar 

  48. Y. Li, G. Louarn, P.-H. Aubert, V. Alain-Rizzo, L. Galmiche, P. Audebert, F. Miomandre, Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors. Carbon 105, 510–520 (2016)

    CAS  Google Scholar 

  49. G. Vázquez-Rodríguez, L.M. Torres-Rodríguez, A. Montes-Rojas, Synthesis and characterization of commercial cation exchange membranes modified electrochemically by polypyrrole: effect of synthesis conditions on the transport properties. Desalination 416, 94–105 (2017)

    Google Scholar 

  50. E. Jaworska, A. Kisiel, A. Michalska, K. Maksymiuk, Electrochemical properties of polypyrrole nanoparticles—the role of doping ions and synthesis medium. Electroanalysis 29, 1–12 (2017)

    Google Scholar 

  51. C. Li, P. He, Z. Tang, M. He, F. Dong, X. Zhang, H. Liu, S. Wang, CTAB-assisted microemulsion synthesis of unique 3D network nanostructured polypyrrole presenting significantly diverse capacitance performances in different electrolytes. J. Mater. Sci. Mater. Electron. 29, 17552–17562 (2018)

    CAS  Google Scholar 

  52. S. Carquigny, B. Lakard, S. Lakard, V. Moutarlier, J.-Y. Hihn, L. Viau, Investigation of pharmaceutically active ionic liquids as electrolyte for the electrosynthesis of polypyrrole and active component in controlled drug delivery. Electrochim. Acta 211, 950–961 (2016)

    CAS  Google Scholar 

  53. A.A. Hermas, S.S. Al-Juaid, S.A. Al-Thabaiti, A.H. Qusti, M. Abdel Salam, In situ electropolymerization of conducting polypyrrole/carbon nanotubes composites on stainless steel: Role of carbon nanotubes types. Prog. Org. Coat. 75, 404–410 (2012)

    CAS  Google Scholar 

  54. H. Ashassi-Sorkhabi, B. Rezaei-Moghadam, E. Asghari, Electrosynthesis of polypyrrole–nanodiamond composite film under ultrasound irradiation: promotion for methanol electrooxidation by gold and Cu2O nanostructures. J. Taiwan Inst. Chem. Eng. 75, 263–270 (2017)

    CAS  Google Scholar 

  55. R.A.O. Castro, R.S. Monte, L.G. Mendes, R.F. Furtado, Â.R.A. Silva, A. Biswas, H.N. Cheng, C.R. Alves, Electrosynthesis and characterization of polypyrrole/cashew gum composite grown on gold surface in aqueous medium. Int. J. Electrochem. Sci. 12, 50–61 (2017)

    CAS  Google Scholar 

  56. J. Arjomandi, J.Y. Lee, F. Ahmadi, M.H. Parvin, H. Moghanni-Bavil-Olyaei, Spectroelectrochemistry and electrosynthesis of polypyrrole supercapacitor electrodes based on gamma aluminum oxide and gamma iron (III) oxide nanocomposites. Electrochim. Acta 251, 212–222 (2017)

    CAS  Google Scholar 

  57. C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa, A new strategy for corrosion protection of porous stainless steel using polypyrrole films. J. Mater. Sci. Technol. 37, 85–95 (2020)

    Google Scholar 

  58. N. Fourati, N. Blel, Y. Lattach, N. Ktari, C. Zerrouki, in Reference Module in Materials Science and Materials Engineering. Chemical and biological sensors from conducting and semiconducting polymers (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-803581-8.01733-1

  59. H. E. E. Sakhraoui, N. Maouche, N. Ktari, R. Kalfat, Electrocatalytic oxidation of flumequine by electrogenerated PPy-Ag modified electrode: electrochemical and sensing properties (2018). https://sciforum.net/manuscripts/5890/manuscript.pdf. last accessed 30 April 2020

  60. H. Essousi, H. Barhoumi, M. Bibani, N. Ktari, F. Wendler, A. Al-Hamry, O. Kanoun, Ion-imprinted electrochemical sensor based on copper nanoparticles-polyaniline matrix for nitrate detection. J. Sens. 2019, 1–14 (2019. Article ID 4257125). https://doi.org/10.1155/2019/4257125

