Skip to main content
Log in

Dielectric properties and device performance of (Pb0.7 Dy0.15 Bi0.15)(Fe0.3Ti0.7)O3 electronic material

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A dysprosium-modified BiFeO3-PbTiO3 electronic sample [chemical composition of (Pb0.7 Dy0.15 Bi0.15)(Fe0.3Ti0.7)O3] is synthesized through high-temperature mixed oxide/solid-state reaction route. The resistive, conducting, and capacitive behaviour of the fabricated sample is examined in various experimental conditions. The structural evaluation of the specimen is conducted using X-ray diffraction (XRD) data confirming the tetragonal symmetry. The microstructural study reveals the polycrystalline nature of the prepared electronic system. The AC conductivity of the material gives information on the conduction process of the sample. Analysis of impedance spectroscopy data indicates the presence of a non-Debye type of relaxation process in the material. The existence of electric polarization loop affirms the presence of ferroelectric characteristics of the material at room temperature. The material has a low tangent loss, high dielectric permittivity and remnant polarization properties of 0.03, 450 and 0.014 μC/cm2, respectively, at room temperature. The preliminary investigation of performance parameter of the sample (i.e., Dy-modified BiFeO3-PbTiO3) shows enhanced electrical properties, thus formulating it as stronger entrant for functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qing-Xin, S., Kirby, P., Komuro, E., Imura, M., Zhang, Q., Whatmore, R.: Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. IEEE Trans. Microw. Theory. Tech. 49, 769 (2001)

  2. Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K.: Fabrication and characterization of PZT thin-film vibrators for micromotors. Sensors Actuators A. 48, 87 (1995)

  3. Tripathy, A., Pramanik, S., Manna, A., Bhuyan, S., Shah, A., Farhana, N., Radzi, Z., Osman, N.A.A.: Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption. Sensors. 16, 1135 (2016)

  4. Dutta, S., Pandey, A., Yadav, I., Thakur, O.P., Laishram, R., Pal, R., Chatterjee, R.: Improved electrical properties of PbZrTiO3/BiFeO3 multilayers with ZnO buffer layer. J. Appl. Phys. 112, 084101 (2012)

  5. Li, F., Lin, D., Chen, Z., Cheng, Z., et al.: Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018)

  6. Chen, Z., Wang, X., Ringer, S.P., Liao, X.: Manipulation of Nanoscale Domain Switching Using an Electron Beam with Omnidirectional Electric Field Distribution. Phys. Rev. Lett. 117, 027601 (2016)

  7. Chen, Z., Hong, L., Wang, F., Ringer, S.P., et al.: Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures. Phys. Rev. Lett. 118, 017601 (2017)

  8. Halder, S., Bhuyan, S., Das, S.N., Sahoo, S., Choudhary, R.N.P., Das, P., Parida, K.: Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn2/3Ta1/3)O3 electronic material. Appl. Phys. A Mater. Sci. Process. 123, 781 (2017)

  9. Lu, Z.G., Calvarin, G.: Frequency dependence of the complex dielectric permittivity of ferroelectric relaxors. Phys. Rev. B. 51, 2694 (1995)

  10. Cross, L.E.: Relaxor ferroelectrics. Ferro. 76, 241 (1987)

  11. Settler, N., Cross, L.E.: The role of B‐site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51, 4356 (1980)

  12. Qi, W., Chen, J., Fan, L., et al.: Preparation and Electric Properties of Bi0.5Na0.5TiO3–Bi(Al0.5Ga0.5)O3 Lead-Free Piezoceramics. J. Am. Ceram. Soc. 96, 3793 (2013).

  13. Halder, S., Bhuyan, S., Choudhary, R.N.P.: Synthesis and Electrical Characterization of Lead-Free Electronic Material: Bi(Co2/3Nb1/3)O3. Trans. Electr. Electron. Mater. 20, 24 (2019)

  14. Chen, X., Chen, J., Ma, D., Fang, L., Zhou, H.: Thermally Stable BaTiO3‐Bi(Mg2/3Nb1/3)O3 Solid Solution with High Relative Permittivity in a Broad Temperature Usage Range. J. Am. Ceram. Soc. 1, (2015)

  15. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 299, 1719 (2003)

  16. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science. 309, 391 (2005)

  17. Baek, S.H., Jang, H.W., Folkman, C.M., Li, Y.L., Winchester, B., Zhang, J.X., He, Q., Chu, Y.H., Nelson, C.T., Rzchowski, M.S., Pan, X.Q., Ramesh, R., Chen, L.Q., Eom, C.B.: Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309 (2010)

  18. Wu, Y.J., Chen, X.K., Zhang, J., Chen, X.J.: Magnetic enhancement across a ferroelectric–antiferroelectric phase boundary in Bi1−xNdxFeO3. J. Appl. Phys. 111, 053927 (2012)

