Skip to main content
Log in

CNFET-based digitally controlled impedance multiplier

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

In this paper, a carbon nanotube-FET based impedance multiplier is presented. The circuit uses digitally controlled inverting current conveyor (DCICC). Proposed circuit is functioning accurately with a multiplication factor from 0 to 7. The technique is simple, versatile and compatible for microelectronics. The proposed circuit uses only one active element along with a grounded capacitor. The tuning of impedance is based on the number of tubes in a CNFET with switched on condition which is selected by a digital control technique. The circuit operates with low supply voltage of 0.7 V. The results of DCICC have been verified through HSPICE simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghani T (2009) Challenges and innovations in nano-CMOS transistor scaling. Capturado em: http://download.intel.com/technology/silicon/Neikei_Presentation_2009_Tahir_Ghani.pdf

  2. Chong W-K, Ramiah H, Tan G-H, Vitee N, Kanesan J (2014) Design of ultra-low voltage integrated CMOS based LNA and mixer for ZigBee application. AEU-Int J Electron Commun 68(2):138–142

    Article  Google Scholar 

  3. Guo J, Datta S, Lundstrom M, Brink M, McEuen P, Javey A, Dai H, Kim H, McIntyre P (2002) Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. In: Electron devices meeting, 2002. IEDM’02. International. IEEE, pp 711–714

  4. Banerjee SK, Register LF, Tutuc E, Basu D, Kim S, Reddy D, MacDonald AH (2010) Graphene for CMOS and beyond CMOS applications. Proc IEEE 98(12):2032–2046

    Article  Google Scholar 

  5. Shrivastava M, Asra R, Murali KVRM, Pandey RK, Gossner H, Rao VR (2011) A tunnel FET for scaling below 0.6 V with a CMOS-comparable performance. IEEE Trans Electron Devices 58(7):1855–1863

    Article  Google Scholar 

  6. Deng J, Wong H-SP (2007) A compact spice model for carbon-nanotube field-effect transistors including nonidealities and its application part I: Model of the intrinsic channel region. IEEE Trans Electron Devices 54(12):3186–3194

    Article  Google Scholar 

  7. Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762

    Article  Google Scholar 

  8. Ansari MS, Tripathi SK (2016) Low power design techniques: classical and beyond CMOS era. In: Design and modeling of low power VLSI systems. IGI Global, pp 1–26

  9. Tripathi SK, Ansari MS (2017) Carbon nanotubes as FET channel: analog design optimization considering CNT parameter variability. In: IOP conference series. Materials science and engineering (Online), vol 225

  10. Das KS, Kumar KN, Mouli PC, Srivastava M (2019) A new generalized grounded impedance scaling configuration with electronic/resistor tunability. In: 2019 6th international conference on signal processing and integrated networks (SPIN). IEEE, pp 811–815

  11. Bonteanu G, Cracan A, Goras L (2019) G\(_{\rm m}\) based voltage mode capacitance multiplier. In: 2019 international semiconductor conference (CAS). IEEE, pp 145–148

  12. Stornelli V, Safari L, Barile G, Ferri G (2020) A new extremely low power temperature insensitive electronically tunable VCII-based grounded capacitance multiplier. IEEE Trans Circuits Syst II Express Briefs 68(1):72–76

    Article  Google Scholar 

  13. Simsim MT, Khan IA (2011) A novel impedance multiplier using low voltage digitally controlled CCII. In: GCC conference and exhibition (GCC), 2011 IEEE. IEEE, pp 331–334

  14. Mahmoud SA (2008) Low voltage current-mode digitally controlled VGA based on digitally programmble current conveyors. In: Circuits and systems, 2008. MWSCAS 2008. 51st Midwest Symposium on. IEEE, pp 814–817

  15. Ansari MS (2010) Multiphase sinusoidal oscillator with digital control. In: Power, control and embedded systems (ICPCES), 2010 international conference on. IEEE, pp 1–5

  16. Martel R, Schmidt T, Shea HR, Hertel T, Avouris PH (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73(17):2447–2449

    Article  Google Scholar 

  17. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  Google Scholar 

  18. Ansari MS, Tripathi SK (2014) Voltage-mode universal filter for ZigBee using \(\pm \) 0.9 V 32 nm CNFET ICC-II. In: 5th international conference- (confluence-2014). IEEE, pp 471–475

  19. Tripathi SK, Ansari M et al (2014) Voltage-mode universal filter for ZigBee using \(\pm \) 0.9 V 32 nm CNFET ICC-II. In: Confluence the next generation information technology summit (confluence), 2014 5th international conference-. IEEE, pp 471–475

  20. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  Google Scholar 

  21. Dang T, Anghel L, Leveugle R (2006) CNTFET basics and simulation. In: Design and test of integrated systems in nanoscale technology, 2006. DTIS 2006. International conference on. IEEE, pp 28–33

  22. Luo J, Wei L, Lee C-S, Franklin AD, Wong H-SP (2013) Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length. IEEE Trans Electron Devices 60(6):1834–1843

    Article  Google Scholar 

  23. Fatema N, Ilyas I, Shama RT, Rahman F (2013) Performance evaluation of 32-nm CNT-OPAMPs in analog circuits: design and comparison of leapfrog filters. Adv Mater Res 646:216–221

    Article  Google Scholar 

  24. Ansari MS, Tripathi SK (2014) Tunable active biquad filter in \(\pm \) 0.9 V 32 nm CNFET. In: Electronic system design (ISED), 2014 fifth international symposium on. IEEE, pp 63–67

  25. Awad IA (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86(4):413–432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.K., Tiwari, U. CNFET-based digitally controlled impedance multiplier. Int. j. inf. tecnol. 13, 1937–1941 (2021). https://doi.org/10.1007/s41870-021-00757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-021-00757-0

Keywords

Navigation