Skip to main content

Advertisement

Log in

Effect of Straw Retention on Crop Yield, Soil Properties, Water Use Efficiency and Greenhouse Gas Emission in China: A Meta-Analysis

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Crop straw retention to field (CSRF) is a technology to impact the crop yield, soil properties and greenhouse gas (GHG) emission and plays a critical role in sustainable agriculture system. Based on the literatures published, a meta-analysis was performed to evaluate actual impact of CSRF on crop yield, soil properties and GHG emission compared with straw no-retention (NSR). The results indicated that compared with NSR, yield of wheat, maize and rice under CSRF was significantly higher by 4.11, 7.22 and 7.62% respectively; CSRF enhanced the water use efficiency (WUE) and soil organic carbon (SOC) by 14.60 and 7.59%, respectively, reduced the bulk density of 0–20 cm soil layer by 3.06%., while it had no significant effect on the SOC of 20–40 cm; For GHG emissions, the soil emissions of CO2, N2O and CH4 were significantly improved under CSRF by 23.64, 12.21 and 27.34% respectively. Categorically, results on meta-analysis and regression indicated that large variation in crop yield, SOC content and bulk density in 0–20 cm soil layer, WUE and GHG emission under CSRF compared with NSR because of different straw retention mass, retention regions, and crop species. For example, the increased rate of large straw retention mass (LA) on crop yield was the highest. Adoption of CSRF under appropriate site-specific conditions can safeguard China’s food security, alleviate soil-related constraints and slightly increase GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aedward, J., Paulr, P., & Kevin, C. (2009). Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Elsevier Science and Technology,101, 1–57.

    Google Scholar 

  • Akhtar, K., Wang, W., Ren, G., Khan, A., Feng, Y., & Yang, G. (2018). Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil and Tillage Research,182, 94–102.

    Google Scholar 

  • Akkal-Corfini, N., Morvan, T., Menasseri-Aubry, S., Bissuel-Belaygue, C., Poulain, D., Orsini, F., et al. (2010). Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of 15 N-labeled cauliflower crop residues Brassica oleracea into the soil: A 3-year lysimeter study. Plant and Soil,328, 17–26.

    CAS  Google Scholar 

  • Al-Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality,34, 437.

    CAS  PubMed  Google Scholar 

  • Aquino, G. S. D., Medina, C. D. C., Tronchini, E. R., Pasini, A., Menezes, J., Hoshino, A. T., et al. (2016). Root system and yield of sugarcane cultivated under different amounts of straw in southern Brazil. African Journal of Agricultural Research,11, 563–571.

    Google Scholar 

  • Balwinder-Singh, Eberbach, P. L., Humphreys, E., & Kukai, S. S. (2011). The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agricultural Water Management,98, 1847–1855.

    Google Scholar 

  • Bayer, C., Costa, F. D. S., Pedroso, G. M., Zschornmack, T., Camargo, E. S., Lima, M. A. D., et al. (2014). Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Research,162, 60–69.

    Google Scholar 

  • Bijay, S., Shan, Y. H., Johnsonbeebout, S. E., & Buresh, R. J. (2008). Crop residue management for lowland rice-based cropping systems in Asia. Advances in Agronomy,9808, 117–199.

    Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2007). Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil and Tillage Research,95, 240–254.

    Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Amsterdam: Wiley.

    Google Scholar 

  • Cai, H. G., Liang, Y., Yan, X. G., Liu, J. Z., Yuan, J. C., Zhang, H. X., et al. (2016). Grain yield and characteristic of nutrient accumulation for maize under different straw return modes in black soil region of northeast. Journal of Maize Sciences,24, 68–74.

    Google Scholar 

  • Chen, H., Liu, J., Zhang, A., Chen, J., Cheng, G., Sun, B., et al. (2017). Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Science of the Total Environment,579, 814–824.

    CAS  PubMed  Google Scholar 

  • Chen, D. G., & Peace, K. E. (2013). Applied meta-analysis with R. Boca Raton: CRC Press.

    Google Scholar 

  • Chen, S. Y., Zhang, X. Y., Pei, D., Sun, H. Y., & Chen, S. L. (2010). Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Annals of Applied Biology,150, 261–268.

    Google Scholar 

  • Davidson, E. A., Belk, E., & Boone, R. D. (2010). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology,4, 217–227.

    Google Scholar 

  • Ding, Y. H. (2013). Climate in China. Beijing: Science Press.

