Skip to main content

Advertisement

Log in

Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Defect engineering involves the manipulation of the type, concentration, mobility or spatial distribution of defects within crystalline structures and can play a pivotal role in transition metal oxides in terms of optimizing electronic structure, conductivity, surface properties and mass ion transport behaviors. And of the various transition metal oxides, titanium-based oxides have been keenly investigated due to their extensive application in electrochemical storage devices in which the atomic-scale modification of titanium-based oxides involving defect engineering has become increasingly sophisticated in recent years through the manipulation of the type, concentration, spatial distribution and mobility of defects. As a result, this review will present recent advancements in defect-engineered titanium-based oxides, including defect formation mechanisms, fabrication strategies, characterization techniques, density functional theory calculations and applications in energy conversion and storage devices. In addition, this review will highlight trends and challenges to guide the future research into more efficient electrochemical storage devices.

Graphic Abstract

This work reviews the recent advances in defect-engineered Ti-based oxides, including the mechanism of defect formation, fabrication strategies, the characterization techniques, density functional theory calculations and the applications in energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [63], copyright (2014) Springer Nature. b Ball and stick models for F-doped anatase TiO2. The left panel: a Ti3+ cation directly neighboring a F dopant. The right panel: a Ti3+ cation at ~ 7 Å distance from a F dopant. Reprinted with permission from Ref. [49], copyright (2008) American Chemical Society

Fig. 4

Reprinted with permission from Ref. [71], copyright (2013) Royal Society of Chemistry

Fig. 5
Fig. 6

Reprinted with permission from Ref. [81], copyright (2013) American Chemical Society

Fig. 7

Reprinted with permission from Ref. [83], copyright (2013) John Wiley and Sons

Fig. 8

Reprinted with permission from Ref. [89], copyright (2005) American Chemical Society

Fig. 9

Reprinted with permission from Ref. [93], copyright 2015, Chemical Society of Japan(CSJ). b Picture of white TiO2 turning to yellowish brown after microwave treatment. Reprinted with permission from Ref. [91], copyright 2013, Elsevier

Fig. 10

Reprinted with permission from Ref. [52], copyright (2015) American Chemical Society. c Transformation from octahedral to tetrahedral-coordinated Ti4+ in Fe–TiO2 and d high-resolution TEM image of 10% Fe/TiO2 after annealing in air. Reprinted with permission from Ref. [74], copyright (2012) American Chemical Society

Fig. 11

Reprinted with permissions from Ref. [107] under Creative Commons

Fig. 12

Reprinted with permission from Ref. [42], copyright (2012) American Chemical Society. c Photographs of pristine TiO2 and H-TiO2 nanowires annealed in hydrogen at various temperatures from 300 to 550 °C. d Gradual changes in the color of TiO2 from blue to gray at different annealing temperatures and annealing times in a hydrogen atmosphere. Reprinted with permission from Ref. [44], copyright (2013) American Chemical Society

Fig. 13

Reprinted with permission from Ref. [75], copyright (2011) American Association for the Advancement of Science. e XRD spectra of blue and white TiO2 along with corresponding photographs. Reprinted with permission from Ref. [113], copyright (2014) American Chemical Society. f, g SEM images of pristine and blue H-LTO. Reprinted with permission from Ref. [110], copyright (2014) Royal Society of Chemistry. h Photographs and i UV–Vis spectra of P25 treated at different hydrogenation times (35 bar, H2) at room temperature. Reprinted with permission from Ref. [114], copyright (2014) Royal Society of Chemistry

Fig. 14

Reprinted with permission from Ref. [115], copyright (2015) American Chemical Society. b UV–Vis spectra of obtained samples and c band gap energy at different temperatures. Reprinted with permission from Ref. [116], copyright (2015) American Chemical Society. d Color change of TiO2 nanocrystals calcined at various temperatures for 2 h under different atmospheres of air, nitrogen and a hydrogen/nitrogen mixture. Reprinted with permission from Ref. [117], copyright (2016) Elsevier. e TiO2 nanotubes annealed in air, Ar/H2 or high pressure H2. Reprinted with permission from Ref. [118], copyright (2014) American Chemical Society

Fig. 15

Reprinted with permission from Ref. [119], copyright (2012) Elsevier. c TiO2, H-TiO2, N-TiO2 and H, N-TiO2 nanowire arrays. Reprinted with permission from Ref. [120], copyright (2012) American Chemical Society

Fig. 16

Reprinted with permission from Ref. [121], copyright (2014) Royal Society of Chemistry

Fig. 17

Reprinted with permission from Ref. [79], copyright (2018) Springer Nature. b Schematic of the synthesis of rutile TiO2 (R-TiO2) with a sulfurized surface along with photographs of R-TiO2-S, R’-TiO2-S-4 h and R’-TiO2-S annealed at 800 °C in an Ar atmosphere through Al reduction. Reprinted with permission from Ref. [123], copyright (2013) American Chemical Society. c Evolution from pristine TiO2 to TiO2−x and to x-doped TiO2−x (x = H, N, S, I). Reprinted with permission from Ref. [124], copyright (2014) Royal Society of Chemistry. d TiO2 obtained by adding 60 mg (sample 1), 120 mg (sample 2), 240 mg (sample 3) and 400 mg (sample 4) Mg powder. Reprinted with permission from Ref. [125], copyright (2017) John Wiley and Sons. e TiCl4 solutions in ethanol after adding Zn powder at different ratios and Mg, Al powder (Mg/Al:TiCl4 = 2:1). Reprinted with permission from Ref. [126], copyright (2013) Royal Society of Chemistry

Fig. 18

Reprinted with permission from Ref. [129], copyright (2017) IOP Publishing. b Formation mechanism of defective-LTO and c XRD of LTO calcined at 800 °C for various time periods. Reprinted with permission from Ref. [131], copyright (2017) John Wiley and Sons. d Photographs of (A) Ti glycolate gel and (B) black anatase TiO2−x with the Ti glycolate gel structure highlighted. Reprinted with permission from Ref. [134], copyright (2016) Royal Society of Chemistry. e Ti3+ self-doped TiO2 NT synthesis and f photographs of TiO2 NTs and detached ECR-TiO2 NT powders. Reprinted with permission from Ref. [136], copyright (2013) Royal Society of Chemistry

Fig. 19

Reprinted with permission from Ref. [76], copyright 2015, Elsevier

Fig. 20

Reprinted with permission from Ref. [144], copyright (2003) American Association for the Advancement of Science

Fig. 21

Reprinted with permission from Ref. [145], copyright 2012, Elsevier. b Pristine and defective LTO synthesized in a reducing atmosphere at 800 °C under high pressure. Reprinted with permission from Ref. [131], copyright (2017) John Wiley and Sons

Fig. 22

Reprinted with permission from Ref. [74], copyright (2012) American Chemical Society. c Ti K-edge XANES spectra and d EXAFS spectra of undoped Li4Ti5O12 in an oxidizing atmosphere (LTO-O), undoped Li4Ti5O12 in a reducing atmosphere (LTO-R) and Mo-doped Li4Ti5O12 in a reducing atmosphere (Mo-LTO-R). Reprinted with permission from Ref. [155] under Creative Commons

Fig. 23

Reprinted with permission from Ref. [157], copyright 2013, Royal Society of Chemistry. e Deconvolved XPS spectra of reference Li4Ti5O12 (R-LTO) and f Li4Ti5O12 with OVs (O-LTO) synthesized under 5 vol% H2/Ar atmosphere. Reprinted with permission from Ref. [158], copyright 2017, Elsevier

Fig. 24

Reprinted with permission from Ref. [161], copyright 2015, IOP Publishing. b Raman spectra of Li4Ti5O12 synthesized under different atmospheres. Reprinted with permission from Ref. [162], copyright 2011, Springer Nature. c FTIR spectra of undoped and Co2+ doped TiO2 nanoparticles. Reprinted with permission from Ref. [145], copyright 2012, Elsevier. d Gaussian peak fitted PL spectra of TiO2 nanotubes. Reprinted with permission from Ref. [166], copyright (2017) American Chemical Society. e EPR spectra of defective TiO2 nanoparticles reduced by L-ascorbic acid (0, 0.3 and 0.7 g corresponding to white, brown and black TiO2−x). Reprinted with permissions from Ref. [167] under Creative Commons. f Derivative EPR spectra of undoped LTO in oxidizing (LTO-O) and reducing atmospheres (LTO-R) as well as Mo-doped LTO in reducing atmosphere (Mo-LTO-R). Reprinted with permissions from Ref. [155] under Creative Commons

Fig. 25

Reprinted with permission from Ref. [111], copyright (2012) American Chemical Society

Fig. 26

Reprinted with permission from Ref. [179], copyright (2012) John Wiley and Sons

Fig. 27

Reprinted with permission from Ref. [161], copyright 2015, IOP Publishing. c 3D EELS spectra with the STEM image marked with positions in which EELS spectra were recorded in the left panel, and corresponding EELS spectra for Ti-L2,3 and O-K edges were recorded at various positions in the right panel. Reprinted with permission from Ref. [183], copyright (2016) American Chemical Society. d Cathodoluminescence spectra and Gaussian fitting results for sputter-deposited TiO2 nanowires. Reprinted with permission from Ref. [159], copyright (2010) American Chemical Society. e Thermal gravimetric analysis (TGA) and derivative thermogravimetry (DTG) of LTO nanoparticles under Ar or H2 atmosphere and f mass spectra signals of CO2 and H2O during annealing under H2 atmosphere. Reprinted with permissions from Ref. [186], copyright John Wiley and Sons

Fig. 28

Reprinted with permission from Ref. [196], copyright (2016) American Chemical Society. c Lattice structures of \({\text{Li}}_{4} {\text{Ti}}_{5} {\text{O}}_{12}\) and \({\text{Li}}_{7}\, {\text{Ti}}_{5}\, {\text{O}}_{12}\) with unit cells. d PDOS of \({\text{Li}}_{4}\, {\text{Ti}}_{5}\, {\text{O}}_{12}\) and \({\text{Li}}_{7}\, {\text{Ti}}_{5}\, {\text{O}}_{12}\) with two different structures from PBE results in which the Fermi level is aligned to 0 eV. Reprinted with permissions from Ref. [197] under Creative Commons

Fig. 29

Reprinted with permission from Ref. [231], copyright (2012) American Chemical Society. And b & c br, 3f(1), 3f(2) and 4f. Reprinted with permission from Ref. [229], copyright (2016) Elsevier

Fig. 30

Reprinted with permission from Ref. [228], copyright (2008) AIP Publishing

Fig. 31

Reprinted with permission from Ref. [203], copyright (2018) American Chemical Society

Fig. 32

Reprinted with permission from Ref. [131], copyright (2017) John Wiley and Sons

Fig. 33

Reprinted with permission from Ref. [196], copyright (2016) American Chemical Society. b Spin density differences ρplotted = ρupρdown in three Li-doped TiO2 polymorphs (Ti atoms: blue spheres, O atoms: red spheres, Li atoms: green spheres). The projection plane is (001) and (010) for anatase, (001) for rutile and (010) for TiO2(B). Reprinted with permission from Ref. [244], copyright (2015) Elsevier. c Supercell model of boron-doped rutile TiO2. d Calculated DOS of pristine and boron-doped rutile TiO2 with dopant concentrations of 0.5% and 1.0%. Reprinted with permission from Ref. [226], copyright (2014) Royal Society of Chemistry. e DOS of LTO and M-doped LTO (M = Cr, Fe, Ni and Mg) calculated with a \(2 \times 1 \times 1\) supercell and GGA functional. Reprinted with permission from Ref. [245], copyright (2006) John Wiley and Sons. f\(3 \times 1 \times 1\) supercell model for H-doped LTO and the calculated DOS for pristine and H-doped models from HSE06. Reprinted with permission from Ref. [110], copyright (2014) Royal Society of Chemistry