    Article  CAS  Google Scholar 

  61. H. Karamil, A.R. Nezhad, Investigation of pulse-electropolymerization of conductive polypyrrole nanostructures. Int. J. Electrochem. Sci. 8, 8905–8921 (2013)

    Google Scholar 

  62. A. Deronzier, J.C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related application. Acc. Chem. Res. 22, 249–255 (1989)

    CAS  Google Scholar 

  63. G. Zotti, S. Zecchin, G. Schiavon, A. Berlin, G. Pagani, A. Canavesi, Conductivity in redox modified conducting polymers. 2. Enhanced redox conductivity in ferrocene-substituted polypyrroles and polythiophenes. Chem. Mater. 7(12), 2309–2315 (1995)

    CAS  Google Scholar 

  64. A. Bard, G. Inzelt, F. Scholz, in Electrochemical dictionary, ed. by A. Bard, G. Inzelt, F. Scholz. (Springer, Berlin, 2012), pp. 359–391

    Google Scholar 

  65. C. Debiemme-Chouvy, A. Fakhry, F. Pillier, Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta 268, 66–72 (2018)

    CAS  Google Scholar 

  66. E. Karaca, K. Pekmeza, N.Ö. Pekmeza, Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors. Electrochim. Acta 273, 379–391 (2018)

    CAS  Google Scholar 

  67. J. Tamm, T. Raudsepp, M. Marandi, T. Tamm, Electrochemical properties of the polypyrrole films doped with benzenesulfonate. Synth. Met. 157, 66–73 (2007)

    CAS  Google Scholar 

  68. M. Amaike, T. Iihama, Chemical polymerization of pyrrole with disulfide structure and the application to lithium secondary batteries. Synth. Met. 156, 239–243 (2006)

    CAS  Google Scholar 

  69. J.W. Kim, F. Liu, H.J. Choi, S.H. Hong, Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method. Polymer 44, 289–293 (2003)

    CAS  Google Scholar 

  70. H.S. Abdulla, A.I. Abbo, Optical and electrical properties of thin films of polyaniline and polypyrrole. Int. J. Electrochem. Sci. 7, 10666–10678 (2012)

    CAS  Google Scholar 

  71. C. Lo, A. Adenier, F. Maurel, J.J. Aaron, V. Kozmik, J. Svoboda, Electrochemical, spectral and theoretical studies of two new methyl-thieno[3,2-b]benzothiophenes and their polymers electrosynthesized in organic and micellar media. Synth. Met. 158, 6–24 (2008)

    CAS  Google Scholar 

  72. A.K.A. Almeida, M.P. Monteiro, J.M.M. Dias, L. Omena, A.J.C. da Silva, J. Tonholo, R.J. Mortimer, M. Navarro, C. Jacinto, A.S. Ribeiro, I.N. de Oliveira, Synthesis and spectroscopic characterization of a fluorescent pyrrole derivative containing electron acceptor and donor groups. Spectrochim. Acta A 128, 812–818 (2014)

    CAS  Google Scholar 

  73. T. Konry, A. Novoa, Y. Shemer-Avni, N. Hanuka, S. Cosnier, A. Lepellec, R.S. Marques, Optical fiber immunosensor based on a poly(pyrrole−benzophenone) film for the detection of antibodies to viral antigen. Anal. Chem. 77, 1771–1779 (2005)

    CAS  Google Scholar 

  74. A. Riul Jr., A.M. Gallardo Soto, S.V. Mello, S. Bone, D.M. Taylor, L.H.C. Mattoso, An electronic tongue using polypyrrole and polyaniline. Synth. Met. 132, 109–116 (2003)

    CAS  Google Scholar 

  75. U. Bubniene, R. Mazetyte, A. Ramanaviciene, V. Gulbinas, A. Ramanavicius, R. Karpicz, Fluorescence quenching-based evaluation of glucose oxidase composite with conducting polymer, polypyrrole. J. Phys. Chem. C 122, 9491–9498 (2018)