    Google Scholar 

  • Ding, D. Y., Feng, H., & Zhao, Y. (2016). Effect of ammoniated straw returning on soil pore structure. Plant Nutrition and Fertilizer Science,22, 650–658.

    Google Scholar 

  • Dobbie, K. E., & Smith, K. A. (2010). The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science,52, 667–673.

    Google Scholar 

  • Dong, W., Liu, E., Wang, J., Yan, C. R., Li, J., & Zhang, Y. Q. (2017). Impact of tillage management on the short- and long-term soil carbon dioxide emissions in the dryland of Loess Plateau in China. Geoderma,307, 38–45.

    CAS  Google Scholar 

  • Dong, Q., Yang, Y., Yu, K., & Feng, H. (2018). Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management,201, 133–143.

    Google Scholar 

  • Fischer, R. A., & Connor, D. J. (2018). Issues for cropping and agricultural science in the next 20 years. Field Crops Research,222, 121–142.

    Google Scholar 

  • Frimpong, K., & Baggs, E. (2010). Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management,26, 412–424.

    Google Scholar 

  • Gao, L. N., Chen, S. Y., Zhang, X. Y., Sun, H. Y., Wang, Y. M., & Sao, L. W. (2009). Effect of mulching on soil temperature and crop growth of winter wheat in plain of North China. Agricultural Research in the Arid Areas,27, 107–113.

    Google Scholar 

  • Gao, X., Lan, T., Deng, L., & Zeng, M. (2016). Mushroom residue application affects CH4 and N2O emissions from fields under rice–wheat rotation. Archives of Agronomy and Soil Science,63, 748–760.

    Google Scholar 

  • Garcia-Ruiz, R., & Baggs, E. M. (2007). N2O emission from soil following combined application of fertiliser-N and ground weed residues. Plant and Soil,299, 263–274.

    CAS  Google Scholar 

  • Gentile, R., Vanlauwe, B., Chivenge, P., & Six, J. (2011). Trade-offs between the short and long-term effects of residue quality on soil C and N dynamics. Plant and Soil,338, 159–169.

    CAS  Google Scholar 

  • Gizachew, T. G., Thomas, K., Munkholm, L. J., Parvage, M. M., Keller, T., Rychel, K., et al. (2018). Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil and Tillage Research,184, 62–67.

    Google Scholar 

  • Glithero, N. J., Paul, W., & Ramsden, S. J. (2013). Straw use and availability for second generation biofuels in England. Biomass and Bioenergy,55, 311–321.

    PubMed  Google Scholar 

  • Goodman, A. M., & Ennos, A. R. (1999). The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany,83, 293–302.

    Google Scholar 

  • Hazarika, S., Parkinson, R., Bol, R., Dixon, L., Russell, P., Donovan, S., et al. (2009). Effect of tillage system and straw management on organic matter dynamics. Agronomy for Sustainable Development,29, 525–533.

    CAS  Google Scholar 

  • He, H. X., Wang, Z. H., Bao, M., Ma, X. L., She, X., He, G., et al. (2018a). Effects of cultivation patterns on wheat yield and grain nutrient concentration in dryland. The Journal of Applied Ecology,293, 818–826.

    Google Scholar 

  • He, K., Zhang, J. B., & Zeng, Y. M. (2018b). Rural households’ willingness to accept compensation for energy utilization of crop straw in China. Energy,165, 562–571.

    Google Scholar 

  • Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology,80, 1150–1156.

    Google Scholar 

  • Hu, N. J., Wang, B. J., Gu, Z. H., Tao, B. R., Zhang, Z. W., Hu, S. J., et al. (2016). Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agriculture, Ecosystems & Environment,223, 115–122.

    CAS  Google Scholar 

  • Huang, S., Zeng, Y., Wu, J., Shi, Q., & Pan, X. (2013). Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Research,154, 188–194.

    Google Scholar 

  • Huang, Y., Zou, J., Zheng, X., Wang, Y., & Xu, X. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology & Biochemistry,36, 973–981.

    CAS  Google Scholar 

  • Jacinthe, P. A., Lal, R., & Kimble, J. M. (2002). Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research,67, 147–157.

    Google Scholar 

  • Jalota, S. K., Khera, R., & Chahal, S. S. (2010). Straw management and tillage effects on soil water storage under field conditions. Soil Use and Management,17, 282–287.

    Google Scholar 

  • Jiang, C. M., Yu, W. T., Ma, Q., Xu, Y. G., & Zou, H. (2017). Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in Northeast China. Soil and Tillage Research,170, 77–84.