Fig. 34

Reprinted with permission from Ref. [229], copyright (2016) Elsevier. c Diffusion pathway between two octahedral sites in rutile. d Diffusion pathway between two octahedral sites in anatase. In c and d, light blue and red spheres represent Ti and O atoms, respectively. Reprinted with permission from Ref. [298], copyright (2015) Elsevier. Li diffusion pathways for e anatase and f rutile involving Li-ions hopping between two neighboring octahedral sites in each structure. Li diffusion pathways for TiO2(B) with Li atoms hopping between g two adjacent C sites, h two neighboring A1 sites and i two neighboring A2 sites. lp Calculated energy profiles for Li-ion diffusion pathways in pristine and OV-defective models of l anatase, m rutile and for TiO2(B), n C–C, o A1–A1 and p A2–A2. Reprinted with permission from Ref. [203], copyright (2018) American Chemical Society

Fig. 35

Reprinted with permission from Ref. [77], copyright (2018) American Chemical Society. b Charge/discharge profiles (at the 20th cycle) for pristine TiO2 (the dotted line), Ar-1 h-TiO2−δ (the dashed line) and H2-1 h-TiO2−δ (the solid line) cycled at 0.2 C. Reprinted with permission from Ref. [219], copyright (2012) American Chemical Society. c Specific discharge capacities at various C rates for LTO and H-LTO NWAs. Reprinted with permission from Ref. [318], copyright (2012) John Wiley and Sons

Fig. 36

Reprinted with permission from Ref. [131], copyright (2017) John Wiley and Sons. c Rate capabilities of pure TiO2 anatase and Ti0.780.22O1.12F0.4(OH)0.48 electrodes. Reprinted with permission from Ref. [320], copyright (2015) American Chemical Society. d Initial charge/discharge profiles of undoped and V5+-doped TiO2 electrodes. Reprinted with permission from Ref. [322], copyright (2013) Elsevier

Fig. 37

Reprinted with permission from Ref. [325], copyright (2016) American Chemical Society. b Rate capabilities of S-TiO2/rGO, TiO2/rGO and S-TiO2 electrodes at different current densities. Reprinted with permission from Ref. [328], copyright (2018) Elsevier. c Structural models of Fe-doped-TiO2. d Rate capabilities of pristine and Fe-doped TiO2 at different currents. Reprinted (adapted) with permission from Ref. [329]. Copyright (2017) American Chemical Society

Fig. 38

Reprinted with permission from Ref. [339], copyright (2018) American Chemical Society. b Galvanostatic discharge–charge curves for TiO2 and Ti0.780.22O1.12F0.40(OH)0.48 versus Mg. Cells were cycled at 20 mA g−1 in the potential range 0.05–2.3 V versus Mg2+/Mg. c Galvanostatic discharge–charge curves for TiO2 and Ti0.780.22O1.12F0.40(OH)0.48 versus Al. Cells were cycled at 20 mA g−1 in the potential range 0.01–1.8 V versus Al3+/Al. Reprinted with permission from Ref. [340], copyright (2017) Springer Nature. d Rate performances of commercial white anatase TiO2 and black anatase TiO2 nanoleave electrodes at different current rates. Reprinted with permission from Ref. [341], copyright (2014) Royal Society of Chemistry

Similar content being viewed by others

References

  1. Forster, B.A.: Optimal energy use in a polluted environment. J. Environ. Econ. Manag. 7, 321–333 (1980). https://doi.org/10.1016/0095-0696(80)90025-x

    Article  Google Scholar 

  2. Chen, X., He, W., Ding, L.X., et al.: Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019). https://doi.org/10.1039/c8ee02617c

    Article  CAS  Google Scholar 

  3. Chen, H., Cong, T.N., Yang, W., et al.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  CAS  Google Scholar 

  4. Wang, P.J., Huang, S.M., Wu, W.C.: Electrical energy storage device. United States Patent US6373152B1, Apr. 16, 2002

  5. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  6. Xiang, H., Chen, J., Li, Z., et al.: An inorganic membrane as a separator for lithium-ion battery. J. Power Sources 196, 8651–8655 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.055

    Article  CAS  Google Scholar 

  7. Jiang, Z., Xie, H., Wang, S., et al.: Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). https://doi.org/10.1002/aenm.201801433

    Article  CAS  Google Scholar 

  8. Van Schalkwijk, W., Scrosati, B.: Advances in lithium ion batteries introduction. In: Van Schalkwijk, W.A., Scrosati, B. (eds.) Advances in Lithium-Ion Batteries, pp. 1–5. Springer, US, Boston, MA (2002)

    Chapter  Google Scholar 

  9. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  10. Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  11. González, A., Goikolea, E., Barrena, J.A., et al.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  12. Zhu, G.N., Wang, Y.G., Xia, Y.Y.: Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012). https://doi.org/10.1039/C2EE03410G

    Article  CAS  Google Scholar 

  13. Lan, T.B., Tu, J.X., Zou, Q.M., et al.: Synthesis of anatase TiO2 mesocrystals with highly exposed low-index facets for enhanced electrochemical performance. Electrochim. Acta 319, 101–109 (2019). https://doi.org/10.1016/j.electacta.2019.06.152

    Article  CAS  Google Scholar 

  14. Zaleska, A.: Doped-TiO2: a review. Recent Patents Eng. 2, 157–164 (2008). https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  15. Mor, G.K., Varghese, O.K., Paulose, M., et al.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006). https://doi.org/10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  16. Paramasivam, I., Jha, H., Liu, N., et al.: A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8, 3073–3103 (2012). https://doi.org/10.1002/smll.201200564

    Article  CAS  PubMed  Google Scholar 

  17. Xiong, H., Slater, M.D., Balasubramanian, M., et al.: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011). https://doi.org/10.1021/jz2012066

    Article  CAS  Google Scholar 

  18. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W., Zhang, Y., Yu, L., et al.: TiO2-B nanowires via topological conversion with enhanced lithium-ion intercalation properties. J. Mater. Chem. A 7, 3842–3847 (2019). https://doi.org/10.1039/C8TA10709B

    Article  CAS  Google Scholar 

  20. Liu, Y., Chen, W., Yang, C., et al.: Hierarchical TiO2-B composed of nanosheets with exposed 010 facets as a high-performance anode for lithium ion batteries. J. Power Sources 392, 226–231 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.110

    Article  CAS  Google Scholar 

  21. Ding, T., Wu, J., Chen, Z., et al.: Synthesis of hierarchically mesoporous TiO2 spheres via a emulsion polymerization route for superior lithium-ion batteries. J. Electroanal. Chem. 818, 1–9 (2018). https://doi.org/10.1016/j.jelechem.2018.04.023

    Article  CAS  Google Scholar 

  22. Liu, Y., Guo, M., Liu, Z., et al.: Rapid and facile synthesis of hierarchically mesoporous TiO2-B with enhanced reversible capacity and rate capability. J. Mater. Chem. A 6, 1196–1200 (2018). https://doi.org/10.1039/C7TA09264D

    Article  CAS  Google Scholar 

  23. Zhang, W., Xu, T., Liu, Z., et al.: Hierarchical TiO2−x imbedded with graphene quantum dots for high-performance lithium storage. Chem. Commun. 54, 1413–1416 (2018). https://doi.org/10.1039/C7CC09406J

    Article  CAS  Google Scholar 

  24. Zhang, W., Lan, T., Ding, T., et al.: Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage. J. Power Sources 359, 64–70 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.040

    Article  CAS  Google Scholar 

  25. Liu, S., Yu, J., Jaroniec, M.: Anatase TiO2 with dominant high-energy 001 facets: synthesis, properties, and applications. Chem. Mater. 23, 4085–4093 (2011). https://doi.org/10.1021/cm200597m

    Article  CAS  Google Scholar 

  26. Dylla, A.G., Henkelman, G., Stevenson, K.J.: Lithium insertion in nanostructured TiO2 (B) architectures. Acc. Chem. Res. 46, 1104–1112 (2013). https://doi.org/10.1021/ar300176y

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Wan, W., Zhou, H., et al.: Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem. Commun. 47, 3439–3441 (2011). https://doi.org/10.1039/c0cc04634e

    Article  CAS  Google Scholar 

  28. Rai, A.K., Anh, L.T., Gim, J., et al.: Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim. Acta 90, 112–118 (2013). https://doi.org/10.1016/j.electacta.2012.11.104

    Article  CAS  Google Scholar 

  29. Tian, J., Zhao, Z., Kumar, A., et al.: Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43, 6920–6937 (2014). https://doi.org/10.1039/C4CS00180J

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., Selloni, A.: Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014). https://doi.org/10.1021/cr500422r

    Article  CAS  PubMed  Google Scholar 

  31. Ge, M.Z., Cai, J.S., Iocozzia, J., et al.: A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy 42, 8418–8449 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.052

    Article  CAS  Google Scholar 

  32. Reddy, K.M., Manorama, S.V., Reddy, A.R.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239–245 (2003). https://doi.org/10.1016/S0254-0584(02)00343-7

    Article  Google Scholar 

  33. Zhao, B., Ran, R., Liu, M.L., et al.: A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R Rep. 98, 1–71 (2015). https://doi.org/10.1016/j.mser.2015.10.001

    Article  Google Scholar 

  34. Zhang, Y.L., Hu, X.B., Xu, Y.L., et al.: Recent progress of Li4Ti5O12 with different morphologies as anode material. Acta Chim. Sin. 71, 1341–1353 (2013). https://doi.org/10.6023/A13040423

    Article  CAS  Google Scholar 

  35. Lin, X., Pan, F., Wang, H.: Progress of Li4Ti5O12 anode material for lithium ion batteries. Mater. Technol. 29, A82–A87 (2014). https://doi.org/10.1179/1753555714Y.0000000170

    Article  CAS  Google Scholar 

  36. Yu, L., Wu, H.B., Lou, X.W.: Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 25, 2296–2300 (2013). https://doi.org/10.1002/adma.201204912

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, L., Hu, Y.S., Li, H., et al.: Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385–1388 (2011). https://doi.org/10.1002/adma.201003294

    Article  CAS  PubMed  Google Scholar 

  38. Shi, Y., Gao, J., Abruna, H.D., et al.: Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy 8, 297–304 (2014). https://doi.org/10.1016/j.nanoen.2014.06.009

    Article  CAS  Google Scholar 

  39. He, Y., Muhetaer, A., Li, J., et al.: Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv. Energy Mater. 7, 1700950 (2017). https://doi.org/10.1002/aenm.201700950

    Article  CAS  Google Scholar 

  40. Shen, L., Zhang, X., Uchaker, E., et al.: Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2, 691–698 (2012). https://doi.org/10.1002/aenm.201100720

    Article  CAS  Google Scholar 

  41. Wang, Y.-Q., Gu, L., Guo, Y.-G., et al.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012). https://doi.org/10.1021/ja301266w

    Article  CAS  PubMed  Google Scholar 

  42. Naldoni, A., Allieta, M., Santangelo, S., et al.: Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012). https://doi.org/10.1021/ja3012676

    Article  CAS  PubMed  Google Scholar 

  43. Cho, E., Han, S., Ahn, H.S., et al.: First-principles study of point defects in rutile TiO2−x. Phys. Rev. B 73, 193202 (2006). https://doi.org/10.1103/PhysRevB.73.193202

    Article  CAS  Google Scholar 

  44. Yu, X., Kim, B., Kim, Y.K.: Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects. ACS Catal. 3, 2479–2486 (2013). https://doi.org/10.1021/cs4005776

    Article  CAS  Google Scholar 

  45. Xu, H., Chen, J., Li, Y., et al.: Fabrication of Li4Ti5O12-TiO2 nanosheets with structural defects as high-rate and long-life anodes for lithium-ion batteries. Sci. Rep. 7, 2960 (2017). https://doi.org/10.1038/s41598-017-03149-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer, S., Munz, A.W., Schierbaum, K.-D., et al.: The geometric structure of intrinsic defects at TiO2 (110) surfaces: an STM study. Surf. Sci. 337, 17–30 (1995). https://doi.org/10.1016/0039-6028(95)00572-2

    Article  CAS  Google Scholar 

  47. Göpel, W., Anderson, J.A., Frankel, D., et al.: Surface defects of TiO2(110): a combined XPS, XAES and ELS study. Surf. Sci. 139, 333–346 (1984). https://doi.org/10.1016/0039-6028(84)90054-2

    Article  Google Scholar 

  48. Morgan, B.J., Watson, G.W.: Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA + U calculations. J. Phys. Chem. C 114, 2321–2328 (2010). https://doi.org/10.1021/jp9088047