    CAS  Google Scholar 

  76. T. Yazıcı, T. Tugba, S. Metin, A.A. Kocac, M.K. Şener, Enhancing biosensor properties of conducting polymers via copolymerization: synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens. Bioelectron. 87, 81–88 (2017)

    Google Scholar 

  77. M. Kaplana, T. Kilic, G. Guler, J. Mandlid, A. Amine, M. Ozsoz, A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosens. Bioelectron. 92, 770–778 (2017)

    Google Scholar 

  78. S. Liu, Y. Ma, M. Cui, X. Luo, Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sens. Actuators B 255, 2568–2574 (2018)

    CAS  Google Scholar 

  79. X. Wang, J. Deng, X. Duan, D. Liu, P. Liu, Fluorescent brightener CBS-X doped polypyrrole as smart electrode material for supercapacitors. Appl. Energy 153, 70–77 (2015)

    CAS  Google Scholar 

  80. S.M. Chergui, N. Abbas, T. Matrab, M. Turmine, E. Bon Nguyen, R. Losno, J. Pinson, M.M. Chehimi, Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization. Carbon 48, 2106–2111 (2010)

    Google Scholar 

  81. H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem. Eng. J. 299, 150–155 (2016)

    CAS  Google Scholar 

  82. A.J. Borrill, N.E. Reily, J.V. Macpherson, Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 144, 6834–6849 (2019)

    CAS  Google Scholar 

  83. G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)

    Google Scholar 

  84. J. Wang, in Analytical electrochemistry, 3rd edn., ed. by J. Wang. Study of electrode reactions and interfacial properties (John Wiley & Sons, Inc., Hoboken, 2006), pp. 29–37

    Google Scholar 

  85. J. Barón-Jaimez, M.R. Joya, J. Barba-Ortega, Anodic stripping voltammetry—ASV for determination of heavy metals. J. Phys. Conf. Ser. 466 (2013), paper No 012023). https://doi.org/10.1088/1742-6596/466/1/012023

  86. R.S. Salunke, P.G. Chavan, D.J. Shirale, Anodic stripping voltammetry studies of electrochemically engineered silver nanoparticles over single polypyrrole nanowire device for tracing of arsenic(III): an environmental perspective. Nanotechnol. Environ. Eng. 12, 2–8 (2018)

    Google Scholar 

  87. A. Hájková, V. Vyskočila, B. Josypčuk, J. Barek, A miniaturized electrode system for voltammetric determination of electrochemically reducible environmental pollutants. Sens. Actuators B Chem. 227, 263–270 (2016)

    Google Scholar 

  88. https://www.biologic.net/documents/sensor-pulsed-techniques-swv-dpv-npv-electroanalysis-electrochemistry-sensor-application-note-67/. Last accessed 23 July 2020

  89. A.R. Sadrolhosseini, M. Naseri, H.M. Kamari, Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrole-chitosan-cobalt ferrite nanoparticles composite layer. Opt. Commun. 383, 132–137 (2017)

    CAS  Google Scholar 

  90. A.R. Sadrolhosseini, M. Naseri, S.A. Rashid, Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique. Opt. Laser Technol. 93, 216–223 (2017)

    CAS  Google Scholar 

  91. X. Zhu, J. Tong, C. Bian, C. Gao, S. Xia, The polypyrrole/multiwalled carbon nanotube modified au microelectrode for sensitive electrochemical detection of trace levels of Pb2+. Micromachines 8, 86–95 (2017)

    Google Scholar 

  92. G.G. Wallace, Y.P. Lin, Preparation and application of conducting polymers containing chemically active counterions for analytical purposes. J. Electroanal. Chem. 247, 145–156 (1988)

    CAS  Google Scholar 

  93. Y. Wei, R. Yang, J.H. Liu, X.J. Huang, Selective detection toward Hg (II) and Pb (II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim. Acta 105, 218 (2013)

    CAS  Google Scholar 

  94. L. Oularbi, M. Turmine, M. El Rhazi, Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers. J. Solid State Electrochem. 21, 3289–3300 (2017). https://doi.org/10.1007/s10008-017-3676-2

