Skip to main content
Log in

Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Developing a multifunctional theranostic nanoplatform is vital for dealing with challenging matters correlated with cancers. In this paper, we report an improved facile and relatively green fabrication of highly monodisperse CoFe2O4 nanoparticles with tunable size and morphology. Furthermore, a multifunctional cancer theranostic nanoplatform (CoFe2O4 nanoparticles@dopamine@DOX) was successfully developed for magnetic-responsive on-demand hyperthermia and chemotherapy synergistic theranostics. The proposed nanoplatform exhibits outstanding magneto-triggered hyperthermia efficiency, magnetic-responsive controlled drug delivery capability, enhanced MRI T2-weighted signal, and good biocompatibility. More importantly, the in vivo tumor-bearing mouse model experiments indicated that the CoFe2O4 nanoparticles@dopamine@DOX nanomedicine could realize the functions of magnetic-responsive on-demand hyperthermia and DOX release, which significantly promoted the inactive condition of cancer cells and resulted in obvious tumor regression without evident toxic side effects. According to its facile and green fabrication approach, magneto-triggered high hyperthermia efficiency, magnetic-responsive on-demand cancer therapy, and noninvasive imaging mode, this multifunctional nanoplatform holds great advantages over traditional monotherapy techniques and provides an alternative for the precise clinical treatment of cancer.

Graphical abstract

A multifunctional cancer theranostic nanoplatform (CoFe2O4 nanoparticles@dopamine@DOX) was successfully developed for magnetic-responsive on-demand hyperthermia and chemotherapy synergistic theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. Lu A, Salabas E, Schüth F (2007) Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  2. Deng B, Liu Z, Pan F, Xiang Z, Zhang X, Lu W (2021) Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J Mater Chem A 9:3500–3510

    Article  CAS  Google Scholar 

  3. Pan F, Yu L, Xiang Z, Liu Z, Deng B, Cui E, Shi Z, Li X, Lu W (2021) Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172:506–515

    Article  CAS  Google Scholar 

  4. Zhang X, Liu Z, Deng B, Cai L, Dong Y, Zhu X, Lu W (2021) Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem Eng J 419:129547

    Article  CAS  Google Scholar 

  5. Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743

    Article  CAS  Google Scholar 

  6. Sun S, Zeng H, Robinson D, Raoux S, Rice P, Wang S, Li G (2004) Monodisperse MFe2O4(M = Fe, Co, Mn) Nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  7. Xiang Z, Song Y, Xiong J, Pan Z, Wang X, Liu L, Liu R, Yang H, Lu W (2019) Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142:20–31

    Article  CAS  Google Scholar 

  8. Song Q, Zhang Z (2004) Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals. J Am Chem Soc 126:6164–6168

    Article  CAS  Google Scholar 

  9. Wang X, Pan F, Xiang Z, Zeng Q, Pei K, Che R, Lu W (2020) Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    Article  CAS  Google Scholar 

  10. Xiang Z, Xiong J, Deng B, Cui E, Yu L, Zeng Q, Pei K, Che R, Lu W (2020) Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J Mater Chem C 8:2123–2134

    Article  CAS  Google Scholar 

  11. Deng B, Xiang Z, Xiong J, Liu Z, Yu L, Lu W (2020) Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. Nano-Micro Lett 12:55

    Article  CAS  Google Scholar 

  12. Maaz K, Mumtaz A, Hasanain S, Ceylan A (2007) Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. J Magn Magn Mater 308:289–295

    Article  CAS  Google Scholar 

  13. Shin T, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44:4501–4516

    Article  CAS  Google Scholar 

  14. Ling D, Lee N, Hyeon T (2015) Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Acc Chem Res 48:1276–1285

    Article  CAS  Google Scholar 

  15. Abraime B, Ait Tamerd M, Mahmoud A, Boschini F, Benyoussef A, Hamedoun M, Xiao Y, El Kenz A, Mounkachi O (2017) Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceram Int 43:15999–16006

    Article  CAS  Google Scholar 

  16. Cai K, Shen W, Ren B, He J, Wu S, Wang W (2017) A phytic acid modified CoFe2O4magnetic adsorbent with controllable morphology, excellent selective adsorption for dyes and ultra-strong adsorption ability for metal ions. Chem Eng J 330:936–946

    Article  CAS  Google Scholar 

  17. Zhang X, Dong Y, Pan F, Xiang Z, Zhu X, Lu W (2021) Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high performance microwave absorbers. Carbon 177:332–343

    Article  CAS  Google Scholar 

  18. Kwon S, Piao Y, Park J, Angappane S, Jo Y, Hwang N, Park J, Hyeon T (2007) Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. J Am Chem Soc 29(41):12571–12584

    Article  Google Scholar 

  19. Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grull H (2017) Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 114:4802–4811

    Article  Google Scholar 

  20. Revia R, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  21. Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 117:13566–13638

    Article  CAS  Google Scholar 

  22. Murray C, Norris D, Bawendi M (1993) Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  23. Jiang X, He S, Han G, Long J, Li S, Lau C, Zhang S, Shao L (2021) Aqueous One-Step Modulation for Synthesizing Monodispersed ZIF-8 Nanocrystals for Mixed-Matrix Membrane. ACS Appl Mater Interfaces 13(9):11296–11305

    Article  CAS  Google Scholar 

  24. Jiang X, Li S, Bai Y, Shao L (2019) Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. J Mater Chem A 7:10898–10904

    Article  CAS  Google Scholar 

  25. Lee J, Jang J, Choi J, Moon S, Noh S, Kim J, Kim J, Kim I, Park K, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    Article  CAS  Google Scholar 

  26. Noh S, Moon S, Shin T, Lim Y, Cheon J (2017) Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications. Nano Today 13:61–76

    Article  CAS  Google Scholar 

  27. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst Q (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–1513

    Article  CAS  Google Scholar 

  28. He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R, Zeng H (2018) Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites. Small 14:1800135

  29. Wang G, Ma Y, Wei Z, Qi M (2016) Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Engin J 289:150–160

    Article  CAS  Google Scholar 

Download references

Funding

The project was supported by the NSFC (Grant Nos. U1933112 and 51971162), the Shanghai Technological Research Leader program (18XD1423800), and the Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research (2019CXJQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Qi, Y., Hu, Z. et al. Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Mater 4, 989–1001 (2021). https://doi.org/10.1007/s42114-021-00276-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00276-3

Keywords

Navigation