  19. Das, S.N., Pradhan, S.K., Bhuyan, S., Choudhary, R.N.P.: Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system. J. Mater. Sci. Mater. Electron. 28, 18913 (2017)

  20. Mazumder, R., Sen, A.: Effect of Pb-doping on dielectric properties of BiFeO3 ceramicsEffect of Pb-doping on dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 475, 577 (2009)

  21. Yuan, B., Yang, J., Zuo, et.al.: Dielectric relaxation and magnetodielectric response in DyMn0.5Cr0.5O3. J. Appl. Phys. 118, 124103 (2015)

  22. Cheng, J., Yu, S.W., Chen, J., Meng, Z., Cross, L.E.: Dielectric and magnetic enhancements in BiFeO3–PbTiO3BiFeO3–PbTiO3 solid solutions with La doping. Appl. Phys. Lett. 89, 122911 (2006)

  23. Wu, E.E.: POWD, an interactive program for powder diffraction data interpretation and indexing. J. Appl. Crystallogr. 22, 506 (1989)

  24. Tripathy, A., Das, S.N., Bhuyan, S., Choudhary, R.N.P.: Structural, Morphological and Electrical Impedance Spectroscopy of Bi2MnCdO6 Double Perovskite Electronic Material. Trans. Electr. Electron. Mater. 20, 280 (2019)

  25. Reetu, A., Agarwal, S., Sanghi, N., Ahlawat, M.: Phase transformation, dielectric and magnetic properties of Nb doped Bi0.8Sr0.2FeO3 multiferroics. J. Appl. Phys. 111, 113917 (2012)

  26. Mishra, K.K., Satya, A.T., Bharathi, A., Sivasubramanian, V., Murthy, V.R.K., Arora, A.K.: Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J. Appl. Phys. 10, 123529 (2011)

  27. Garcia, J.E., Gomis, V., Perez, R., Albareda, A., Eiran, J.A.: Unexpected dielectric response in lead zirconate titanate ceramics: The role of ferroelectric domain wall pinning effects. Appl. Phys. Lett. 91, 0429021 (2007)

  28. Samal, S.K., Halder, S., Mallick, M.K., Choudhary, R.N.P., Bhuyan, S.: Frequency-and temperature-dependent dielectric features of multi-component electronic material:(Pb 0.8 Dy 0.1 Bi 0.1)(Fe 0.2 Ti 0.8) O 3. Appl. Phys. A Mater. Sci. Process. 126, 377 (2020)

  29. Saparjya, S., Badapanda, T., Behera, S., et.al.: Effect of Gadolinium on the structural and dielectric properties of BCZT ceramics. Phase Transitions. 93 ,245(2020)

  30. Dai, Z., Akishige, Y.: Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering. J. Phys. D. Appl. Phys. 43, 445403 (2010)

  31. Sharma, S., Singh, V., Parkash, O., Dwivedi, R.K.: Effect of processing on dielectric properties of (0.95)PbZr0.52Ti0.48O3–(0.05)BiFeO3. Appl. Phys. A112, 975 (2013)

  32. Thorsten, L., Granzow, T., Wook, J., Rödel, J.: Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3–PbTiO3BiFeO3–PbTiO3 ceramics. J. Appl. Phys. 108, 014103 (2010)

  33. Palkar, V.R., John, J., Pinto, R.: Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)

  34. Das, S.N., Pradhan, S.K., Bhuyan, S., Choudhary, R.N.P., Das, P.: Modification of relaxor and impedance spectroscopy properties of lead magnesium niobate by bismuth ferrite. J. Electron. Mater. 46, 1637 (2017)

  35. Pradhan, S.K., Das, S.N., Bhuyan, S., Behera, C., Padhee, R., Choudhary, R.N.P.: Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3–PbTiO3 electronic system. Appl. Phys. A Mater. Sci. Process. 122, 604 (2016)

  36. Almond D. P, West A. R.: Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ion. 11 ,57(1983).

  37. Pradhan, S.K., Das, S.N., Halder, S., Bhuyan, S., Choudhary, R.N.P.: Dielectric dispersion and impedance spectroscopy of yttrium doped BiFeO3-PbTiO3 electronic system. J. Mater. Sci. Mater. Electron. 28, 9627 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish K. Samal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Halder, S., Bhuyan, S. et al. Dielectric properties and device performance of (Pb0.7 Dy0.15 Bi0.15)(Fe0.3Ti0.7)O3 electronic material. J Aust Ceram Soc 56, 1617–1624 (2020). https://doi.org/10.1007/s41779-020-00506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00506-9

Keywords

Navigation