    Article  CAS  Google Scholar 

  49. Czoska, A., Livraghi, S., Chiesa, M., et al.: The nature of defects in fluorine-doped TiO2. J. Phys. Chem. C 112, 8951–8956 (2008). https://doi.org/10.1021/jp8004184

    Article  CAS  Google Scholar 

  50. Di Valentin, C., Pacchioni, G., Selloni, A.: Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009). https://doi.org/10.1021/jp9061797

    Article  CAS  Google Scholar 

  51. Tachikawa, T., Ishigaki, T., Li, J.G., et al.: Defect-mediated photoluminescence dynamics of Eu3+-doped TiO2 nanocrystals revealed at the single-particle or single-aggregate level. Angew. Chem. Int. Ed. 47, 5348–5352 (2008). https://doi.org/10.1002/anie.200800528

    Article  CAS  Google Scholar 

  52. Kong, L., Wang, C., Zheng, H., et al.: Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C 119, 16623–16632 (2015). https://doi.org/10.1021/acs.jpcc.5b03448

    Article  CAS  Google Scholar 

  53. Kofstad, P.: Thermogravimetric studies of the defect structure of rutile (TiO2). J. Phys. Chem. Solids 23, 1579–1586 (1962). https://doi.org/10.1016/0022-3697(62)90240-8

    Article  CAS  Google Scholar 

  54. Marucco, J.-F., Gautron, J., Lemasson, P.: Thermogravimetric and electrical study of non-stoichiometric titanium dioxide TiO2−x, between 800 and 1100°C. J. Phys. Chem. Solids 42, 363–367 (1981). https://doi.org/10.1016/0022-3697(81)90043-3

    Article  CAS  Google Scholar 

  55. Millot, F., Picard, C.: Oxygen self-diffusion in non-stoichiometric rutile TiO2−x at high temperature. Solid State Ionics 28, 1344–1348 (1988). https://doi.org/10.1016/0167-2738(88)90384-0

    Article  Google Scholar 

  56. Catlow, C.R.A., James, R.: Disorder in TiO2−x. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 384, 157–173 (1982). https://doi.org/10.1098/rspa.1982.0152

    Article  CAS  Google Scholar 

  57. Menetrey, M., Markovits, A., Minot, C., et al.: Formation of Schottky defects at the surface of MgO, TiO2, and SnO2: a comparative density functional theoretical study. J. Phys. Chem. B 108, 12858–12864 (2004). https://doi.org/10.1021/jp048497c

    Article  CAS  Google Scholar 

  58. Weibel, A., Bouchet, R., Knauth, P.: Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177, 229–236 (2006). https://doi.org/10.1016/j.ssi.2005.11.002

    Article  CAS  Google Scholar 

  59. Bak, T., Nowotny, J., Sucher, N.J., et al.: Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J. Phys. Chem. C 115, 15711–15738 (2011). https://doi.org/10.1021/jp2027862

    Article  CAS  Google Scholar 

  60. Batzill, M., Katsiev, K., Gaspar, D.J., et al.: Variations of the local electronic surface properties of TiO2 (110) induced by intrinsic and extrinsic defects. Phys. Rev. B 66, 235401 (2002). https://doi.org/10.1103/PhysRevB.66.235401

    Article  CAS  Google Scholar 

  61. Nowotny, J., Bak, T., Nowotny, M.K., et al.: Defect chemistry and electrical properties of titanium dioxide. 1. Defect diagrams. J. Phys. Chem. C 112, 590–601 (2008). https://doi.org/10.1021/jp074565u

    Article  CAS  Google Scholar 

  62. Hoshino, K., Peterson, N.L., et al.: Diffusion and point-defects in TiO2−x. J. Phys. Chem. Solids 46, 1397–1411 (1985). https://doi.org/10.1016/0022-3697(85)90079-4

    Article  CAS  Google Scholar 

  63. Carneiro, J., Azevedo, S., Fernandes, F., et al.: Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J. Mater. Sci. 49, 7476–7488 (2014). https://doi.org/10.1007/s10853-014-8453-3

    Article  CAS  Google Scholar 

  64. Serpone, N.: Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006). https://doi.org/10.1021/jp065659r

    Article  CAS  PubMed  Google Scholar 

  65. Wang, J., Tafen, D.N., Lewis, J.P., et al.: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009). https://doi.org/10.1021/ja903781h

    Article  CAS  PubMed  Google Scholar 

  66. Huang, H., Li, X., Wang, J., et al.: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3. ACS Catal. 5, 4094–4103 (2015). https://doi.org/10.1021/acscatal.5b00444

    Article  CAS  Google Scholar 

  67. Sathish, M., Viswanathan, B., Viswanath, R., et al.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349–6353 (2005). https://doi.org/10.1021/cm052047v

    Article  CAS  Google Scholar 

  68. Chen, X., Burda, C.: The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018–5019 (2008). https://doi.org/10.1021/ja711023z

    Article  CAS  PubMed  Google Scholar 

  69. Luo, N.J., Jiang, Z., Shi, H.H., et al.: Photo-catalytic conversion of oxygenated hydrocarbons to hydrogen over heteroatom-doped TiO2 catalysts. Int. J. Hydrogen Energy 34, 125–129 (2009). https://doi.org/10.1016/j.ijhydene.2008.09.097

    Article  CAS  Google Scholar 

  70. Sathish, M., Viswanath, R.P., Gopinath, C.S.: N,S-co-doped TiO2 nanophotocatalyst: synthesis, electronic structure and photocatalysis. J. Nanosci. Nanotechnol. 9, 423–432 (2009). https://doi.org/10.1166/jnn.2009.j095

    Article  CAS  PubMed  Google Scholar 

  71. Zhen, C., Wang, L., Liu, L., et al.: Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting. Chem. Commun. 49, 6191–6193 (2013). https://doi.org/10.1039/c3cc42458h

    Article  CAS  Google Scholar 

  72. He, J., Behera, R., Finnis, M., et al.: Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Mater. 55, 4325–4337 (2007). https://doi.org/10.1016/j.actamat.2007.04.005

    Article  CAS  Google Scholar 

  73. Amade, R., Heitjans, P., Indris, S., et al.: Defect formation during high-energy ball milling in TiO2 and its relation to the photocatalytic activity. J. Photochem. Photobiol. A Chem. 207, 231–235 (2009). https://doi.org/10.1016/j.jphotochem.2009.07.015

    Article  CAS  Google Scholar 

  74. Wu, Q., Zheng, Q., van de Krol, R.: Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C 116, 7219–7226 (2012). https://doi.org/10.1021/jp212577g

    Article  CAS  Google Scholar 

  75. Chen, X., Liu, L., Peter, Y.Y., et al.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

    Article  CAS  PubMed  Google Scholar 

  76. Xin, X., Xu, T., Yin, J., et al.: Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl. Catal. B 176, 354–362 (2015). https://doi.org/10.1016/j.apcatb.2015.04.016

    Article  CAS  Google Scholar 

  77. Chen, J., Song, W., Hou, H., et al.: Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 25, 6793–6801 (2015). https://doi.org/10.1002/adfm.201502978

    Article  CAS  Google Scholar 

  78. Kirner, U., Schierbaum, K., Göpel, W., et al.: Low and high temperature TiO2 oxygen sensors. Sensors Actuators B Chem. 1, 103–107 (1990). https://doi.org/10.1016/0925-4005(90)80181-X

    Article  CAS  Google Scholar 

  79. Ou, G., Xu, Y., Wen, B., et al.: Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 9, 1302 (2018). https://doi.org/10.1038/s41467-018-03765-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feng, H., Xu, Z., Ren, L., et al.: Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal. 8, 4288–4293 (2018). https://doi.org/10.1021/acscatal.8b00719

    Article  CAS  Google Scholar 

  81. Ghosh, S., Khan, G.G., Mandal, K., et al.: Evolution of vacancy-type defects, phase transition, and intrinsic ferromagnetism during annealing of nanocrystalline TiO2 studied by positron annihilation spectroscopy. J. Phys. Chem. C 117, 8458–8467 (2013). https://doi.org/10.1021/jp3115836

    Article  CAS  Google Scholar 

  82. Xia, T., Zhang, Y., Murowchick, J., et al.: Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal. Today 225, 2–9 (2014). https://doi.org/10.1016/j.cattod.2013.08.026

    Article  CAS  Google Scholar 

  83. Xia, T., Zhang, W., Murowchick, J.B., et al.: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 3, 1516–1523 (2013). https://doi.org/10.1002/aenm.201300294

    Article  CAS  Google Scholar 

  84. Guillemot, F., Porte, M., Labrugère, C., et al.: Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications. J. Colloid Interface Sci. 255, 75–78 (2002). https://doi.org/10.1006/jcis.2002.8623

    Article  CAS  PubMed  Google Scholar 

  85. Chen, X., Guan, X., Li, L., et al.: Defective mesoporous Li4Ti5O12−y: an advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C. J. Power Sources 210, 297–302 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.014

    Article  CAS  Google Scholar 

  86. Pan, X., Ma, X.: Study on the milling-induced transformation in TiO2 powder with different grain sizes. Mater. Lett. 58, 513–515 (2004). https://doi.org/10.1016/S0167-577X(03)00536-6

    Article  CAS  Google Scholar 

  87. Pan, X., Ma, X.: Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres. J. Solid State Chem. 177, 4098–4103 (2004). https://doi.org/10.1016/j.jssc.2004.08.017

    Article  CAS  Google Scholar 

  88. Sepelak, V., Begin-Colin, S., Le Caer, G.: Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 41, 11927–11948 (2012). https://doi.org/10.1039/c2dt30349c

    Article  CAS  PubMed  Google Scholar 

  89. Indris, S., Amade, R., Heitjans, P., et al.: Preparation by high-energy milling, characterization, and catalytic properties of nanocrystalline TiO2. J. Phys. Chem. B 109, 23274–23278 (2005). https://doi.org/10.1021/jp054586t

    Article  CAS  PubMed  Google Scholar 

  90. Ren, R.M., Yang, Z.G., Shaw, L.L.: Polymorphic transformation and powder characteristics of TiO2 during high energy milling. J. Mater. Sci. 35, 6015–6026 (2000). https://doi.org/10.1023/A:1026751017284

    Article  CAS  Google Scholar 

  91. Marinel, S., Choi, D.H., Heuguet, R., et al.: Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int. 39, 299–306 (2013). https://doi.org/10.1016/j.ceramint.2012.06.025

    Article  CAS  Google Scholar 

  92. Chen, Y., Li, W., Wang, J., et al.: Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B 191, 94–105 (2016). https://doi.org/10.1016/j.apcatb.2016.03.021

    Article  CAS  Google Scholar 

  93. Ishida, Y., Doshin, W., Tsukamoto, H., et al.: Black TiO2 nanoparticles by a microwave-induced plasma over titanium complex aqueous solution. Chem. Lett. 44, 1327–1329 (2015). https://doi.org/10.1246/cl.150531

    Article  CAS  Google Scholar 

  94. Choi, J., Park, H., Hoffmann, M.R., et al.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783–792 (2009). https://doi.org/10.1021/jp908088x

    Article  CAS  Google Scholar 

  95. Di Valentin, C., Pacchioni, G.: Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 206, 12–18 (2013). https://doi.org/10.1016/j.cattod.2011.11.030

    Article  CAS  Google Scholar 

  96. Yang, X., Zhang, M.J., Min, Y., et al.: Controllable formation of (004)-orientated Nb: TiO2 for High-Performance transparent conductive oxide thin films with tunable near-infrared transmittance. ACS Appl. Mater. Interfaces. 9, 29021–29029 (2017). https://doi.org/10.1021/acsami.7b06792

    Article  CAS  PubMed  Google Scholar 

  97. Lan, T., Zhang, W., Wu, N.L., et al.: Nb-doped rutile TiO2 mesocrystals with enhanced lithium storage properties for lithium ion battery. Chem. A Eur. J. 23, 5059–5065 (2017). https://doi.org/10.1002/chem.201605115

    Article  CAS  Google Scholar 

  98. Pathak, S.K., Abate, A., Ruckdeschel, P., et al.: Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014). https://doi.org/10.1002/adfm.201401658

    Article  CAS  Google Scholar 

  99. Zhang, Y., Meng, Y., Zhu, K., et al.: Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces. 8, 7957–7965 (2016). https://doi.org/10.1021/acsami.5b10766