    Article  CAS  Google Scholar 

  95. A.D. Arulraj, R. Devasenathipathy, S.-M. Chen, V. Sivasamy Vasantha, S.-F. Wang, Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode. J. Colloid Interface Sci. 483, 268–274 (2016)

    CAS  Google Scholar 

  96. J.G. Ayenimo, S.B. Adeloju, Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor. Talanta 148, 502–510 (2016)

    CAS  Google Scholar 

  97. N. Wang, H. Dai, D. Wang, H. Ma, M. Lin, Determination of copper ions using a phytic acid/polypyrrole nanowires modified glassy carbon electrode. Mater. Sci. Eng. C 76, 139–143 (2017)

    CAS  Google Scholar 

  98. S. Palanisamy, K. Thangavelu, S.-M. Chen, V. Velusamy, M.-H. Chang, T.-W. Chen, F.M.A. Al-Hemaid, M.A. Ali, S.K. Ramaraj, Synthesis and characterization of polypyrrole decorated graphene/-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B 243, 888–894 (2017)

    CAS  Google Scholar 

  99. J. Ding, Y. Liu, D. Zhang, M. Yu, X. Zhan, D. Zhang, P. Zhou, An electrochemical aptasensor based on gold@polypyrrole composites for detection of lead. Microchim. Acta 185, 545–550 (2018)

    Google Scholar 

  100. M.A. Deshmukh, G.A. Bodkhe, S. Shirsat, A. Ramanavicius, M.D. Shirsat, Nanocomposite platform based on EDTA modified Ppy/SWNTs for the sensing of Pb(II) ions by electrochemical method. Front. Chem. 6, 451 (2018). https://doi.org/10.3389/fchem.2018.00451

    Article  CAS  Google Scholar 

  101. R. Seenivasan, W.J. Chang, S. Gunasekaran, Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl. Mater. Interfaces 7, 15935–15943 (2015)

    CAS  Google Scholar 

  102. W. Wang, C. Wang, P. Dou, L. Zhang, J. Zheng, Z. Cao, X. Xu, Self-supported Co3O4 nanoneedle arrays decorated with PPy via chemical vapor phase polymerization for high-performance detection of trace Pb2+. Anal. Methods 9, 1905–1911 (2017)

    CAS  Google Scholar 

  103. X. Wei, C. Wang, P. Dou, J. Zheng, Z. Cao, X. Xu, Synthesis of NiCo2O4 nanoneedle@polypyrrole arrays supported on 3D graphene electrode for high-performance detection of trace Pb2+. J. Mater. Sci. 52, 3893–3905 (2017)

    CAS  Google Scholar 

  104. N. Wang, W. Zhao, Z. Shen, S. Sun, H. Dai, H. Ma, M. Lin, Sensitive and selective detection of Pb (II) and Cu (II) using a metal-organic framework/polypyrrole nanocomposite functionalized electrode. Sens. Actuat. B Chem. 304, 127286 (2020)

    CAS  Google Scholar 

  105. N.C. Foulds, C.R. Lowe, Enzyme entrapment in electrically conducting polymers. J. Chem. Soc. Faraday Trans. 1(82), 1259–1264 (1986)

    Google Scholar 

  106. A. Cornish-Bowden, Simple graphical method for determining inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137, 143–144 (1974)

    CAS  Google Scholar 

  107. L. Xie, Z. Yu, S.M. Islam, K. Shi, Y. Cheng, M. Yuan, J. Zhao, G. Sun, H. Li, S. Ma, M.G. Kanatzidis, Remarkable acid stability of polypyrrole-MoS4: a highly selective and efficient scavenger of heavy metals over a wide pH range. Adv. Funct. Mater. 28, 1800502 (2018)

    Google Scholar 

  108. M. Lo, R. Pires, K. Diaw, D. Gningue-Sall, M.A. Oturan, J.J. Aaron, M.M. Chehimi, Diazonium salts: versatile molecular glues for sticking conductive polymers to flexible electrodes. Surfaces 1, 43–58 (2018)

    Google Scholar 

  109. M. Lo, M. Seydou, A. Bensghaïer, R. Pires, D. Gningue-Sall, J.-J. Aaron, Z. Mekhalif, J. Delhalle, M.M. Chehimi, Polypyrrole-wrapped carbon nanotube composite films coated on diazonium-modified flexible ITO sheets for the electroanalysis of heavy metal ions. Sensors 20, 580 (2020). https://doi.org/10.3390/s20030580

