Skip to main content
Log in

Sustainable synthesis of N-methylated peptides in a continuous-flow fixed bed reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A rapid, simplified and highly efficient continuous-flow solid-phase peptide synthesis technology is reported for the direct synthesis of mono and multiple N-methylated cyclic alanine and valine peptides. Through an optimization study, we find that only 1.5 equivalents of the amino acids are sufficient for the couplings to maintain excellent conversions. Importantly, the technology is outstandingly sustainable, since three chemical steps are cancelled from the procedure and low amount of solvent is used, compared to traditional technologies. Furthermore, it is also applicable to the coupling of challenging amino acids, since pentavalines were constructed with high yield. The technology was successfully upscaled and peptide cyclization was carried out too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994). J Med Chem 37:1233–1251

    Article  CAS  Google Scholar 

  2. Thompson LA, Ellman JA (1996). Chem Rev 96:555–600

    Article  CAS  Google Scholar 

  3. Adessi C, Soto C (2002). Curr Med Chem 9:963–978

    Article  CAS  Google Scholar 

  4. Wender PA, Verma VA, Paxton TJ, Pillow TH (2008). Acc Chem Res 41:40–49

    Article  CAS  Google Scholar 

  5. Banta S, Megeed Z, Casali M, Rege K, Yarmush ML (2007). J Nanosci Nanotechnol 7:387–401

    Article  CAS  Google Scholar 

  6. Teixido M, Giralt E (2008). J Pept Sci 14:163–173

    Article  CAS  Google Scholar 

  7. Briggs BD, Knecht MR (2012). J Phys Chem Lett 3:405–418

    Article  CAS  Google Scholar 

  8. Morelli G, Toniolo C, Venanzi M (2014). J Pept Sci 20:451–452

    Article  CAS  Google Scholar 

  9. Tamerler C, Kacar T, Sahin D, Fong H, Sarikaya M (2007). Mater Sci Eng C-Biomimetic Supramol Syst 27:558–564

    Article  CAS  Google Scholar 

  10. Krishna OD, Kiick KL (2010). Biopolymers 94:32–48

    Article  CAS  Google Scholar 

  11. Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC (2007). Mater Sci Eng R-Rep 58:117–161

    Article  Google Scholar 

  12. Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2010). Biopolymers 94:141–155

    Article  CAS  Google Scholar 

  13. Mahato RI, Narang AS, Thoma L, Miller DD (2003). Crit Rev Ther Drug Carrier Syst 20:153–214

    Article  CAS  Google Scholar 

  14. McGregor DP (2008). Curr Opin Pharmac 8:616–619

    Article  CAS  Google Scholar 

  15. Khafagy ES, Morishita M (2012). Adv Drug Deliv Rev 64:531–539

    Article  CAS  Google Scholar 

  16. Amidon GL, Lee HJ (1994). Annual Rev Pharm Toxicology 34:321–341

    Article  CAS  Google Scholar 

  17. Haviv F, Fitzpatrick TD, Swenson RE, Nichols CJ, Mort NA, Bush EN, Diaz G, Bammert G, Nguyen A, Rhutasel NS, Nellans HN, Hoffman DJ, Johnson ES, Greer J (1993). J Med Chem 36:363–369

    Article  CAS  Google Scholar 

  18. Cody WL, He JX, Reily MD, Haleen SJ, Walker DM, Reyner EL, Stewart BH, Doherty AM (1997). J Med Chem 40:2228–2240

    Article  CAS  Google Scholar 

  19. Yu J, Butelman ER, Woods JH, Chait BT, Kreek MJ (1997). J Pharm Exp Ther 280:1147–1151

    CAS  Google Scholar 

  20. Fusetani N, Matsunaga S (1993). Chem Rev 93:1793–1806

    Article  CAS  Google Scholar 

  21. Wipf P (1995). Chem Rev 95:2115–2134

    Article  CAS  Google Scholar 

  22. Chatterjee J, Laufer B, Beck JG, Helyes Z, Pinter E, Szolcsanyi J, Horvath A, Mandl J, Reubi JC, Keri G, Kessler H (2011). ACS Med Chem Lett 2:509–514

    Article  CAS  Google Scholar 

  23. Chatterjee J, Rechenmacher F, Kessler H (2013). Angew Chem Int Ed 52:254–269

    Article  CAS  Google Scholar 

  24. Holladay MW, Kopecka H, Miller TR, Bednarz L, Nikkel AL, Bianchi BR, Witte DG, Shiosaki K, Lin CW, Asin KE, Nadzan AM (1994). J Med Chem 37:630–635