    Article  CAS  PubMed  Google Scholar 

  100. Ali, Z., Cha, S.N., Sohn, J.I., et al.: Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. J. Mater. Chem. 22, 17625–17629 (2012). https://doi.org/10.1039/C2JM33315E

    Article  CAS  Google Scholar 

  101. Kashale, A.A., Rasal, A.S., Kamble, G.P., et al.: Biosynthesized Co-doped TiO2 nanoparticles based anode for lithium-ion battery application and investigating the influence of dopant concentrations on its performance. Compos. Part B Eng. 167, 44–50 (2019). https://doi.org/10.1016/j.compositesb.2018.12.001

    Article  CAS  Google Scholar 

  102. Hong, Z., Kang, M., Chen, X., et al.: Synthesis of mesoporous Co2+-doped TiO2 nanodisks derived from metal organic frameworks with improved sodium storage performance. ACS Appl. Mater. Interfaces 9, 32071–32079 (2017). https://doi.org/10.1021/acsami.7b06290

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, W., Zhou, W., Wright, J.H., et al.: Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures. ACS Appl. Mater. Interfaces. 6, 7292–7300 (2014). https://doi.org/10.1021/am500604p

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J., Yang, G., Wang, L., et al.: In-situ fabrication of transition-metal-doped TiO2 nanofiber/nanosheet structure for high-performance Li storage. J. Alloys Compd. 787, 1110–1119 (2019). https://doi.org/10.1016/j.jallcom.2019.02.152

    Article  CAS  Google Scholar 

  105. Serpone, N., Lawless, D., Disdier, J., et al.: Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10, 643–652 (1994). https://doi.org/10.1021/la00015a010

    Article  CAS  Google Scholar 

  106. Yang, K., Dai, Y., Huang, B.: Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles. J. Phys. Chem. C 111, 18985–18994 (2007). https://doi.org/10.1021/jp0756350

    Article  CAS  Google Scholar 

  107. Feng, N., Liu, F., Huang, M., et al.: Unravelling the efficient photocatalytic activity of boron-induced Ti(3+) species in the surface layer of TiO2. Sci. Rep. 6, 34765 (2016). https://doi.org/10.1038/srep34765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J. Phys. Chem. B 107, 5483–5486 (2003). https://doi.org/10.1021/jp030133h

    Article  CAS  Google Scholar 

  109. Qi, Y., Huang, Y., Jia, D., et al.: Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials. Electrochim. Acta 54(21), 4772–4776 (2009). https://doi.org/10.1016/j.electacta.2009.04.010

    Article  CAS  Google Scholar 

  110. Qiu, J., Lai, C., Gray, E., et al.: Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 2, 6353–6358 (2014). https://doi.org/10.1039/C4TA00556B

    Article  CAS  Google Scholar 

  111. Jiang, X., Zhang, Y., Jiang, J., et al.: Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116, 22619–22624 (2012). https://doi.org/10.1021/jp307573c

    Article  CAS  Google Scholar 

  112. Wang, G., Wang, H., Ling, Y., et al.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011). https://doi.org/10.1021/nl201766h

    Article  CAS  PubMed  Google Scholar 

  113. Qiu, J., Li, S., Gray, E., et al.: Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. C 118, 8824–8830 (2014). https://doi.org/10.1021/jp501819p

    Article  CAS  Google Scholar 

  114. Lu, H.Q., Zhao, B.B., Pan, R.L., et al.: Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 4, 1128–1132 (2014). https://doi.org/10.1039/c3ra44493g

    Article  CAS  Google Scholar 

  115. Cai, J., Wang, Y., Zhu, Y., et al.: In situ formation of disorder-engineered TiO2 (B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces. 7, 24987–24992 (2015). https://doi.org/10.1021/acsami.5b07318

    Article  CAS  PubMed  Google Scholar 

  116. Su, T., Yang, Y., Na, Y., et al.: An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 7, 3754–3763 (2015). https://doi.org/10.1021/am5085447

    Article  CAS  PubMed  Google Scholar 

  117. Wu, M.C., Chang, I.C., Hsiao, K.C., et al.: Highly visible-light absorbing black TiO2 nanocrystals synthesized by sol–gel method and subsequent heat treatment in low partial pressure H2. J. Taiwan Inst. Chem. Eng. 63, 430–435 (2016). https://doi.org/10.1016/j.jtice.2016.02.026

    Article  CAS  Google Scholar 

  118. Liu, N., Schneider, C., Freitag, D., et al.: Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett. 14, 3309–3313 (2014). https://doi.org/10.1021/nl500710j

    Article  CAS  PubMed  Google Scholar 

  119. Wang, W., Lu, C., Ni, Y., et al.: A new sight on hydrogenation of F and NF doped 0 0 1 facets dominated anatase TiO2 for efficient visible light photocatalyst. Appl. Catal. B 127, 28–35 (2012). https://doi.org/10.1016/j.apcatb.2012.08.002

    Article  CAS  Google Scholar 

  120. Hoang, S., Berglund, S.P., Hahn, N.T., et al.: Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134, 3659–3662 (2012). https://doi.org/10.1021/ja211369s

    Article  CAS  PubMed  Google Scholar 

  121. Yan, Y., Han, M., Konkin, A., et al.: Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J. Mater. Chem. A 2, 12708–12716 (2014). https://doi.org/10.1039/c4ta02192d

    Article  CAS  Google Scholar 

  122. Wu, H., Xu, C., Xu, J., et al.: Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24, 455401 (2013). https://doi.org/10.1088/0957-4484/24/45/455401

    Article  CAS  PubMed  Google Scholar 

  123. Yang, C., Wang, Z., Lin, T., et al.: Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 135, 17831–17838 (2013). https://doi.org/10.1021/ja4076748

    Article  CAS  PubMed  Google Scholar 

  124. Lin, T., Yang, C., Wang, Z., et al.: Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 7, 967–972 (2014). https://doi.org/10.1039/C3EE42708K

    Article  CAS  Google Scholar 

  125. Ye, M., Jia, J., Wu, Z., et al.: Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017). https://doi.org/10.1002/aenm.201601811

    Article  CAS  Google Scholar 

  126. Zheng, Z., Huang, B., Meng, X., et al.: Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem. Commun. 49, 868–870 (2013). https://doi.org/10.1039/c2cc37976g

    Article  CAS  Google Scholar 

  127. Sinhamahapatra, A., Jeon, J.-P., Yu, J.-S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539–3544 (2015). https://doi.org/10.1039/C5EE02443A

    Article  CAS  Google Scholar 

  128. Ariyanti, D., Mills, L., Dong, J., et al.: NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys. 199, 571–576 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.054

    Article  CAS  Google Scholar 

  129. Xu, J., Qi, X., Luo, C., et al.: Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28, 425701 (2017). https://doi.org/10.1088/1361-6528/aa81ba

    Article  CAS  PubMed  Google Scholar 

  130. Chen, S., Xiao, Y., Wang, Y., et al.: A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials 8, 245 (2018). https://doi.org/10.3390/nano8040245

    Article  CAS  PubMed Central  Google Scholar 

  131. Nasara, R.N., Tsai, P.C., Lin, S.K.: One-step synthesis of highly oxygen-deficient lithium titanate oxide with conformal amorphous carbon coating as anode material for lithium ion batteries. Adv. Mater. Interfaces 4, 1700329 (2017). https://doi.org/10.1002/admi.201700329

    Article  CAS  Google Scholar 

  132. Tominaka, S., Tsujimoto, Y., Matsushita, Y., et al.: Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew. Chem. Int. Ed. 50, 7418–7421 (2011). https://doi.org/10.1002/anie.201101432

    Article  CAS  Google Scholar 

  133. Mao, C., Zuo, F., Hou, Y., et al.: In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem. Int. Ed. 53, 10485–10489 (2014). https://doi.org/10.1002/anie.201406017

    Article  CAS  Google Scholar 

  134. Ullattil, S.G., Periyat, P.: A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’anatase TiO2−x solar photocatalyst. J. Mater. Chem. A 4, 5854–5858 (2016). https://doi.org/10.1039/C6TA01993E

    Article  CAS  Google Scholar 

  135. Zou, X., Liu, J., Su, J., et al.: Facile synthesis of thermal-and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. A Eur. J. 19, 2866–2873 (2013). https://doi.org/10.1002/chem.201202833

    Article  CAS  Google Scholar 

  136. Zhang, Z., Hedhili, M.N., Zhu, H., et al.: Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys. 15, 15637–15644 (2013). https://doi.org/10.1039/c3cp52759j

    Article  CAS  PubMed  Google Scholar 

  137. Dong, J., Han, J., Liu, Y., et al.: Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces. 6, 1385–1388 (2014). https://doi.org/10.1021/am405549p

    Article  CAS  PubMed  Google Scholar 

  138. Grabstanowicz, L.R., Gao, S., Li, T., et al.: Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. 52, 3884–3890 (2013). https://doi.org/10.1021/ic3026182

    Article  CAS  PubMed  Google Scholar 

  139. Liu, X., Xu, H., Grabstanowicz, L.R., et al.: Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal. Today 225, 80–89 (2014). https://doi.org/10.1016/j.cattod.2013.08.025

    Article  CAS  Google Scholar 

  140. Zhu, Q., Peng, Y., Lin, L., et al.: Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A 2, 4429–4437 (2014). https://doi.org/10.1039/c3ta14484d

    Article  CAS  Google Scholar 

  141. Zhao, Z., Tan, H., Zhao, H., et al.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755–2757 (2014). https://doi.org/10.1039/c3cc49182j

    Article  CAS  Google Scholar 

  142. Pei, Z., Ding, L., Lin, H., et al.: Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 10099–10102 (2013). https://doi.org/10.1039/c3ta12062g

    Article  CAS  Google Scholar 

  143. Dong, S., Wang, X., Shen, L., et al.: Trivalent Ti self-doped Li4Ti5O12: a high performance anode material for lithium-ion capacitors. J. Electroanal. Chem. 757, 1–7 (2015). https://doi.org/10.1016/j.jelechem.2015.09.002

    Article  CAS  Google Scholar 

  144. Schaub, R., Wahlström, E., Rønnau, A., et al.: Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science 299, 377–379 (2003). https://doi.org/10.1126/science.1078962

    Article  CAS  PubMed  Google Scholar 

  145. Choudhury, B., Choudhury, A.: Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 132, 178–184 (2012). https://doi.org/10.1016/j.jlumin.2011.08.020

    Article  CAS  Google Scholar 

  146. Yun, H.J., Lee, D.M., Yu, S., et al.: Effect of valence band energy on the photocatalytic performance of N-doped TiO2 for the production of O2 via the oxidation of water by visible light. J. Mol. Catal. A: Chem. 378, 221–226 (2013). https://doi.org/10.1016/j.molcata.2013.06.016

    Article  CAS  Google Scholar 

  147. Sarkar, A., Khan, G.G., Chaudhuri, A., et al.: Multifunctional BiFeO3/TiO2 nano-heterostructure: photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property. Appl. Phys. Lett. 108, 033112 (2016). https://doi.org/10.1063/1.4940118

    Article  CAS  Google Scholar 

  148. Samsudin, E.M., Hamid, S.B.A., Juan, J.C., et al.: Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol–gel method. Appl. Surf. Sci. 365, 57–68 (2016). https://doi.org/10.1016/j.apsusc.2016.01.016

    Article  CAS  Google Scholar 

  149. Shrivastava, B.D.: X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation. J. Phys: Conf. Ser. 365, 012002 (2012). https://doi.org/10.1088/1742-6596/365/1/012002

    Article  CAS  Google Scholar 

  150. Yamashita, H., Ichihashi, Y., Anpo, M., et al.: Photocatalytic decomposition of NO at 275 K on titanium oxides included within y-zeolite cavities: the structure and role of the active sites. J. Phys. Chem. 100, 16041–16044 (1996). https://doi.org/10.1021/jp9615969

    Article  CAS  Google Scholar 

  151. Chen, L.X., Rajh, T., Jager, W., et al.: X-ray absorption reveals surface structure of titanium dioxide nanoparticles. J. Synchrotron Radiat. 6, 445–447 (1999). https://doi.org/10.1107/S090904959801591X