    Google Scholar 

  • Jin, Q., Ma, X., Wang, G., Yang, X., & Guo, F. (2017). Dynamics of major air pollutants from crop residue burning in mainland China, 2000–2014. Journal of Environmental Sciences,70, 190–205.

    Google Scholar 

  • Jin, H. Y., Yao, Z., Xu, S. X., & Yang, J. J. (2006). Effect of returning straw to field on soil biological characteristics. Acta Agriculture Shanghai,22, 39–41.

    Google Scholar 

  • Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Gimenez-Morera, A., Pulido, M., DiPrima, S., et al. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An Assessment Using Rainfall Simulation Experiments,174, 95–103.

    CAS  Google Scholar 

  • Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2010). Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology,31, 281–285.

    CAS  PubMed  Google Scholar 

  • Kumar, K., & Goh, K. M. (2000). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy,68, 197–319.

    CAS  Google Scholar 

  • Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Kruger, J., Grignani, C., et al. (2015a). Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use and Management,30, 524–538.

    Google Scholar 

  • Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Kruger, J., Grignani, C., et al. (2015b). Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use and Management,30, 524–538.

    Google Scholar 

  • Li, S., Gu, X., Zhuang, J., An, T., Pei, J., Xie, H., et al. (2016). Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility. Soil and Tillage Research,155, 199–206.

    Google Scholar 

  • Liang, Y. G., Zhou, J., Yang, Q., & Huang, H. (2016). Development status, function and prospect analysis of the multiple cropping in southern China. Crop Research,30, 572–578.

    Google Scholar 

  • Liu, Q., Liu, X., Bian, C., Ma, C., Lang, K., Han, H., et al. (2014). Response of soil CO2 emission and summer maize yield to plant density and straw mulching in the North China plain. The Scientific World Journal,2014, 1–8.

    CAS  Google Scholar 

  • Liu, X. J., Liu, J. H., Li, L. J., Wang, Z. G., Wang, L., & Su, S. H. (2007). Effects of different conservation tillage on soil microbes quantities and enzyme activities in dry cultivation. Journal of Maize Sciences,16, 91–95.

    Google Scholar 

  • Liu, X., Ren, Y., Gao, C., Yan, Z. X., & Li, Q. Q. (2017). Compensation effect of winter wheat grain yield reduction under straw mulching in wide-precision planting in the North China Plain. Scientific Reports,2017(71), 213.

    Google Scholar 

  • Liu, C., Wang, K., Meng, S., Zheng, X., Zhou, Z., Han, S., et al. (2011a). Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems & Environment,140, 226–233.

    CAS  Google Scholar 

  • Liu, C., Wang, K., Meng, S., Zheng, X., Zhou, Z., Han, S., et al. (2011b). Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emission from a wheat–maize rotation field in northern China. Agriculture, Ecosystems & Environment,140, 226–233.

    CAS  Google Scholar 

  • Lu, W. T., Jia, Z. K., Gao, F., Li, Y. P., & Hou, X. Q. (2011). Effects of straw returning on soil water and crop productivity in the rainfed area of southern Ningxia, China. Journal of Agro-environment Science,30, 93–99.

    Google Scholar 

  • Ma, Y., Gu, D., Liu, L., Wang, Z., Zhang, H., & Yang, J. (2014). Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw. Rice Science,21, 224–232.

    Google Scholar 

  • Ma, J., Ma, E., Hua, X., Yuki, K., & Cai, Z. (2009). Wheat straw management affects CH4, and N2O emissions from rice fields. Soil Biology & Biochemistry,41, 1022–1028.

    CAS  Google Scholar 

  • Ma, E., Ma, J., Xu, H., Cao, J. L., Cai, Z. C., & Yagi, K. (2007). Effects of rice straw returning methods on N2O emissions from wheat–growing season. Soils,39, 870–873.

    CAS  Google Scholar 

  • Malhi, S. S., Nyborg, M., Solberg, E. D., Dyck, M. F., & Puurveen, D. (2011). Improving crop yield and uptake with long-term straw retention in two contrasting soil types. Field Crops Research,124, 378–391.

    Google Scholar 

  • Montero, G., Coronado, A. M., Torres, R., Jaramillo, B. E., García, C., Stoytcheva, M., et al. (2016). Higher heating value determination of wheat straw from Baja California, Mexico. Energy,109, 612–619.