    Article  CAS  Google Scholar 

  110. H. Korri-Youssoufi, F. Garnier, P. Srivastava, P. Godillot, A. Yassar, Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 119, 7388–7389 (1997)

    CAS  Google Scholar 

  111. S. Bousalem, S. Benabderrahmane, Y.Y.C. Sang, C. Mangeney, M.M. Chehimi, Covalent immobilization of human serum albumin onto reactive polypyrrole-coated polystyrene latex particles. J. Mater. Chem. 15, 3109–3116 (2005)

    CAS  Google Scholar 

  112. J.Y. Lee, J.W. Lee, C.E. Schmidt, Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J. R. Soc. Interface 6, 801–810 (2009)

    CAS  Google Scholar 

  113. A. Nan, R. Turcu, I. Bratu, C. Leostean, O. Chauvet, E. Gautron, J. Liebscher, Novel magnetic core-shell Fe3O4 polypyrrole nanoparticles functionalized by peptides or albumin. Arkivoc 10, 185–198 (2010)

    Google Scholar 

  114. A. Nan, I. Craciunescu, R. Turcu, in Aspects on Fundaments and Applications of Conducting Polymers, chap. 8, ed. by A. Motheo. Conducting polypyrrole shell as a promising covering for magnetic nanoparticles (2012), p. 159

    Google Scholar 

  115. S. Korkut, S. Göl, M.S. Kilic, Poly (pyrrole-co-pyrrole-2-carboxylic acid)/pyruvate oxidase based biosensor for phosphate: determination of the potential, and application in streams. Electroanalysis 32, 271–280 (2020)

    CAS  Google Scholar 

  116. D.V. Morales, C.N. Astudillo, Y. Lattach, B.F. Urbano, E. Pereira, B.L. Rivas, J. Arnaud, J.-L. Putaux, S. Sirach, S. Cobo, J.-C. Moutet, M.-N. Collomb, J. Fortage, Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catal. Sci. Technol. 8, 4030–4043 (2018)

    CAS  Google Scholar 

  117. J. Sánchez, B.L. Rivas, J.C. Moutet, D.P. Oyarzún, Ferrocenyl alkylammonium N-substituted polypyrrole containing Pt and Pd and its application on electroanalysis of arsenite. J. Chil. Chem. Soc. 61, 3277–3280 (2016)

    Google Scholar 

  118. A. Joseph, S. Subramanian, P.C. Ramamurthya, S. Sampath, R.V. Kumar, C. Schwandt, Iminodiacetic acid functionalized polypyrrole modified electrode as Pb(II) sensor: synthesis and DPASV studies. Electrochim. Acta 137, 557–563 (2014)

    CAS  Google Scholar 

  119. M. Heitzmann, L. Basaez, .Brovelli, C. Bucher, D. Limosin, E. Pereira, B.L. Rivas, G. Royal, E. Saint-Aman, J.-C. Moutet, Voltammetric sensing of trace metals at a poly(pyrrole-malonic acid) film modified carbon electrode, Electroanalysis, 17, 1970–1976 (2005)

    CAS  Google Scholar 

  120. G.-O. Buica, E.-M. Ungureanu, C. Bucher, J.-C. Moutet, E. Saint-Aman, Poly(pyrrole-edta like) modified electrodes for mercury ions electroanalysis. J. Optoelectron. Adv. Mater. 11, 1152 (2009)

    CAS  Google Scholar 

  121. M. Heitzmann, C. Bucher, J.-C. Moutet, E. Pereira, B.L. Rivas, G. Royal, E. Saint-Aman, Complexation of poly(pyrrole-EDTA like) film modified electrodes: Application to metal cations electroanalysis. Electrochim. Acta 52, 3082–3087 (2007)