    Article  CAS  PubMed  Google Scholar 

  152. Graetz, J., Reilly, J.J., Johnson, J., et al.: X-ray absorption study of Ti-activated sodium aluminum hydride. Appl. Phys. Lett. 85, 500–502 (2004). https://doi.org/10.1063/1.1773614

    Article  CAS  Google Scholar 

  153. Wagemaker, M., Lützenkirchen-Hecht, D., Keil, P., et al.: Quasi-in situ reflection mode XANES at the Ti K-edge of lithium intercalated TiO2 rutile and anatase. Phys. B 336, 118–123 (2003). https://doi.org/10.1016/S0921-4526(03)00279-5

    Article  CAS  Google Scholar 

  154. Liu, Z.F., Davis, R.J.: Investigation of the structure of microporous Ti–Si mixed oxides by X-Ray, Uv reflectance, Ft-Raman, and Ft-Ir spectroscopies. J. Phys. Chem. 98, 1253–1261 (1994). https://doi.org/10.1021/j100055a035

    Article  CAS  Google Scholar 

  155. Song, H., Jeong, T.G., Moon, Y.H., et al.: Stabilization of oxygen-deficient structure for conducting Li4Ti5O12-delta by molybdenum doping in a reducing atmosphere. Sci. Rep. 4, 4350 (2014). https://doi.org/10.1038/srep04350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Konno, H.: Chapter 8—X-ray photoelectron spectroscopy. In: Inagaki, M., Kang, F. (eds.) Materials Science and Engineering of Carbon, pp. 153–171. Butterworth-Heinemann, Oxford (2016)

    Google Scholar 

  157. Kang, Q., Cao, J., Zhang, Y., et al.: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766–5774 (2013). https://doi.org/10.1039/C3TA10689F

    Article  CAS  Google Scholar 

  158. Guo, Q., Cheng, X., Shi, Y., et al.: Bluish Li4Ti5O12 with enhanced rate performance. J. Alloys Compd. 710, 383–392 (2017). https://doi.org/10.1016/j.jallcom.2017.03.296

    Article  CAS  Google Scholar 

  159. Wu, W.Y., Chang, Y.M., Ting, J.M.: Room-temperature synthesis of single-crystalline anatase TiO2 nanowires. Cryst. Growth Des. 10, 1646–1651 (2010). https://doi.org/10.1021/cg901210c

    Article  CAS  Google Scholar 

  160. Ferraro, J.R., Nakamoto, K., Brown, C.W.: Chapter 1—basic theory. In: Ferraro, J.R., Nakamoto, K., Brown, C.W. (eds.) Introductory Raman spectroscopy, 2nd edn, pp. 1–94. Academic Press, San Diego (2003)

    Google Scholar 

  161. Zhang, X.Q., Chen, J.B., Wang, C.W., et al.: Low-temperature liquid phase reduced TiO2 nanotube arrays: synergy of morphology manipulation and oxygen vacancy doping for enhancement of field emission. Nanotechnology 26, 175705 (2015). https://doi.org/10.1088/0957-4484/26/17/175705

    Article  CAS  PubMed  Google Scholar 

  162. Yi, T.F., Jiang, L.J., Liu, J., et al.: Structure and physical properties of Li4Ti5O12 synthesized at deoxidization atmosphere. Ionics 17, 799–803 (2011). https://doi.org/10.1007/s11581-011-0581-z

    Article  CAS  Google Scholar 

  163. Parker, J.C., Siegel, R.W.: Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 57, 943–945 (1990). https://doi.org/10.1063/1.104274

    Article  CAS  Google Scholar 

  164. Zhang, W.F., He, Y.L., Zhang, M.S., et al.: Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33, 912–916 (2000). https://doi.org/10.1088/0022-3727/33/8/305

    Article  CAS  Google Scholar 

  165. Choudhury, B., Dey, M., Choudhury, A.: Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3, 25 (2013). https://doi.org/10.1186/2228-5326-3-25

    Article  CAS  Google Scholar 

  166. Sarkar, A., Karmakar, K., Khan, G.G.: Designing Co–Pi modified one-dimensional N–P TiO2/ZnCo2O4 nanoheterostructure photoanode with reduced electron–hole pair recombination and excellent photoconversion efficiency (> 3%). J. Phys. Chem. C 121, 25705–25717 (2017). https://doi.org/10.1021/acs.jpcc.7b08213

    Article  CAS  Google Scholar 

  167. Wajid Shah, M., Zhu, Y., Fan, X., et al.: Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 5, 15804 (2015). https://doi.org/10.1038/srep15804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. McDevitt, N.T., Baun, W.L.: Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim. Acta 20, 799–808 (1964). https://doi.org/10.1016/0371-1951(64)80079-5

    Article  CAS  Google Scholar 

  169. Wang, P., Qi, C., Wen, P., et al.: Synthesis of Si, N co-doped nano-sized TiO2 with high thermal stability and photocatalytic activity by mechanochemical method. Nanomaterials (2018). https://doi.org/10.3390/nano8050294

    Article  PubMed  PubMed Central  Google Scholar 

  170. Benjwal, P., Kar, K.K.: Removal of methylene blue from wastewater under a low power irradiation source by Zn, Mn co-doped TiO2 photocatalysts. RSC Adv. 5, 98166–98176 (2015). https://doi.org/10.1039/C5RA19353B

    Article  CAS  Google Scholar 

  171. Yu, D., Goh, K., Wang, H., et al.: Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555 (2014). https://doi.org/10.1038/NNANO.2014.93

    Article  CAS  PubMed  Google Scholar 

  172. Li, J., Zhang, M., Guan, Z., et al.: Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B 206, 300–307 (2017). https://doi.org/10.1016/j.apcatb.2017.01.025

    Article  CAS  Google Scholar 

  173. Sun, Y., Egawa, T., Shao, C., et al.: Quantitative study of F center in high-surface-area anatase titania nanoparticles prepared by MOCVD. J. Phys. Chem. Solids 65, 1793–1797 (2004). https://doi.org/10.1016/j.jpcs.2004.05.006

    Article  CAS  Google Scholar 

  174. Guo, Y., Chen, S., Yu, Y., et al.: Hydrogen-location-sensitive modulation of the redox reactivity for oxygen-deficient TiO2. J. Am. Chem. Soc. (2019). https://doi.org/10.1021/jacs.9b01836

    Article  PubMed  PubMed Central  Google Scholar 

  175. Meng, W.-W., Yan, B.-L., Xu, Y.-J.: A facile electrochemical modification route in molten salt for Ti3+ self-doped spinel lithium titanate. Electrochim. Acta 279, 128–135 (2018). https://doi.org/10.1016/j.electacta.2018.05.070

    Article  CAS  Google Scholar 

  176. Liu, H., Ma, H.T., Li, X.Z., et al.: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50, 39–46 (2003). https://doi.org/10.1016/S0045-6535(02)00486-1

    Article  CAS  PubMed  Google Scholar 

  177. Kaftelen, H., Tuncer, M., Tu, S., et al.: Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy. J. Mater. Chem. A 1, 9973–9982 (2013). https://doi.org/10.1039/C3TA11590A

    Article  CAS  Google Scholar 

  178. Yoshida, K., Kawai, T., Nambara, T., et al.: Direct observation of oxygen atoms in rutile titanium dioxide by spherical aberration corrected high-resolution transmission electron microscopy. Nanotechnology 17, 3944–3950 (2006). https://doi.org/10.1088/0957-4484/17/15/056

    Article  CAS  Google Scholar 

  179. Lu, X., Zhao, L., He, X., et al.: Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv. Mater. 24, 3233–3238 (2012). https://doi.org/10.1002/adma.201200450

    Article  CAS  PubMed  Google Scholar 

  180. Gomathi Devi, L., Narasimha Murthy, B.: Characterization of Mo Doped TiO2 and its enhanced photo catalytic activity under visible light. Catal. Lett. 125, 320–330 (2008). https://doi.org/10.1007/s10562-008-9568-4

    Article  CAS  Google Scholar 

  181. Ho, W., Yu, J.C., Lee, S.: Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 10, 1115–1117 (2006). https://doi.org/10.1039/B515513D

    Article  Google Scholar 

  182. Samsudin, E.M., Abd Hamid, S.B., Juan, J.C., et al.: Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine. RSC Adv. 5, 44041–44052 (2015). https://doi.org/10.1039/C5RA00890E

    Article  CAS  Google Scholar 

  183. Lü, X., Chen, A., Luo, Y., et al.: Conducting Interface in oxide homojunction: understanding of superior properties in black TiO2. Nano Lett. 16, 5751–5755 (2016). https://doi.org/10.1021/acs.nanolett.6b02454

    Article  CAS  PubMed  Google Scholar 

  184. Muller, D.A., Nakagawa, N., Ohtomo, A., et al.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430, 657–661 (2004). https://doi.org/10.1038/nature02756

    Article  CAS  PubMed  Google Scholar 

  185. Nakagawa, N., Hwang, H.Y., Muller, D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006). https://doi.org/10.1038/nmat1569

    Article  CAS  Google Scholar 

  186. Widmaier, M., Pfeifer, K., Bommer, L., et al.: Valence-tuned lithium titanate nanopowder for high-rate electrochemical energy storage. Batter. Supercaps 1, 11–26 (2018). https://doi.org/10.1002/batt.201700007

    Article  CAS  Google Scholar 

  187. Hugenschmidt, M.B., Gamble, L., Campbell, C.T.: The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302, 329–340 (1994). https://doi.org/10.1016/0039-6028(94)90837-0

    Article  CAS  Google Scholar 

  188. Henderson, M.A.: Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O. Surf. Sci. 400, 203–219 (1998). https://doi.org/10.1016/S0039-6028(97)00863-7

    Article  CAS  Google Scholar 

  189. Besselmann, S., Freitag, C., Hinrichsen, O., et al.: Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts. Phys. Chem. Chem. Phys. 3, 4633–4638 (2001). https://doi.org/10.1039/B105466J

    Article  CAS  Google Scholar 

  190. Setvin, M., Hulva, J., Parkinson, G.S., et al.: Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 114, E2556–E2562 (2017). https://doi.org/10.1073/pnas.1618723114

    Article  CAS  PubMed  Google Scholar 

  191. Ma, Y., Wang, X., Jia, Y., et al.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014). https://doi.org/10.1021/cr500008u

    Article  CAS  PubMed  Google Scholar 

  192. Huang, S.Y., Kavan, L., Exnar, I., et al.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142–L144 (1995). https://doi.org/10.1149/1.2048726

    Article  CAS  Google Scholar 

  193. Jiang, C., Wei, M., Qi, Z., et al.: Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166, 239–243 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.004

    Article  CAS  Google Scholar 

  194. Yang, Z.G., Choi, D., Kerisit, S., et al.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038

    Article  CAS  Google Scholar 

  195. Deng, D., Kim, M.G., Lee, J.Y., et al.: Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2, 818–837 (2009). https://doi.org/10.1039/B823474D

    Article  CAS  Google Scholar 

  196. Dawson, J.A., Robertson, J.: Improved calculation of Li and Na intercalation properties in anatase, rutile, and TiO2(B). J. Phys. Chem. C 120, 22910–22917 (2016). https://doi.org/10.1021/acs.jpcc.6b08842

    Article  CAS  Google Scholar 

  197. Tsai, P.-C., Hsu, W.-D., Lin, S.-K.: Atomistic structure and Ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. J. Electrochem. Soc. 161, A439–A444 (2014). https://doi.org/10.1149/2.095403jes

    Article  CAS  Google Scholar 

  198. Ohzuku, T., Ueda, A., Yamamoto, N.: Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995). https://doi.org/10.1149/1.2048592

    Article  CAS  Google Scholar 

  199. Kostlánová, T., Dědeček, J., Krtil, P.: The effect of the inner particle structure on the electronic structure of the nano-crystalline Li–Ti–O spinels. Electrochim. Acta 52, 1847–1856 (2007). https://doi.org/10.1016/j.electacta.2006.07.048

    Article  CAS  Google Scholar 

  200. Jhan, Y.R., Duh, J.G.: Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density. Electrochim. Acta 63, 9–15 (2012). https://doi.org/10.1016/j.electacta.2011.12.014

