Skip to main content
Log in

Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Carbon-based composites have gained extensive attention as microwave absorbing materials due to the lighter weight compared with other materials. In this work, Co/C nanocomposites with Co nanoparticles uniformly distributed in amorphous carbon sheets are prepared by a freezing dry and carbothermic reduction process. Hierarchical porous microstructures (micropores, mesopores, macropores) are achieved by ice template and huge amounts of gas during carbothermal reduction. Excellent absorption performance is achieved at a very low Co/C content (10% and 15%), which is a great success to design ultralight absorbers. At 10% content level, the effective absorption bandwidth is 5.0 GHz with a thin thickness of 1.8 mm, while the absorption bandwidth is 4.7 GHz with a thin thickness of 1.5 mm at 15% Co/C content level. The excellent absorption performance is attributed to excellent impedance matching resulting from synergy of cobalt and carbon and strong interfacial polarization induced by the hierarchical porous microstructures. This work provides a new pathway of designing ultralight absorbers with the advantage of thin thickness and wide bandwidth.

Graphical Abstract

Excellent absorption performance is achieved at only 10% Co/C content level, a success to design ultralight absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong S, Koo C, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    CAS  Google Scholar 

  2. Cui T, Liu S, Bai G, Ma Q (2019) Direct transmission of digital message via programmable coding metasurface Research 2019:2584509

    Google Scholar 

  3. Wen Y, Zhou J (2019) Artificial generation of high harmonics via nonrelativistic Thomson scattering in metamaterial. Research 2019:8959285

    CAS  Google Scholar 

  4. Fan W, Yin J, Yi C, Xia Y, Nie Z, Sui K (2020) Nature-inspired sequential shape transformation of energy-patterned hydrogel sheets. ACS Appl Mater Inter 12(4):4878–4886

    CAS  Google Scholar 

  5. Zhang D, Qiao H, Fan W, Zhang K, Xia Y, Sui K (2020) Self-powered ionic sensors overcoming the limitation of ionic conductors as wearable sensing devices. Mater Today Phys 15:100246

    Google Scholar 

  6. Cheng Y, Zhao H, Lv H, Shi T, Ji G, Hou Y (2020) Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv Electron Mater 6:1900796

    CAS  Google Scholar 

  7. Yun T, Kim H, Iqbal A, Cho Y, Koo C (2020) Electromagnetic Interference Shielding: Electromagnetic Shielding of Monolayer MXene Assemblies (Adv. Mater. 9/2020). Adv Mater 32

  8. Lan D, Qin M, Liu J, Wu G, Zhang Y, Wu H (2020) Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem Eng J 382:122797

    CAS  Google Scholar 

  9. Quan B, Shi W, Ong S, Lu X, Wang P, Ji G, Guo Y, Zheng L, Xu Z (2019) Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv Funct Mater 29:1901236

    Google Scholar 

  10. Jia Z, Wang B, Feng A, Liu J, Wu G (2019) Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J Alloy Compd 799:216–223

    CAS  Google Scholar 

  11. Wu H, Lan D, Li B, Zhang L, Xing H (2019) High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos Part B-Eng 179:107524

    CAS  Google Scholar 

  12. Fan G, Jiang Y, Xin J, Zhang Z, Fu X, Xie P, Cheng C, Liu Y, Qu Y, Sun K, Fan R (2019) Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties. ACS Sustain Chem Eng 7:18765–18774

    CAS  Google Scholar 

  13. Fan G, Jiang Y, Hou C, Deng X, Fan R (2020) Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J Alloy Compd 835:155345

    CAS  Google Scholar 

  14. Han M, Yin X, Li X, Anasori B, Zhang L, Cheng L, Gogotsi Y (2017) Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl Mater Inter 9:20038–20045

    CAS  Google Scholar 

  15. Wu Z, Hu W, Huang T, Lan P, Tian K, Xie F, Li L (2018) Hierarchically porous carbons with controlled structures for efficient microwave absorption. J Mater Chem C 6:8839–8845

    CAS  Google Scholar 

  16. Han M, Yin X, Hou Z, Song C, Li X, Zhang L, Cheng L (2017) Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl Mater Inter 9:11803–11810

    CAS  Google Scholar 

  17. Xiang Z, Xiong J, Deng B, Cui E, Yu L, Zeng Q, Pei K, Che R, Lu W (2020) Rational design of 2D hierarchically laminated Fe3O4@ nanoporous carbon@ rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J Mater Chem C 8:2123–2134