    CAS  Google Scholar 

  • National Bureau of Statistics of China. (2018). China statistical yearbook 2017. China Statistics Press.

  • Pathak, H., Singh, R., Bhatia, A., & Jain, N. (2006). Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy and Water Environment,4, 111–117.

    Google Scholar 

  • Pei, S. W., Zhang, Y. Y., Liu, J. F., Mu, Y. J., & Lun, X. X. (2012). Greenhouse gas emission under the treatments of fertilization and wheat straw returning during the maize growing seasons. Environment Chemistry,31, 407–413.

    CAS  Google Scholar 

  • Prosdocimi, M., Jordán, A., Tarolli, P., Saskia, K., Novara, A., & Cerdà, A. (2016). The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment,547, 323–330.

    CAS  PubMed  Google Scholar 

  • Qian, H., Yang, B., Huang, G., Yan, Y., & Fang, Z. (2012). Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields. Ecology and Environmental Sciences,21, 440–445.

    Google Scholar 

  • Qiang, X. C., Yuan, H. L., & Gao, W. S. (2004). Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass. Chinese Journal of Applied Ecology,15, 469–472.

    PubMed  Google Scholar 

  • Senbayram, M., Chen, R., Mühling, K. H., & Dittert, K. (2009). Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers. Rapid Communications in Mass Spectrometry,2316, 2489–2498.

    Google Scholar 

  • Shan, J., & Yan, X. Y. (2013). Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment,71, 170–175.

    CAS  Google Scholar 

  • Singh, B., & Malhi, S. S. (2006). Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil and Tillage Research,85, 143–153.

    Google Scholar 

  • Soam, S., Borjesson, P., Sharma, P. K., Gupta, R. P., Tuli, D. K., & Kumar, R. (2017). Life cycle assessment of rice straw utilization practices in India. Bioresource Technology,228, 89–98.

    CAS  PubMed  Google Scholar 

  • Sodhi, G. P. S., Beri, V., & Benbi, D. K. (2009). Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil and Tillage Research,103, 412–418.

    Google Scholar 

  • Streets, D. G., Yarber, K. F., Woo, J. H., & Carmichael, G. R. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles,17, 1099.

    Google Scholar 

  • Sun, L., Li, C., He, P., Liu, M., & Hu, J. (2011). Long-term application of K fertilizer and straw returning improve crop yield, absorptive capacity of K, and soil nutrient natural supplying capacity in North China. Frontiers of Agriculture in China,5, 563–569.

    Google Scholar 

  • Tan, Z. J., Li, Q., Chen, D. L., Zhou, Q. M., Xiao, Q. M., & Li, J. G. (2006). On the effect of rice-straw returned to the field on microbes and enzyme activity in paddy soil. Acta Ecologica Sinica,26, 3385–3392.

    CAS  Google Scholar 

  • Tang, Y. N., Bin, H., Nian, Y. J., Shen, Z. T., & Zeng, J. L. (2009). Effects of conservation tillage on soil porosity in maize–wheat cropping system. Plant Soil and Environment,55, 327–333.

    Google Scholar 

  • Tang, J., Han, Y., Liu, S., Li, Z. Y., & Li, N. (2012). Diurnal variation of soil CO2 fluxes in different land use types during growing season in Western Jilin Province. Ecology and Environmental Sciences,21, 33–37.

    Google Scholar 

  • Tian, S. Z., Ning, T. Y., Li, Z. J., Wang, Y., Li, H. J., & Zong, W. L. (2010). Effect of CH4 uptake flux emission different tillage systems in wheat field in the North China plain. Acta Ecologica Sinica,30, 541–548.

    CAS  Google Scholar 

  • Van, K. C., Venterea, R., Six, J., Advientoborbe, M. A., Linquist, B., Groenigen, V., et al. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Global Change Biology,19, 33–44.

    Google Scholar 

  • Vermoesen, A., Ramon, H., Cleemput, O., & Faculteit, V. D. L. (1991). Composition of the soil gas phase: Permanent gases and hydrocarbons. Pedologie,41, 119–132.

    CAS  Google Scholar 

  • Wang, Q. J., Chang, B. C., Zhang, J. S., Han, D. L., Sui, Y. G., Chen, H. L., et al. (2017). Effects of albic soil physical properties and rice yields after long-term straw incorporation. Scientia Agricultura Sinica,50, 2748–2757.

    Google Scholar 

  • Wang, X., Jia, Z., Liang, L., Zhao, Y., Yang, B., Ding, R., et al. (2018). Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Research,218, 11–17.