    Article  CAS  Google Scholar 

  201. Kim, C., Norberg, N.S., Alexander, C.T., et al.: Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes. Adv. Funct. Mater. 23, 1214–1222 (2013). https://doi.org/10.1002/adfm.201201684

    Article  CAS  Google Scholar 

  202. Asahi, R., Taga, Y., Mannstadt, W., et al.: Electronic and optical properties of anatase TiO2. Phys. Rev. B 61, 7459–7465 (2000). https://doi.org/10.1103/PhysRevB.61.7459

    Article  CAS  Google Scholar 

  203. Yeh, H.L., Tai, S.H., Hsieh, C.M., et al.: First-principles study of lithium intercalation and diffusion in oxygen-defective titanium dioxide. J. Phys. Chem. C 122, 19447–19454 (2018). https://doi.org/10.1021/acs.jpcc.8b06540

    Article  CAS  Google Scholar 

  204. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., et al.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013). https://doi.org/10.1038/nmat3697

    Article  CAS  PubMed  Google Scholar 

  205. Burdett, J.K., Hughbanks, T., Miller, G.J., et al.: Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639–3646 (1987). https://doi.org/10.1021/ja00246a021

    Article  CAS  Google Scholar 

  206. Shi, L.-B., Wang, Y.P.: A study on native defects and magnetic properties in undoped rutile TiO2 using LDA and LDA + UOp + UTid methods. J. Magn. Magn. Mater. 405, 1–8 (2016). https://doi.org/10.1016/j.jmmm.2015.12.045

    Article  CAS  Google Scholar 

  207. Morgan, B.J., Madden, P.A.: Lithium intercalation into TiO2(B): a comparison of LDA, GGA, and GGA + Udensity functional calculations. Phys. Rev. B 86, 035147 (2012). https://doi.org/10.1103/PhysRevB.86.035147

    Article  CAS  Google Scholar 

  208. D’Elia, D.: Elaboration and study of TiO2 nanostructures for hydrogen generation via photolysis of water. École Nationale Supérieure des Mines de Paris (2011)

  209. Feist, T.P., Davies, P.K.: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275–295 (1992). https://doi.org/10.1016/0022-4596(92)90184-W

    Article  CAS  Google Scholar 

  210. Ouyang, C.Y., Zhong, Z.Y., Lei, M.S.: Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun. 9, 1107–1112 (2007). https://doi.org/10.1016/j.elecom.2007.01.013

    Article  CAS  Google Scholar 

  211. Kellerman, D.G., Mukhina, N.A., Zhuravlev, N.A., et al.: Optical absorption and nuclear magnetic resonance in lithium titanium spinel doped by chromium. Phys. Solid State 52, 459–464 (2010). https://doi.org/10.1134/s1063783410030030

    Article  CAS  Google Scholar 

  212. Raja, M.W., Mahanty, S., Kundu, M., et al.: Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J. Alloys Compd. 468, 258–262 (2009). https://doi.org/10.1016/j.jallcom.2007.12.072

    Article  CAS  Google Scholar 

  213. Scharner, S., Weppner, W., Schmid-Beurmann, P.: Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J. Electrochem. Soc. 146, 857–861 (1999). https://doi.org/10.1149/1.1391692

    Article  CAS  Google Scholar 

  214. Wagemaker, M., Borghols, W.J.H., Mulder, F.M.: Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323–4327 (2007). https://doi.org/10.1021/ja067733p

    Article  CAS  PubMed  Google Scholar 

  215. Armstrong, A.R., Armstrong, G., Canales, J., et al.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862–865 (2005). https://doi.org/10.1002/adma.200400795

    Article  CAS  Google Scholar 

  216. Shin, J.-Y., Samuelis, D., Maier, J.: Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv. Funct. Mater. 21, 3464–3472 (2011). https://doi.org/10.1002/adfm.201002527

    Article  CAS  Google Scholar 

  217. Rahman, M.A., Wang, X., Wen, C.: Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. J. Energy Chem. 24, 157–170 (2015). https://doi.org/10.1016/S2095-4956(15)60296-0

    Article  Google Scholar 

  218. Dambournet, D., Belharouak, I., Amine, K.: Tailored preparation methods of TiO2 anatase, Rutile, Brookite: mechanism of formation and electrochemical properties. Chem. Mater. 22, 1173–1179 (2010). https://doi.org/10.1021/cm902613h

    Article  CAS  Google Scholar 

  219. Shin, J.Y., Joo, J.H., Samuelis, D., et al.: Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012). https://doi.org/10.1021/cm2031009

    Article  CAS  Google Scholar 

  220. Song, H., Yun, S.W., Chun, H.H., et al.: Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 5, 9903–9913 (2012). https://doi.org/10.1039/C2EE22734G

    Article  CAS  Google Scholar 

  221. Lu, Z., Yip, C.T., Wang, L., et al.: Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 77, 991–1000 (2012). https://doi.org/10.1002/cplu.201200104

    Article  CAS  Google Scholar 

  222. Ventosa, E., Tymoczko, A., Xie, K., et al.: Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO2 for high-charging-rate batteries. Chemsuschem 7, 2584–2589 (2014). https://doi.org/10.1002/cssc.201402279

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, Z., Zhou, Z., Nie, S., et al.: Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.121

    Article  CAS  Google Scholar 

  224. Zheng, J., Liu, Y., Ji, G., et al.: Hydrogenated oxygen-deficient blue anatase as anode for high-performance lithium batteries. ACS Appl. Mater. Interfaces. 7, 23431–23438 (2015). https://doi.org/10.1021/acsami.5b07000

    Article  CAS  PubMed  Google Scholar 

  225. Kim, J.G., Shi, D., Kong, K.J., et al.: Structurally and electronically designed TiO2Nx nanofibers for lithium rechargeable batteries. ACS Appl. Mater. Interfaces. 5, 691–696 (2013). https://doi.org/10.1021/am302197y

    Article  CAS  PubMed  Google Scholar 

  226. Tian, H., Xin, F., Tan, X., et al.: High lithium electroactivity of boron-doped hierarchical rutile submicrosphere TiO2. J. Mater. Chem. A 2, 10599–10606 (2014). https://doi.org/10.1039/C4TA01438C

    Article  CAS  Google Scholar 

  227. Cao, M., Tao, L., Lv, X., et al.: Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. J. Power Sources 396, 327–334 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.012

    Article  CAS  Google Scholar 

  228. Finazzi, E., Di Valentin, C., Pacchioni, G., et al.: Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA + U, and hybrid DFT calculations. J. Chem. Phys. 129, 154113 (2008). https://doi.org/10.1063/1.2996362

    Article  CAS  PubMed  Google Scholar 

  229. Kong, L.M., Zhu, B.L., Pang, X.Y., et al.: First-principles study on TiO2-B with oxygen vacancies as a negative material of rechargeable lithium-ion batteries. Acta Phys. Chim. Sin. 32, 656–664 (2016). https://doi.org/10.3866/pku.whxb201512292

    Article  CAS  Google Scholar 

  230. Zhang, Y., Ding, Z.Y., Foster, C.W., et al.: Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201700856

    Article  PubMed  PubMed Central  Google Scholar 

  231. Dalton, A.S., Belak, A.A., Van der Ven, A.: Thermodynamics of lithium in TiO2(B) from first principles. Chem. Mater. 24, 1568–1574 (2012). https://doi.org/10.1021/cm203283v

    Article  CAS  Google Scholar 

  232. Arrouvel, C., Parker, S.C., Islam, M.S.: Lithium insertion and transport in the TiO2-B anode material: a computational study. Chem. Mater. 21, 4778–4783 (2009). https://doi.org/10.1021/cm900373u

    Article  CAS  Google Scholar 

  233. Zhang, Y.F., Lin, W., Li, Y., et al.: A theoretical study on the electronic structures of TiO2: effect of hartree–fock exchange. J. Phys. Chem. B 109, 19270–19277 (2005). https://doi.org/10.1021/jp0523625

    Article  CAS  PubMed  Google Scholar 

  234. Yuan, T., Cai, R., Shao, Z.P.: Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J. Phys. Chem. C 115, 4943–4952 (2011). https://doi.org/10.1021/jp111353e

    Article  CAS  Google Scholar 

  235. Samin, A., Kurth, M., Cao, L.: Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries. AIP Adv. (2015). https://doi.org/10.1063/1.4917308

    Article  Google Scholar 

  236. Morgan, B.J., Watson, G.W.: GGA + U description of lithium intercalation into anatase TiO2. Phys. Rev. B 82, 144119 (2010). https://doi.org/10.1103/PhysRevB.82.144119

    Article  CAS  Google Scholar 

  237. Spreafico, C., VandeVondele, J.: Excess electrons and interstitial Li atoms in TiO2 anatase: properties of the (101) interface. J. Phys. Chem. C 119, 15009–15018 (2015). https://doi.org/10.1021/acs.jpcc.5b04103

    Article  CAS  Google Scholar 

  238. Södergren, S., Siegbahn, H., Rensmo, H., et al.: Lithium intercalation in nanoporous anatase TiO2 studied with XPS. J. Phys. Chem. B 101, 3087–3090 (1997). https://doi.org/10.1021/jp9639399

    Article  Google Scholar 

  239. Augustsson, A., Henningsson, A., Butorin, S.M., et al.: Lithium ion insertion in nanoporous anatase TiO2 studied with RIXS. J. Chem. Phys. 119, 3983–3987 (2003). https://doi.org/10.1063/1.1591735

    Article  CAS  Google Scholar 

  240. Henningsson, A., Rensmo, H., Sandell, A., et al.: Electronic structure of electrochemically Li-inserted TiO2 studied with synchrotron radiation electron spectroscopies. J. Chem. Phys. 118, 5607–5612 (2003). https://doi.org/10.1063/1.1545086

    Article  CAS  Google Scholar 

  241. Richter, J.H., Henningsson, A., Karlsson, P.G., et al.: Electronic structure of lithium-doped anatase TiO2 prepared in ultrahigh vacuum. Phys. Rev. B 71, 235418 (2005). https://doi.org/10.1103/PhysRevB.71.235418

    Article  CAS  Google Scholar 

  242. Brant, A.T., Giles, N.C., Halliburton, L.E.: Insertion of lithium ions into TiO2 (rutile) crystals: an electron paramagnetic resonance study of the Li-associated Ti3+ small polaron. J. Appl. Phys. 113, 053712 (2013). https://doi.org/10.1063/1.4790366

    Article  CAS  Google Scholar 

  243. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W., et al.: Density-functional simulations of lithium intercalation in rutile. Phys. Rev. B 65, 235423 (2002). https://doi.org/10.1103/physrevb.65.235423

    Article  Google Scholar 

  244. Legrain, F., Malyi, O., Manzhos, S.: Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J. Power Sources 278, 197–202 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.058

    Article  CAS  Google Scholar 

  245. Liu, D.T., Ouyang, C.Y., Shu, J., et al.: Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B Basic Solid State Phys. 243, 1835–1841 (2006). https://doi.org/10.1002/pssb.200541404

    Article  CAS  Google Scholar 

  246. Zhong, Z., Ouyang, C., Shi, S., et al.: Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem 9, 2104–2108 (2008). https://doi.org/10.1002/cphc.200800333

    Article  CAS  PubMed  Google Scholar 

  247. Das, S.K., Gnanavel, M., Patel, M.U.M., et al.: Anamolously high lithium storage in mesoporous nanoparticulate aggregation of Fe3+ doped anatase titania. J. Electrochem. Soc. 158, A1290–A1297 (2011). https://doi.org/10.1149/2.029112jes

    Article  CAS  Google Scholar 

  248. Grosjean, R., Fehse, M., Pigeot-Remy, S., et al.: Facile synthetic route towards nanostructured Fe–TiO2 (B), used as negative electrode for Li-ion batteries. J. Power Sources 278, 1–8 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.032

    Article  CAS  Google Scholar 

  249. Zhang, W., Gong, Y., Mellott, N.P., et al.: Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources 276, 39–45 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.098

    Article  CAS  Google Scholar 

  250. Luebke, M., Shin, J., Marchand, P., et al.: Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J. Mater. Chem. A 3, 22908–22914 (2015). https://doi.org/10.1039/c5ta07554h