    Article  CAS  Google Scholar 

  25. Teixido M, Albericio F, Giralt E (2005). J Pept Res 65:153–166

    Article  CAS  Google Scholar 

  26. Chatterjee J, Mierke D, Kessler H (2006). J Am Chem Soc 128:15164–15172

    Article  CAS  Google Scholar 

  27. Chatterjee J, Mierke DF, Kessler H (2008). Chem Eur J 14:1508–1517

    Article  CAS  Google Scholar 

  28. Brunissen A, Ayoub M, Lavielle S (1996). Tetrahedron Lett 37:6713–6716

    Article  CAS  Google Scholar 

  29. Arnold U, Huck BR, Gellman SH, Raines RT (2013). Protein Sci 22:274–279

    Article  CAS  Google Scholar 

  30. Jahnisch K, Hessel V, Lowe H, Baerns M (2004). Angew Chem Int Ed 43:406–446

    Article  Google Scholar 

  31. Ahmed-Omer B, Brandt JC, Wirth T (2007). Org Biomol Chem 5:733–740

    Article  CAS  Google Scholar 

  32. Rasheed M, Wirth T (2011). Angew Chem Int Ed 50:357–358

    Article  CAS  Google Scholar 

  33. Kovács L, Szőllősi G, Fülöp F (2015). J Flow Chem 5:210–215

    Article  Google Scholar 

  34. Wiles C, Watts P (2014). Green Chem 16:55–62

    Article  CAS  Google Scholar 

  35. Mandity IM, Olasz B, Otvos SB, Fulop F (2014). Chem Sus Chem 7:3172–3176

    Article  CAS  Google Scholar 

  36. Simon MD, Heider PL, Adamo A, Vinogradov AA, Mong SK, Li X, Berger T, Policarpo RL, Zhang C, Zou Y, Liao X, Spokoyny AM, Jensen KF, Pentelute BL (2014). Chembiochem 15:713–720

    Article  CAS  Google Scholar 

  37. Atherton E, Brown E, Sheppard RC, Rosevear A (1981). Chem Commun:1151–1152

  38. Talla A, Driessen B, Straathof NJW, Milroy LG, Brunsveld L, Hessel V, Noel T (2015). Adv Synth Catal 357:2180–2186

    Article  CAS  Google Scholar 

  39. Ott D, Borukhova S, Hessel V (2016). Green Chem 18:1096–1116

    Article  CAS  Google Scholar 

  40. Hessel V (2016). Green Proc Synth 5:111–112

    CAS  Google Scholar 

  41. Gursel IV, Nol T, Wang Q, Hessel V (2015). Green Chem 17:2012–2026

    Article  Google Scholar 

  42. Gemoets HPL, Su YH, Shang MJ, Hessel V, Luque R, Noel T (2016). Chem Soc Rev 45:83–117

    Article  CAS  Google Scholar 

  43. Lukas TJ, Prystowsky MB, Erickson BW (1981). Proc Natl Acad Sci USA 78:2791–2795

    Article  CAS  Google Scholar 

  44. Dryland, A., Sheppard, R. C J Chem Soc Perkin Trans 1 1986, 125–137

  45. Atherton E, Holder JL, Meldal M, Scheppard RC, Valerio RM (1988). J Chem Soc Perkin Trans 1:2887–2894

    Article  Google Scholar 

  46. Eberle AN, Atherton E, Dryland A, Sheppard RC (1986). J Chem Soc Perkin Trans 1:361–367

    Article  Google Scholar 

  47. Collins JM, Porter KA, Singh SK, Vanier GS (2014). Org Lett 16:940–943

    Article  CAS  Google Scholar 

  48. Chatterjee J, Laufer B, Kessler H (2012). Nature Protoc 7:432–444

    Article  CAS  Google Scholar 

  49. Bacsa B, Horvati K, Bosze S, Andreae F, Kappe CO (2008). J Org Chem 73:7532–7542

    Article  CAS  Google Scholar 

  50. Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009). Chem Eur J 15:9394–9403

    Article  CAS  Google Scholar 

  51. Malesevic M, Strijowski U, Bachle D, Sewald N (2004). J Biotechnol 112:73–77

    Article  CAS  Google Scholar 

  52. Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N (2010). J Org Chem 75:6953–6960

    Article  CAS  Google Scholar 

  53. Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N (2010). Org Lett 12:1064–1067

    Article  CAS  Google Scholar 

  54. Eissler S, Stoncius A, Nahrwold M, Sewald N (2006). Synthesis:3747–3789

Download references

Acknowledgements

We are grateful to the Hungarian Research Foundation (OTKA No. K 115731). The financial support of the GINOP-2.3.2-15-2016-00014 project is acknowledged. Supported by the ÚNKP-16-4-III New National Excellence Program of the Ministry of Human Capacities

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Fülöp.

Electronic supplementary material

ESM 1

Supporting Information Available: Supplementary data (experimental procedures, HPLC-MS chromatograms and mass spectra, NMR spectrum) associated with this article can be found in the online version at: doi:xxxxxxxxx (DOCX 2740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szloszár, A., Mándity, I.M. & Fülöp, F. Sustainable synthesis of N-methylated peptides in a continuous-flow fixed bed reactor. J Flow Chem 8, 21–27 (2018). https://doi.org/10.1007/s41981-018-0002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0002-9

Keywords

Navigation