    CAS  Google Scholar 

  18. Wu N, Xu D, Wang Z, Wang F, Liu J, Liu W, Shao Q, Liu H, Gao Q, Guo Z (2019) Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145:433–444

    CAS  Google Scholar 

  19. Qiao J, Zhang X, Xu D, Kong L, Lv L, Yang F, Wang F, Liu W, Liu J (2020) Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J 380:122591

    CAS  Google Scholar 

  20. Xie P, Li H, He B, Dang F, Lin J, Fan R, Hou C, Liu H, Zhang J, Ma Y (2018) Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J Mater Chem C 6:8812–8822

    CAS  Google Scholar 

  21. Wang Z, Li X, Wang L, Li Y, Qin J, Xie P, Qu Y, Sun K, Fan R (2020) Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Adv Compos Hybrid Mater 3:1–7

    CAS  Google Scholar 

  22. Sadeghi B, Cavaliere P, Roeen G, Nosko M, Shamanian M, Trembošová V, Nagy Š, Ebrahimzadeh N (2019) Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering. Adv Compos Hybrid Mater 2:549–570

    CAS  Google Scholar 

  23. Saba F, Sajjadi S, Heydari S, Haddad-Sabzevar M, Salehi J, Babayi H (2019) A novel approach to the uniformly distributed carbon nanotubes with intact structure in aluminum matrix composite. Adv Compos Hybrid Mater 2:540–548

  24. Zhao Y, Yang X, Yan L, Bai Y, Li S, Sorokin P, Shao L (2021) Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J Membr Sci 618:118525

    CAS  Google Scholar 

  25. Yang S, Liu Y, Jiang Z, Gu J, Zhang D (2018) Thermal and mechanical performance of electrospun chitosan/poly(vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1:722–730

    CAS  Google Scholar 

  26. Singh M, Bajaj N, Bhardwaj A, Singh P, Kumar P, Sharma J (2018) Study of photocatalytic and antibacterial activities of graphene oxide nanosheets. Adv Compos Hybrid Mater 1:759–765

    CAS  Google Scholar 

  27. Mao F, Shi Z, Wang J, Zhang C, Yang C, Huang M (2018) Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv Compos Hybrid Mater 1:548–557

    Google Scholar 

  28. Chen J, Wang X, Huang Y, Lv S, Cao X, Yun J, Cao D (2019) Adsorption Removal of Pollutant Dyes in Wastewater by Nitrogen-doped Porous Carbons Derived from Natural Leaves. Eng Sci 5:30–38

    Google Scholar 

  29. Yin Y, Jiang B, Zhu X, Meng L, Huang Y (2019) Investigation of Thermostability of Modified Graphene Oxide/Methylsilicone Resin Nanocomposites. Eng Sci 5:73–78

    Google Scholar 

  30. Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W, Han X, Du Y (2017) Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732

    CAS  Google Scholar 

  31. Ding C, Huang L, Lan J, Yu Y, Zhong W, Yang X (2020) Superresilient Hard Carbon Nanofabrics for Sodium-Ion Batteries. Small 16:1906883

    CAS  Google Scholar 

  32. Ding C, Huang L, Yan X, Dunne F, Hong S, Lan J, Yu Y, Zhong W, Yang X (2020) Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Adv Funct Mater 30:1907486

    CAS  Google Scholar 

  33. Feng P, Ma L, Wu G, Li X, Zhao M, Shi L, Wang M, Wang X, Song G (2020) Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites. Compos Sci Technol 200:108336

    CAS  Google Scholar 

  34. Wang M, Ma L, Shi L, Feng P, Wang X, Zhu Y, Wu G, Song G (2019) Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites. Compos Sci Technol 182:107751

    CAS  Google Scholar 

  35. Wang C, Zhang J, Wang X, Lin C, Zhao X (2020) Hollow Rutile Cuboid Arrays Grown on Carbon Fiber Cloth as a Flexible Electrode for Sodium-Ion Batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.202002629

    Article  Google Scholar 

  36. Wang C, Wang X, Lin C, Zhao X (2020) Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem Eng J 386:123981

    CAS  Google Scholar 

  37. Feng W, Wang Y, Chen J, Li B, Guo L, Ouyang J, Jia D, Zhou Y (2018) Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. J Mater Chem C 6:10–18

    CAS  Google Scholar 

  38. Shu R, Li W, Wu Y, Zhang J, Zhang G (2019) Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem Eng J 362:513–524

    CAS  Google Scholar 

  39. Ding C, Huang L, Guo Y, Lan J, Yang X (2020) An Ultra-durable Gel electrolyte Stabilizing Ion Deposition and Trapping Polysulfides for Lithium-sulfur Batteries. Energy Storage Mater 27:25–34