    Article  CAS  Google Scholar 

  251. Thi, T.V., Rai, A.K., Gim, J., et al.: Effect of Mo6+ doping on electrochemical performance of anatase TiO2 as a high performance anode material for secondary lithium-ion batteries. J. Alloys Compd. 598, 16–22 (2014). https://doi.org/10.1016/j.jallcom.2014.02.019

    Article  CAS  Google Scholar 

  252. Wang, Y., Xu, M., Peng, Z., et al.: Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes. J. Mater. Chem. A 1, 13222–13226 (2013). https://doi.org/10.1039/c3ta13198j

    Article  CAS  Google Scholar 

  253. Wang, H., Xi, L., Tucek, J., et al.: Synthesis and characterization of tin titanate nanotubes: precursors for nanoparticulate Sn-doped TiO2 anodes with synergistically improved electrochemical performance. Chemelectrochem 1, 1563–1569 (2014). https://doi.org/10.1002/celc.201402188

    Article  CAS  Google Scholar 

  254. Jung, H.G., Yoon, C.S., Prakash, J., et al.: Mesoporous anatase TiO2 with high surface area and controllable pore size by F-Ion doping: applications for high-power Li-lon battery anode. J. Phys. Chem. C 113, 21258–21263 (2009). https://doi.org/10.1021/jp908719k

    Article  CAS  Google Scholar 

  255. Goriparti, S., Miele, E., Prato, M., et al.: Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 7, 25139–25146 (2015). https://doi.org/10.1021/acsami.5b06426

    Article  CAS  PubMed  Google Scholar 

  256. Xiao, Y., Hu, C., Cao, M.: Compositing amorphous TiO2 with N-doped carbon as high-rate anode materials for lithium-ion batteries. Chem. Asian J. 9, 351–356 (2014). https://doi.org/10.1002/asia.201301183

    Article  CAS  PubMed  Google Scholar 

  257. Yang, Y., Ji, X., Jing, M., et al.: Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3, 5648–5655 (2015). https://doi.org/10.1039/c4ta05611f

    Article  CAS  Google Scholar 

  258. Zhang, Y., Fu, Q., Xu, Q., et al.: Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries. Nanoscale 7, 12215–12224 (2015). https://doi.org/10.1039/c5nr02457a

    Article  CAS  PubMed  Google Scholar 

  259. Chen, C., Zhang, B., Miao, L., et al.: Binding TiO2-B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. J. Mater. Chem. A 4, 8172–8179 (2016). https://doi.org/10.1039/c6ta01955b

    Article  CAS  Google Scholar 

  260. Lai, C., Yuan, X.C., Cao, X.L., et al.: Enhanced high-rate capability of the C-N-doped TiO2 as anode material for lithium-ion battery. Electrochem. Solid State Lett. 15, A65–A67 (2012). https://doi.org/10.1149/2.023205esl

    Article  CAS  Google Scholar 

  261. Gao, Y., Wang, C., Hu, P., et al.: Carbon-incorporated, nitrogen-doped branch-like TiO2 nanostructure towards superior lithium storage performance. J. Alloys Compd. 787, 944–951 (2019). https://doi.org/10.1016/j.jallcom.2019.02.169

    Article  CAS  Google Scholar 

  262. Bi, Z., Paranthaman, M.P., Guo, B., et al.: High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries. J. Mater. Chem. A 2, 1818–1824 (2014). https://doi.org/10.1039/c3ta14535b

    Article  CAS  Google Scholar 

  263. Kumar, V.S.P., Deshpande, P.A.: DFT reveals concentration-dependent cathodic/anodic behaviour of lithiated titania. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aad5bc

    Article  Google Scholar 

  264. Liu, X.D., Jiang, E.Y., Li, Z.Q., et al.: Electronic structure and optical properties of Nb-doped anatase TiO2. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2949070

    Article  PubMed  PubMed Central  Google Scholar 

  265. Peng, H.W., Li, J.B., Li, S.S., et al.: First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2. J. Phys. Condens. Matter (2008). https://doi.org/10.1088/0953-8984/20/12/125207

    Article  PubMed  Google Scholar 

  266. Shirley, R., Kraft, M., Inderwildi, O.R.: Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations. Phys. Rev. B (2010). https://doi.org/10.1103/physrevb.81.075111

    Article  Google Scholar 

  267. Yu, Q.H., Jin, L., Zhou, C.G.: Ab initio study of electronic structures and absorption properties of pure and Fe3+ doped anatase TiO2. Sol. Energy Mater. Sol. Cells 95, 2322–2326 (2011). https://doi.org/10.1016/j.solmat.2011.03.048

    Article  CAS  Google Scholar 

  268. Zhang, R.S., Liu, Y., Gao, Q., et al.: First-principles study on the electronic and optical properties of F- and Nb-doped anatase TiO2. J. Alloys Compd. 509, 9178–9182 (2011). https://doi.org/10.1016/j.jallcom.2011.06.105

    Article  CAS  Google Scholar 

  269. Li, C., Zhao, Y.F., Gong, Y.Y., et al.: Band gap engineering of early transition-metal-doped anatase TiO(2): first principles calculations. Phys. Chem. Chem. Phys. 16, 21446–21451 (2014). https://doi.org/10.1039/c4cp03587a

    Article  CAS  PubMed  Google Scholar 

  270. Han, Y.X., Yang, C.L., Wang, M.S., et al.: Enhancing the visible-light absorption of TiO2 with the use of key N Co, and Na dopant concentrations. Sol. Energy Mater. Sol. Cells 132, 94–100 (2015). https://doi.org/10.1016/j.solmat.2014.08.027

    Article  CAS  Google Scholar 

  271. Pan, J.W., Li, C., Zhao, Y.F., et al.: Electronic properties of TiO2 doped with Sc, Y, La, Zr, Hf, V, Nb and Ta. Chem. Phys. Lett. 628, 43–48 (2015). https://doi.org/10.1016/j.cplett.2015.03.056

    Article  CAS  Google Scholar 

  272. Yang, X.Y., Min, Y.X., Li, S.B., et al.: Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants. Catal. Sci. Technol. 8, 1357–1365 (2018). https://doi.org/10.1039/c7cy02614e

    Article  CAS  Google Scholar 

  273. Yu, Z.J., Zhang, X.F., Yang, G.L., et al.: High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery. Electrochim. Acta 56, 8611–8617 (2011). https://doi.org/10.1016/j.electacta.2011.07.051

    Article  CAS  Google Scholar 

  274. Hao, Y.J., Lai, Q.Y., Lu, J.Z., et al.: Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials. Ionics 13, 369–373 (2007). https://doi.org/10.1007/s11581-007-0111-1

    Article  CAS  Google Scholar 

  275. Li, X., Qu, M.Z., Yu, Z.L.: Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries. J. Alloys Compd. 487, L12–L17 (2009). https://doi.org/10.1016/j.jallcom.2009.07.176

    Article  CAS  Google Scholar 

  276. Kim, J.G., Park, M.S., Hwang, S.M., et al.: Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection. Chemsuschem 7, 1451–1457 (2014). https://doi.org/10.1002/cssc.201301393

    Article  CAS  PubMed  Google Scholar 

  277. Tian, B.B., Xiang, H.F., Zhang, L., et al.: Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim. Acta 55, 5453–5458 (2010). https://doi.org/10.1016/j.electacta.2010.04.068

    Article  CAS  Google Scholar 

  278. Zhong, Z.: Synthesis of Mo4+ substituted spinel Li4Ti5−x MoxO12. Electrochem. Solid-State Lett. 10, A267–A269 (2007). https://doi.org/10.1149/1.2784142

    Article  CAS  Google Scholar 

  279. Jhan, Y.R., Lin, C.Y., Duh, J.G.: Preparation and characterization of ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability. Mater. Lett. 65, 2502–2505 (2011). https://doi.org/10.1016/j.matlet.2011.04.060

    Article  CAS  Google Scholar 

  280. Zhang, Q.Y., Verde, M.G., Seo, J.K., et al.: Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries. J. Power Sources 280, 355–362 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.124

    Article  CAS  Google Scholar 

  281. Song, K., Seo, D.-H., Jo, M.R., et al.: Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery. J. Phys. Chem. Lett. 5, 1368–1373 (2014). https://doi.org/10.1021/jz5002924

    Article  CAS  PubMed  Google Scholar 

  282. Yi, T.F., Yang, S.Y., Li, X.Y., et al.: Sub-micrometric Li4−xNaxTi5O12 (0 \({\leqslant}\)x \({\leqslant}\)= 0.2) spinel as anode material exhibiting high rate capability. J. Power Sources 246, 505–511 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.005

    Article  CAS  Google Scholar 

  283. Chen, C.H., Vaughey, J.T., Jansen, A.N., et al.: Studies of Mg-substituted Li4−xMgxTi5O12 spinel Electrodes (0 ≤ x ≤1) for Lithium Batteries. J. Electrochem. Soc. 148, A102–A104 (2001). https://doi.org/10.1149/1.1344523

    Article  CAS  Google Scholar 

  284. Zhang, Q.Y., Zhang, C.L., Li, B., et al.: Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery. Electrochim. Acta 98, 146–152 (2013). https://doi.org/10.1016/j.electacta.2013.03.006

    Article  CAS  Google Scholar 

  285. Wu, H.B., Chang, S., Liu, X.L., et al.: Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries. Solid State Ionics 232, 13–18 (2013). https://doi.org/10.1016/j.ssi.2012.10.027

    Article  CAS  Google Scholar 

  286. Du, G.D., Sharma, N., Peterson, V.K., et al.: Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: synchrotron X-ray and in situ neutron diffraction studies. Adv. Funct. Mater. 21, 3990–3997 (2011). https://doi.org/10.1002/adfm.201100846

    Article  CAS  Google Scholar 

  287. Long, W.M., Wang, X.Y., Yang, S.Y., et al.: Electrochemical properties of Li4Ti5−2xNixMnxO12 compounds synthesized by sol-gel process. Mater. Chem. Phys. 131, 431–435 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.071

    Article  CAS  Google Scholar 

  288. Zhang, Q., Lu, H., Zhong, H., et al.: W6+ & Br codoped Li4Ti5O12 anode with super rate performance for Li-ion batteries. J. Mater. Chem. A 3, 13706–13716 (2015). https://doi.org/10.1039/C5TA02784E

    Article  CAS  Google Scholar 

  289. Huang, S.H., Wen, Z.Y., Gu, Z.H., et al.: Preparation and cycling performance of Al3+ and F co-substituted compounds Li4AlxTi5−xFyO12−y. Electrochim. Acta 50, 4057–4062 (2005). https://doi.org/10.1016/j.electacta.2004.12.036

    Article  CAS  Google Scholar 

  290. Liu, Z.X., Sun, L.M., Yang, W.Y., et al.: The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sci. 44, 39–44 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.04.002

    Article  CAS  Google Scholar 

  291. Duan, H., Li, J., Du, H.D., et al.: Tailoring native defects and zinc impurities in Li4Ti5O12: insights from first-principles study. J. Phys. Chem. C 119, 5238–5245 (2015). https://doi.org/10.1021/acs.jpcc.5b00829

    Article  CAS  Google Scholar 

  292. Yang, Z., Wang, J., Zhang, Q., et al.: Doping the Li4Ti5O12 lattice with extra-large anions. Mater. Express 5, 457–462 (2015). https://doi.org/10.1166/mex.2015.1259

    Article  CAS  Google Scholar 

  293. Cho, H., Son, H., Kim, D., et al.: Impact of Mg-doping site control in the performance of Li4Ti5O12 Li-ion battery anode: first-principles predictions and experimental verifications. J. Phys. Chem. C 121, 14994–15001 (2017). https://doi.org/10.1021/acs.jpcc.7b01475

    Article  CAS  Google Scholar 

  294. Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86, 1275–1278 (2001). https://doi.org/10.1103/PhysRevLett.86.1275

    Article  CAS  PubMed  Google Scholar 

  295. Brohan, L., Marchand, R.: Properties physiques des bronzes MxTiO2 (B). Solid State Ionics 9–10, 419–424 (1983). https://doi.org/10.1016/0167-2738(83)90269-2

    Article  Google Scholar 

  296. Armstrong, A.R., Arrouvel, C., Gentili, V., et al.: Lithium coordination sites in LixTiO2(B): a structural and computational study. Chem. Mater. 22, 6426–6432 (2010). https://doi.org/10.1021/cm102589x