    Google Scholar 

  • Wang, J., Wang, D. J., Zhang, G., Wang, Y., Wang, C., Teng, Y., et al. (2014). Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agricultural Water Management,141, 66–73.

    Google Scholar 

  • Wang, Y. Q., Wu, X. H., Wang, W., Chen, A. L., & Xie, X. L. (2016). Effects of rice straw mulching on CO2 emission from upland soil. Ecology and Environment Sciences,25, 1842–1847.

    Google Scholar 

  • Wang, J., Zhao, F., & Ouyang, Z. (2010). Effects of the irrigation quantity on soil respiration in wheat field in filling stage. Acta Agriculture Boreali-sinica,25, 186–189.

    CAS  Google Scholar 

  • Wang, A. G., Zhao, Y. G., Xu, M. X., Wang, Y. H., Yang, L. N., & Ming, J. (2013). Diurnal dynamic characteristics and temperature sensitivity of soil CO2 flux of biocrusts in different erosion regions on the Loess Plateau. Acta Scientiae Circumstantiae,33, 2605–2611.

    CAS  Google Scholar 

  • Wei, Q., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Scientific Reports,5, 16210.

    Google Scholar 

  • Wu, S., Lin, X. G., Yin, R., Mao, T. T., Hu, J. L., Feng, Y. Z., et al. (2009). The effects of elevated atmospheric CO2 concentration on wheat straw decomposition and nitrogen distribution in paddy soil. Acta Ecologica Sinica,29, 2535–2540.

    CAS  Google Scholar 

  • Xiao, X. P., Wu, F. L., Huang, F. Q., Li, Y., Sun, G. F., Hu, Q., et al. (2007). Greenhouse air emission under different pattern of rice–straw returned to field in double rice area. Research of Agricultural Modernization,28, 629–632.

    Google Scholar 

  • Xu, Y., Liu, Z. H., Zhu, G. L., Li, X., Tan, D. S., Shi, J., et al. (2016). Effects of greenhouse gas emission under different agricultural management practices in wheat field in the North China Plain. Soil and Fertilizer Sciences in China,2, 7–13.

    Google Scholar 

  • Xu, G. W., Wu, C. F., Liu, H., Wang, Z. Q., & Yang, J. C. (2006). Effect of straw residue returned and site-specific nitrogen management on yield and quality of rice. Chinese Agricultural Science Bulletin,10, 209–215.

    Google Scholar 

  • Yang, S. Y., Yan, P., Ma, Y. H., Dai, J. W., Han, H. B., Wang, D. L., et al. (2010). Effects on emissions of aoil greenhouse gas by fertilizing to winter wheat. Ecology and Environment,19, 1642–1645.

    Google Scholar 

  • Yao, B. L., & Shi, J. L. (2008). Study on the dynamic change of soil temperature under the condition of no-tillage with straw cover. Journal of Agricultural Science,36(1128–1129), 1132.

    Google Scholar 

  • Yeboah, S., Lamptey, S., Zhang, R., & Li, L. L. (2017). Conservation tillage practices optimizes root distribution and straw yield of spring wheat and field pea in dry areas. Journal of Agricultural Science,9, 37–48.

    Google Scholar 

  • Yeboah, S., Zhang, R., Cai, L., Song, M., Li, L. L., Xie, J. H., et al. (2016). Greenhouse gas emissions in a spring wheat-field pea sequence under different tillage practices in semi-arid Northwest China. Nutrient Cycling in Agroecosystems,106, 77–91.

    CAS  Google Scholar 

  • Yin, W., Chen, G. P., Cai, Q., Zhao, C., Feng, F. X., Yu, A. Z., et al. (2016). Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi corridor. Scientia Agricultura Sinica,49, 2898–2980.

    Google Scholar 

  • Yin, M. H., Tong, Y., Gao, P., & Ju, X. (2017). Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China. Atmospheric Environment,157, 156–166.

    Google Scholar 

  • Yu, J. G., Chang, Z. Z., Huang, H., Ye, X. M., Ma, Y., & Qian, Y. T. (2010). Effect of microbial inoculants for straw decomposing on soil microorganisms and the nutrients. Journal of Agro-Environment Science,29, 563–570.

    CAS  Google Scholar 

  • Yuan, W. L., Cao, C. G., Cheng, J. P., & Xie, N. N. (2008). CH4 and N2O emissions and their GWPs assessment in intermittent irrigation rice paddy field. Scientia Agricultura Sinica,41, 4294–4300.

