Skip to main content

Advertisement

Log in

Composition and processing of direct-quench hot rolled steels with ultrahigh strength exceeding GPa

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The design of high-strength steel has long been discussed in the field of metal structural materials. To further increase the strength of common high-strength steel and further decrease the cost for production, three direct-quench hot rolled steels were designed and fabricated. The rolling and coiling processes were set based on continuous cooling transformation curves. In addition, the effect of the coiling temperature on the tensile properties was discussed to further guide the optimization of the process. It was found that compared with granular bainite, lower bainite probably has more advantages for both the strength and low temperature impact toughness of direct-quench hot rolled steels. Through a process of tailoring the morphology of bainite and controlling the grain boundary precipitation, the newly designed direct-quench hot rolled steels showed greatly improved strength and acceptable ductility/toughness compared with traditional quenched and tempered steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Lei, K.M. Wu, Y. Li, T.P. Hou, X. Xie, R.D.K. Misra, J. Iron Steel Res. Int. 26 (2019) 1117–1125.

    Article  Google Scholar 

  2. F. Han, Y. Wang, L.L. Niu, J. Iron Steel Res. Int. 26 (2019) 1178–1187.

    Article  Google Scholar 

  3. X.H. Chen, P.Z. Zhang, D.D. Wei, X. Huang, F. Ding, F.K. Li, X.J. Dai, Z.Z. Wang, J. Iron Steel Res. Int. 26 (2019) 1106–1116.

    Article  Google Scholar 

  4. X.Y. Chai, G. Chen, F. Chai, T. Pan, Z.G. Yang, C.F. Yang, J. Iron Steel Res. Int. 26 (2019) 1126–1136.

    Article  Google Scholar 

  5. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Acta Metall. Sin. 53 (2017) 175–182.

    Google Scholar 

  6. H.K. Danielsen, Mater. Sci. Technol. 32 (2016) 126–137.

    Article  Google Scholar 

  7. J. Liu, J. Li, X. Cheng, H. Wang, J. Mater. Sci. Technol. 34 (2018) 643–652.

    Article  Google Scholar 

  8. T. Wu, M. Yan, D. Zeng, J. Xu, C. Sun, C. Yu, W. Ke, J. Mater. Sci. Technol. 31 (2015) 413–422.

    Article  Google Scholar 

  9. X. Zhou, C. Liu, L. Yu, Y. Liu, H. Li, J. Mater. Sci. Technol. 31 (2015) 235–242.

    Article  Google Scholar 

  10. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Mater. Sci. Eng. A 669 (2016) 312–317.

    Article  Google Scholar 

  11. F. Hou, Y. Bai, A. Shibata, N. Tsuji, Mater. Sci. Technol. 35 (2019) 2101–2108.

    Article  Google Scholar 

  12. A. Inam, Y. Imtiaz, M.A. Hafeez, S. Munir, Z. Ali, M. Ishtiaq, M.H. Hassan, A. Maqbool, W. Haider, Mater. Res. Express 6 (2019) 126509.