    Article  CAS  Google Scholar 

  297. Wagemaker, M., Kearley, G.J., van Well, A.A., et al.: Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. J. Am. Chem. Soc. 125, 840–848 (2003). https://doi.org/10.1021/ja028165q

    Article  CAS  PubMed  Google Scholar 

  298. Arrouvel, C., Peixoto, T.C., Valerio, M.E.G., et al.: Lithium migration at low concentration in TiO2 polymorphs. Comput. Theor. Chem. 1072, 43–51 (2015). https://doi.org/10.1016/j.comptc.2015.09.002

    Article  CAS  Google Scholar 

  299. Panduwinata, D., Gale, J.D.: A first principles investigation of lithium intercalation in TiO2-B. J. Mater. Chem. 19, 3931–3940 (2009). https://doi.org/10.1039/B902683E

    Article  CAS  Google Scholar 

  300. Zeng, T., Ji, P., Hu, X., et al.: Nano-Sn doped carbon-coated rutile TiO2 spheres as a high capacity anode for Li-ion battery. RSC Adv. 6, 48530–48536 (2016). https://doi.org/10.1039/C6RA04672J

    Article  CAS  Google Scholar 

  301. Liang, K., Chen, X., Guo, Z., et al.: Lithium intercalation and diffusion in TiO2 nanotubes: a first-principles investigation. Phys. Chem. Chem. Phys. 18, 24370–24376 (2016). https://doi.org/10.1039/c6cp03830a

    Article  CAS  PubMed  Google Scholar 

  302. Olson, C.L., Nelson, J., Islam, M.S.: Defect chemistry, surface structures, and lithium insertion in anatase TiO2. J. Phys. Chem. B 110, 9995–10001 (2006). https://doi.org/10.1021/jp057261l

    Article  CAS  PubMed  Google Scholar 

  303. Ziebarth, B., Klinsmann, M., Eckl, T., et al.: Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles. Phys. Rev. B 89, 174301–174307 (2014). https://doi.org/10.1103/PhysRevB.89.174301

    Article  CAS  Google Scholar 

  304. Chen, Y.C., Ouyang, C.Y., Song, L.J., et al.: Lithium ion diffusion in Li4+xTi5O12: from ab initio studies. Electrochim. Acta 56, 6084–6088 (2011). https://doi.org/10.1016/j.electacta.2011.04.077

    Article  CAS  Google Scholar 

  305. Yildirim, H., Greeley, J.P., Sankaranarayanan, S.K.: The effect of concentration on Li diffusivity and conductivity in rutile TiO2. Phys. Chem. Chem. Phys. 14, 4565–4576 (2012). https://doi.org/10.1039/c2cp22731b

    Article  CAS  PubMed  Google Scholar 

  306. Henkelman, G., Arnaldsson, A., Jonsson, H.: A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  307. Sanville, E., Kenny, S.D., Smith, R., et al.: Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007). https://doi.org/10.1002/jcc.20575

    Article  CAS  PubMed  Google Scholar 

  308. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  309. Pazhamalai, P., Krishnamoorthy, K., Mariappan, V.K., et al.: Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J. Colloid Interface Sci. 536, 62–70 (2019). https://doi.org/10.1016/j.jcis.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  310. Armstrong, A.R., Armstrong, G., Canales, J., et al.: TiO(2)-B nanowires. Angew. Chem. Int. Ed. Engl. 43, 2286–2288 (2004). https://doi.org/10.1002/anie.200353571

    Article  CAS  PubMed  Google Scholar 

  311. Pérez-Flores, J.C., Baehtz, C., Kuhn, A., et al.: Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2, 1825–1833 (2014). https://doi.org/10.1039/c3ta13394j

    Article  CAS  Google Scholar 

  312. Zhang, M., MacRae, A.C., Liu, H., et al.: Communication–investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J. Electrochem. Soc. 163, A2368–A2370 (2016). https://doi.org/10.1149/2.1091610jes

    Article  CAS  Google Scholar 

  313. Saha, P., Datta, M.K., Velikokhatnyi, O.I., et al.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater Sci. 66, 1–86 (2014). https://doi.org/10.1016/j.pmatsci.2014.04.001

    Article  CAS  Google Scholar 

  314. Gan, Q., He, H., Zhao, K., et al.: Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes. ACS Appl. Mater. Interfaces. 10, 7031–7042 (2018). https://doi.org/10.1021/acsami.7b13760

    Article  CAS  PubMed  Google Scholar 

  315. Chen, X., Liu, L., Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015). https://doi.org/10.1039/c4cs00330f

    Article  CAS  PubMed  Google Scholar 

  316. Fan, L.Z., Chi, S.S., Wang, L.N., et al.: Synthesis of TiOx nanotubular arrays with oxygen defects as high-performance anodes for lithium-ion batteries. ChemElectroChem 2, 421–426 (2015). https://doi.org/10.1002/celc.201402331

    Article  CAS  Google Scholar 

  317. Zhang, J., Wang, Y., Wu, J., et al.: Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies. Chem. Eng. J. 313, 1071–1081 (2017). https://doi.org/10.1016/j.cej.2016.11.004

    Article  CAS  Google Scholar 

  318. Shen, L., Uchaker, E., Zhang, X., et al.: Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 24, 6502–6506 (2012). https://doi.org/10.1002/adma.201203151

    Article  CAS  PubMed  Google Scholar 

  319. Deng, X., Wei, Z., Cui, C., et al.: Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6, 4013–4022 (2018). https://doi.org/10.1039/c7ta11301c

    Article  CAS  Google Scholar 

  320. Li, W., Corradini, D., Body, M., et al.: High substitution rate in TiO2 anatase nanoparticles with cationic vacancies for fast lithium storage. Chem. Mater. 27, 5014–5019 (2015). https://doi.org/10.1021/acs.chemmater.5b01407

    Article  CAS  Google Scholar 

  321. Ma, Y., Ding, B., Ji, G., et al.: Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870–10878 (2013). https://doi.org/10.1021/nn404311x

    Article  CAS  PubMed  Google Scholar 

  322. Anh, L.T., Rai, A.K., Thi, T.V., et al.: Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J. Power Sources 243, 891–898 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.080

    Article  CAS  Google Scholar 

  323. Fehse, M., Cavaliere, S., Lippens, P.E., et al.: Nb-doped TiO2 nanofibers for lithium ion batteries. J. Phys. Chem. C 117, 13827–13835 (2013). https://doi.org/10.1021/jp402498p

    Article  CAS  Google Scholar 

  324. Bai, Y.J., Gong, C., Lun, N., et al.: Yttrium-modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long-term cyclability and rate capabilities. J. Mater. Chem. A 1, 89–96 (2013). https://doi.org/10.1039/C2TA00048B

    Article  CAS  Google Scholar 

  325. Chen, J., Ding, Z., Wang, C., et al.: Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces. 8, 9142–9151 (2016). https://doi.org/10.1021/acsami.6b01183

    Article  CAS  PubMed  Google Scholar 

  326. Zhao, C., Cai, Y., Yin, K., et al.: Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 350, 201–208 (2018). https://doi.org/10.1016/j.cej.2018.05.194

    Article  CAS  Google Scholar 

  327. Xiong, P., Zhang, X., Zhang, F., et al.: Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage. ACS Nano 12, 12337–12346 (2018). https://doi.org/10.1021/acsnano.8b06206

    Article  CAS  PubMed  Google Scholar 

  328. Zhang, H., Jiang, Y., Qi, Z., et al.: Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 12, 37–43 (2018). https://doi.org/10.1016/j.ensm.2017.11.008

    Article  CAS  Google Scholar 

  329. He, H., Sun, D., Zhang, Q., et al.: Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces. 9, 6093–6103 (2017). https://doi.org/10.1021/acsami.6b15516

    Article  CAS  PubMed  Google Scholar 

  330. He, H., Huang, D., Pang, W., et al.: Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 30, e1801013 (2018). https://doi.org/10.1002/adma.201801013

    Article  CAS  PubMed  Google Scholar 

  331. Wu, Y., Liu, X., Yang, Z., et al.: Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12, 3522–3529 (2016). https://doi.org/10.1002/smll.201600606

    Article  CAS  PubMed  Google Scholar 

  332. Usui, H., Yoshioka, S., Wasada, K., et al.: Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces. 7, 6567–6573 (2015). https://doi.org/10.1021/am508670z

    Article  CAS  PubMed  Google Scholar 

  333. He, H., Zhang, Q., Wang, H., et al.: Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources 354, 179–188 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035

    Article  CAS  Google Scholar 

  334. Wu, Y., Jiang, Y., Shi, J., et al.: Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small (2017). https://doi.org/10.1002/smll.201700129

    Article  PubMed  PubMed Central  Google Scholar 

  335. Xu, Y., Zhou, M., Wang, X., et al.: Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew. Chem. Int. Ed. Engl. 54, 8768–8771 (2015). https://doi.org/10.1002/anie.201503477

    Article  CAS  PubMed  Google Scholar 

  336. Er, D., Detsi, E., Kumar, H., et al.: Defective graphene and graphene allotropes as high-capacity anode materials for Mg ion batteries. ACS Energy Lett. 1, 638–645 (2016). https://doi.org/10.1021/acsenergylett.6b00308

    Article  CAS  Google Scholar 

  337. Bo, S.-H., Grey, C.P., Khalifah, P.G.: Defect-tolerant diffusion channels for Mg2+ ions in ribbon-type borates: structural insights into potential battery cathodes MgVBO4 and MgxFe2−xB2O5. Chem. Mater. 27, 4630–4639 (2015). https://doi.org/10.1021/acs.chemmater.5b01040

    Article  CAS  Google Scholar 

  338. Shan, P., Gu, Y., Yang, L., et al.: Olivine FePO4 cathode material for rechargeable Mg-ion batteries. Inorg. Chem. 56, 13411–13416 (2017). https://doi.org/10.1021/acs.inorgchem.7b02150

    Article  CAS  PubMed  Google Scholar 

  339. Wang, Y., Xue, X., Liu, P., et al.: Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2−x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12, 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917

    Article  CAS  PubMed  Google Scholar 

  340. Koketsu, T., Ma, J., Morgan, B.J., et al.: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976

    Article  CAS  PubMed  Google Scholar 

  341. He, Y.J., Peng, J.F., Chu, W., et al.: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A 2, 1721–1731 (2014). https://doi.org/10.1039/c3ta13906a

    Article  CAS  Google Scholar 

  342. Li, H., Chen, Z., Tsang, C.K., et al.: Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2, 229–236 (2014). https://doi.org/10.1039/C3TA13963H

    Article  CAS  Google Scholar 

  343. Lu, X., Wang, G., Zhai, T., et al.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012). https://doi.org/10.1021/nl300173j

    Article  CAS  PubMed  Google Scholar 

  344. Zhou, H., Zhang, Y.: Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118, 5626–5636 (2014). https://doi.org/10.1021/jp4082883

    Article  CAS  Google Scholar 

  345. Kim, C., Kim, S., Hong, S.P., et al.: Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties. Phys. Chem. Chem. Phys. 18, 14370–14375 (2016). https://doi.org/10.1039/c6cp01799a

    Article  CAS  PubMed  Google Scholar 

  346. Salari, M., Konstantinov, K., Liu, H.K.: Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J. Mater. Chem. 21, 5128 (2011). https://doi.org/10.1039/c0jm04085a

    Article  CAS  Google Scholar 

  347. Lu, X., Zeng, Y., Yu, M., et al.: Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148–3155 (2014). https://doi.org/10.1002/adma.201305851

    Article  CAS  PubMed  Google Scholar 

  348. Zhou, H., Zhang, Y.: Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process. J. Power Sources 239, 128–131 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Australia Research Council Discovery Projects DP170103721 and DP180102003, the National Key R&D Program of China (2016YFB0700600), the Soft Science Research Project of Guangdong Province (No. 2017B030301013) and the Shenzhen Science and Technology Research Grant (ZDSYS201707281026184). We would also like to thank Dr. Sean E. Lowe (Griffith University) for his contributions in polishing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Pan or Shanqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Liu, J., Li, M. et al. Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochem. Energ. Rev. 3, 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00064-5

Keywords

Navigation