    Google Scholar 

  40. Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B (2016) Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures. ACS Nano 10:9123–9128

    CAS  Google Scholar 

  41. Sun W, Gao G, Zhang K, Liu Y, Wu G (2018) Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. Carbon 132:667–677

    CAS  Google Scholar 

  42. Kuang D, Hou L, Wang S, Luo H, Song M (2019) Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon 153:1906883

    Google Scholar 

  43. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures. Research 2019:1021368

    CAS  Google Scholar 

  44. Wu N, Liu C, Xu D, Liu J, Liu W, Liu H, Zhang J, Xie W, Guo Z (2019) Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J Mater Chem C 7:1659–1669

    CAS  Google Scholar 

  45. Yan J, Huang Y, Zhang Z, Liu X (2019) Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption. J Alloy Compd 785:1206–1214

    CAS  Google Scholar 

  46. Li C, Sui J, Zhang Z, Jiang X, Zhang Z, Yu L (2019) Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40 GHz. Chem Eng J 375:122017

    CAS  Google Scholar 

  47. Xu H, Yin X, Fan X, Tang Z, Hou Z, Li M, Li X, Zhang L, Cheng L (2019) Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148:421–429

    CAS  Google Scholar 

  48. Yan J, Huang Y, Chen C, Liu X, Liu H (2019) The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152:545–555

    CAS  Google Scholar 

  49. Zhu B, Miao P, Kong J, Zhang X, Wang G, Chen K (2019) Co/C Composite Derived from A Newly-Constructed Metal Organic Framework for Effective Microwave Absorption. Cryst Growth Des 19:1518–1524

    CAS  Google Scholar 

  50. Wu N, Lv H, Liu J, Liu Y, Wang S, Liu W (2016) Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys Chem Chem Phys 18:31542–31550

    CAS  Google Scholar 

  51. Xiao X, Zhu W, Tan Z, Tian W, Guo Y, Wang H, Fu J, Jian X (2018) Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos Part B-Eng 152:316–323

    CAS  Google Scholar 

  52. Padilla W, Basov D, Smith D (2006) Negative refractive index metamaterials Mater Today 9:28–35

    CAS  Google Scholar 

  53. Chen M, Wang X, Zhang Z, Sun K, Cheng C, Dang F (2016) Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater Design 97:454–458

    CAS  Google Scholar 

  54. Cheng C, Fan R, Fan G, Liu H, Zhang J, Shen J, Ma Q, Wei R, Guo Z (2019) Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J Mater Chem C 7:3160–3167

    CAS  Google Scholar 

  55. Sun K, Dong J, Wang Z, Wang Z, Fan G, Hou Q, An L, Dong M, Fan R, Guo Z (2019) Tunable negative permittivity in flexible graphene/PDMS metacomposites. J Phys Chem C 123:23635–23642

    CAS  Google Scholar 

  56. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R, Wang J (2020) Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics 6:145–151

    Google Scholar 

  57. Xie P, Li Y, Hou Q, Sui K, Liu C, Fu X, Zhang J, Murugadoss V, Fan J, Wang Y (2020) Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J Mater Chem C 8:3029–3039

    CAS  Google Scholar 

  58. Yang J, Zhu X, Wang H, Wang X, Hao C, Fan R, Dastan D, Shi Z (2020) Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos Part A-Appl S 131:105814

    CAS  Google Scholar 

  59. Sun L, Shi Z, Wang H, Zhang K, Dastan D, Sun K, Fan R (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P (VDF-HFP) composites. J Mater Chem A 8:5750–5757

    CAS  Google Scholar 

Download references

Funding

We received financial support from Key Research and Development Project of Shandong Province [grant No. 2019GSF109079], Postdoctoral Applied Research Project of Qingdao, the China Postdoctoral Science Foundation [2020M671992], the National Natural Science Foundation of China [grant No. 51871146, 51771108], the State Key Laboratory of Bio-fibers and Eco-textiles (Qingdao University), and the Shanghai Municipal Education Commission (Grant No. 18CG56).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by P. Xie. P.Xie wrote the manuscript. Y. Liu, M. Feng, M. Niu, N. Wu, R. Patil, D. Pan, and Z. Guo gave the meaningful advice in theoretical analysis and writing the manuscript. K. Sui, C. Liu, and R. Fan gave financial support and measurement support for this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peitao Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.41 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Liu, Y., Feng, M. et al. Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00202-z

Keywords

Navigation