    Article  Google Scholar 

  13. P. Köhnen, M. Létang, M. Voshage, J.H. Schleifenbaum, C. Haase, Addit. Manuf. 30 (2019) 100914.

    Google Scholar 

  14. V. Vijayan, S.P. Murugan, S.G. Son, Y.D. Park, J. Mater. Eng. Perform. 28 (2019) 7514–7526.

    Article  Google Scholar 

  15. G.B. Olson, Acta Mater. 61 (2013) 771–781.

    Article  Google Scholar 

  16. F. Liu, X. Lin, J. Shi, Y. Zhang, P. Bian, X. Li, Y. Hu, Addit. Manuf. 29 (2019) 100795.

    Google Scholar 

  17. S. Chen, C. Wang, L. Shan, Y. Li, X. Zhao, W. Xu, Metall. Mater. Trans. A 50 (2019) 4037–4046.

    Article  Google Scholar 

  18. S. Chen, G.Z. Wang, C. Liu, C.C. Wang, X.M. Zhao, W. Xu, J. Iron Steel Res. Int. 24 (2017) 1095–1103.

    Article  Google Scholar 

  19. J. Cao, J. Jin, L. Wang, S. Li, Y. Zong, Model. Simul. Mater. Sci. Eng. 27 (2019) 085002.

    Article  Google Scholar 

  20. Y. Deng, H. Di, R.D.K. Misra, Metall. Res. Technol. 116 (2019) 639.

    Article  Google Scholar 

  21. T. Kang, Z. Zhao, J. Liang, J. Guo, Y. Zhao, Mater. Sci. Eng. A 771 (2020) 138584.

    Article  Google Scholar 

  22. Z. Wang, M.X. Huang, Metall. Mater. Trans. A 50 (2019) 5650–5655.

    Article  Google Scholar 

  23. Q. Zhang, X. Lin, J. Liu, S. Hu, Acta Metall. Sin. 55 (2019) 1569–1580.

    Google Scholar 

  24. A. Banis, E. Hernandez Duran, V. Bliznuk, I. Sabirov, R.H. Petrov, S. Papaefthymiou, Metals 9 (2019) 877.

  25. M.F. Buchely, D.M. Field, D.C. Van Aken, Metall. Materi. Trans. B 50 (2019) 1180–1192.

    Article  Google Scholar 

  26. P. Costa, G. Altamirano, A. Salinas, D.S. González-González, F. Goodwin, Metals 9 (2019) 703.

    Article  Google Scholar 

  27. S. Kaar, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Metals 9 (2019) 1122.

    Article  Google Scholar 

  28. H. Rezayat, H. Ghassemi-Armaki, S.P. Bhat, S. Sriram, S.S. Babu, J. Mater. Sci. 54 (2019) 5825–5843.

    Article  Google Scholar 

  29. Y. Zhang, H. Han, L. Miao, H. Zhang, J. Li, Mater. Charact. 60 (2009) 953–956.

    Article  Google Scholar 

  30. Z. Jiang, P. Wang, D. Li, Y. Li, Mater. Sci. Eng. A 742 (2019) 540–552.

    Article  Google Scholar 

  31. Y. Wang, S. Hu, Y. Li, G. Cheng, Int. J. Hydrogen Energy 44 (2019) 29017–29026.

    Article  Google Scholar 

  32. Z. Song, S. Zhao, T. Jiang, J. Sun, Y. Wang, X. Zhang, H. Liu, Y. Liu, Metals 12 (2019) 1618.

    Google Scholar 

  33. J. Zhao, F. Zhang, B. Lv, Z. Yang, C. Chen, X. Long, X. Zhao, C. Chu, Mater. Sci. Eng. A 751 (2019) 80–89.

    Article  Google Scholar 

  34. W.F. Zhang, W. Sha, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 604 (2014) 207–214.

    Article  Google Scholar 

  35. J. Li, C. Zhang, B. Jiang, L. Zhou, Y. Liu, J. Alloy. Compd. 685 (2016) 248–257.

    Article  Google Scholar 

  36. J. Li, T. He, P. Zhang, L. Cheng, L. Wang, Mater. Charact. 159 (2020) 110025.

    Article  Google Scholar 

  37. J.Y. Choi, J. Moon, B.H. Kim, J.H. Jang, T.H. Lee, H.U. Hong, C.H. Lee, N.H. Kang, J. Nucl. Mater. 528 (2020) 151862.

    Article  Google Scholar 

  38. C. Wang, C. Zhang, J. Zhao, Z. Yang, W. Liu, Mater. Sci. Eng. A 682 (2017) 563–568.

    Article  Google Scholar 

  39. C. Wang, J. Wang, Y. Li, C. Zhang, W. Xu, Nucl. Eng. Technol. 51 (2019) 221–227.

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51722101 and U1808208) and National Key Research and Development Program (Grant Nos. 2017YFB0304402 and 2017YFB0703001) and greatly acknowledged the financial support provided by the Joint Project of Benxi Iron and Steel Group Co., (KJB2016004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Ren, D., Liu, Zp. et al. Composition and processing of direct-quench hot rolled steels with ultrahigh strength exceeding GPa. J. Iron Steel Res. Int. 28, 703–712 (2021). https://doi.org/10.1007/s42243-020-00518-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00518-6

Keywords

Navigation