    CAS  Google Scholar 

  122. L. Chen, X. Wang, W. Lu, X. Wu, J. Lia, Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 45, 2137–2211 (2016)

    CAS  Google Scholar 

  123. H. Naarman, Strategies for synthesizing conducting polymers. Synth. Met. 41, 1–6 (1991)

    Google Scholar 

  124. N. Maouche, M. Guergouri, S. Gam-Derouich, M. Jouini, B. Nessark, M.M. Chehimi, Molecularly imprinted polypyrrole films: some key parameters for electrochemical picomolar detection of dopamine. J. Electroanal. Chem. 685, 21–27 (2012)

    CAS  Google Scholar 

  125. P.E. Hande, A.B. Samui, P.S. Kulkarni, Highly selective monitoring of metals by using ion-imprinted polymers. Environ. Sci. Pollut. Res. 22, 7375–7404 (2015)

    CAS  Google Scholar 

  126. C. Branger, W. Meouche, A. Margaillan, Recent advances on ion-imprinted polymers. React. Funct. Polym. 73, 859–875 (2013)

    CAS  Google Scholar 

  127. M. Mazloum-Ardakani, M.K. Amini, M. Dehghan, E. Kordi, M.A. Sheikh-Mohseni, Nanomolar determination of Pb (II) ions by selective templated electrode. J. Serb. Chem. Soc. 77, 899–910 (2012)

    CAS  Google Scholar 

  128. M. Mazloum-Ardakani, M.K. Amini, M. Dehghan, E. Kordi, M.A. Sheikh-Mohseni, Preparation of Cu (II) imprinted polymer electrode and its application for potentiometric and voltammetric determination of Cu (II). J. Iran. Chem. Soc. 11, 257–262 (2014)

    CAS  Google Scholar 

  129. E. Pereira, B.L. Rivas, M. Heitzman, J.-C. Moutet, C. Bucher, G. Royal, E.S. Aman, Complexing polymer films in the preparation of modified electrodes for detection of metal ions. Macromol. Symp. 304, 115–125 (2011)

    CAS  Google Scholar 

  130. T. Velempini, K. Pillay, X.Y. Mbianda, O.A. Arotiba, Application of a polypyrrole/carboxy methyl cellulose ion imprinted polymer in the electrochemical detection of mercury in water. Electroanalysis 30, 1–9 (2018)

    Google Scholar 

  131. H.E.E.Y. Sakhraoui, Z. Mazouz, G. Attia, N. Fourati, C. Zerrouki, N. Maouche, A. Othmane, N. Yaakoubi, R. Kalfat, A. Madani, B. Nessark, Design of L-cysteine and acrylic acid imprinted polypyrrole sensors for picomolar detection of lead ions in simple and real media. IEEE Sensors J. 20, 4147–4155 (2020)

    Google Scholar 

  132. X. Du, X. Sun, H. Zhang, Z. Wang, X. Hao, G. Guan, A. Abudula, A facile potential-induced in-situ ion removal trick: fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation. Electrochim. Acta 176, 1313–1323 (2015)

    CAS  Google Scholar 

  133. A. Khlifi, S. Gam-Derouich, M. Jouini, R. Kalfat, M.M. Chehimi, Melamine-imprinted polymer grafts through surface photopolymerization initiated by aryl layers from diazonium salts. Food Control 31, 379–386 (2013)

    CAS  Google Scholar 

  134. M. Choi, J. Jang, Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J. Colloid Interface Sci. 325, 287–289 (2008)

    CAS  Google Scholar 

  135. S. Sharvelle, in Women in water quality. Women in engineering and science, ed. by D. O’Bannon. Water quality for decentralized use of non-potable water sources (Springer, Cham, 2020)

    Google Scholar 

  136. O. Hamouma, N. Kaur, D. Oukil, A. Mahajan, M.M. Chehimi, Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synth. Met. 258, 116223 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

All authors gratefully thank the Cooperation and Cultural Action Service of the French Embassy in Senegal, NATO (through CATALTEX project no. SfP 984842), and Wallonie-Bruxelles International (Belgium) through “Programme de Bourses d’Excellence” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Chehimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, M., Ktari, N., Gningue-Sall, D. et al. Polypyrrole: a reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water. emergent mater. 3, 815–839 (2020). https://doi.org/10.1007/s42247-020-00119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00119-9

Keywords

Navigation