    CAS  Google Scholar 

  • Zeng, X., Ma, Y., & Ma, L. (2007). Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews,11, 976–987.

    CAS  Google Scholar 

  • Zhang, J., Bo, G., Zhang, Z., Kong, F., Wang, Y., & Shen, G. (2016). Effects of straw incorporation on soil nutrients, enzymes, and aggregate stability in tobacco fields of China. Sustainability,8, 710.

    Google Scholar 

  • Zhang, Z. S., Cao, C. G., Guo, L. J., & Li, C. F. (2014). The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields. The Scientific World Journal,2014, 1–9.

    Google Scholar 

  • Zhang, Y. F., Chen, L. G., Zhu, P. P., Zhang, C. S., Sheng, Q., Wang, Z. C., et al. (2012). Preliminary study on effect of straw incorporation on net global warming potential in high production rice–wheat double cropping systems. Journal of Agro-Environment Science.,31, 1647–1653.

    CAS  Google Scholar 

  • Zhang, J., Hang, X. M., Lamine, S. M., Jiang, Y., Afreh, D., Qian, H. Y., et al. (2017a). Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agriculture, Ecosystems & Environment,205, 37–43.

    Google Scholar 

  • Zhang, Y. M., Hu, C. S., Zhang, J. B., Dong, W. X., Wang, Y. Y., & Song, L. N. (2011). Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture,19, 966–975.

    Google Scholar 

  • Zhang, Z., Mchugh, A. D., Li, H., Ma, S., Wang, Q., He, J., et al. (2017b). Global overview of research and development of crop residue management machinery. Applied Engineering in Agriculture,33, 329–344.

    Google Scholar 

  • Zhang, Z., Si, X. Z., Yu, D. S., Wang, H. J., Zhao, Y. C., Sun, W. X., et al. (2009). Seasonal and regional variations of soil temperature in China. Acta Pedologica Sinica,46, 227–234.

    Google Scholar 

  • Zhang, L. Q., Wang, Y. K., Yun, X. F., Zhang, J. X., Yu, X. L., & Liu, C. (2007). Effects of straw mulching quantities on the growth of root and canopy of maize under different water condition. Agricultural Research in the Arid Areas,25, 46–51.

    Google Scholar 

  • Zhang, P., Wei, T., Li, Y., Wang, K., Jia, Z., Han, Q., et al. (2015). Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil and Tillage Research,153, 28–35.

    Google Scholar 

  • Zhao, J. B., Chi, X. J., Ning, T. Y., Li, Z. J., Gu, S. B., Qiu, L. Q., et al. (2008). Study of N2O emission and its affecting factors in wheat fields of conservation tillage. Journal of Soil and Water Conservation,22, 196–200.

    Google Scholar 

  • Zhao, H., Sun, B., Jiang, L., Lu, F., Wang, X., & Ouyang, Z. (2015). How can straw incorporation management impact on soil carbon storage? A meta-analysis. Mitigation and Adaptation Strategies for Global Change,20, 1545–1568.

    Google Scholar 

  • Zhou, H. P., Xie, W. Y., Guan, C. L., Yang, Z. X., & Li, H. M. (2013). Effects of long-term straw-returning on corn yield, economic benefit and water use in arid farming areas. Plant Nutrition and Fertilizer Science,19, 321–330.

    Google Scholar 

  • Zhou, Y. Z., Zhang, Y. Y., Tian, D., & Mu, Y. J. (2017). The influence of straw returning on N2O emissions from a maize–wheat field in the North China Plain. Science of the Total Environment,584–585, 935–941.

    PubMed  Google Scholar 

  • Zou, J., Huang, Y., Jiang, J., Zheng, X., & Sass, R. L. (2005). A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles,19, 1–9.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture, China (Grant No. 201503136) and the Program for Changjiang Scholars and Innovative Research· Team in University of China (Grant No. IRT13039). The authors thank Dr. Zhao Xin, Dr. Hu Hongnan, and Dr. Cheng Xiupei for technological help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., He, J., Li, H. et al. Effect of Straw Retention on Crop Yield, Soil Properties, Water Use Efficiency and Greenhouse Gas Emission in China: A Meta-Analysis. Int. J. Plant Prod. 13, 347–367 (2019). https://doi.org/10.1007/s42106-019-00060-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-019-00060-w

Keywords

Navigation