Skip to main content
Log in

Role of Salicylic Acid to Improve Physiological Characters and Bio-Chemical Markers of Soybean (Glycine max L.) Under Sea Salt Stress

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) has a vital role in mechanisms of various physiological processes. The foliar application of salicylic acid at (50 and 100 mg/l) was investigated under two concentrations of sea salt (3000 and 6000 ppm) to alleviate the harmful effect of sea salt on soybean plants. This study indicated that salinity treatments significantly decreased growth parameters of soybean plant at 60 and 80 days after sowings with increasing sea salt concentration. Salinity reduced photosynthetic pigments, N, P, K+ contents and crop yield compared with control plants. Proline content increased in plants under salinity and also with SA treatments compared to the control plants. Foliar application of (SA) on plants treated with sea salt led to alleviate the impact of salts on plant growth, photosynthetic pigments, N, P, K+ contents, proline and seed yield. SA at 50 mg/l had an ability to ameliorate the adverse effects of sea salt on plants than 100 mg/l SA. Salinity conditions and SA treatment exhibited differences in the soluble protein patterns by SDS-PAGE technique. Plants treated with SA appeared polypeptide with molecular weights of 97 KD. The effect of salinity stress produced a new protein band with molecular weight of 110 KD which considered as biochemical markers for adapting soybean with salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abazarian R, Yazdani MR, Khosroyar K, Arvin P (2011) Effects of different levels of salinity on germination of four components of lentil cultivars. Afr J Agric Res 6(12):2761–2766. doi:10.4236/jwarp.2012.45033

    Google Scholar 

  • Aghaei H, Ehsanpour AA, Shah AHS, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98. doi:10.1007/s00726-008-0036-7

    Article  CAS  Google Scholar 

  • Aldesuquy H, Baka Z, Mickky B (2014) Kinetin and spermine mediated induction of salt tolerance in wheat plants: leaf area, photosynthesis and chloroplast ultrastructure of flag leaf at ear emergence. Egypt J Basic Appl Sci 1(2):77–87. doi:10.1016/j.ejbas.2014.03.002

    Article  Google Scholar 

  • Almodares A, Hadi MR, Dosti B (2008) The effects of salt stress on growth parameters and carbohydrates content in sweet sorghum. Res J Environ Sci 2(4):298–304. doi:10.3923/rjes.2008.298.304

    Article  Google Scholar 

  • Ananieva K, Malbeck J, Kamínek J, van Staden J (2004) Methyl jasmonate down-regulates endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) seedlings. Physiol Plant 122(4):496–503. doi:10.1111/j.1399-3054.2004.00425.x

    Article  CAS  Google Scholar 

  • AOAC (Association of official agriculture chemists) (2000) Official methods of analysis, 17th edn. Association of official agriculture chemists, Gaithersburg

    Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 6:685–694. doi:10.1016/j.jplph.2006.05.010

    Article  Google Scholar 

  • Arulbalachandran D, Ganesh KS, Subramani A (2009) Changes in metabolites and antioxidant enzyme activity of three vigna species induced by NaCl stress. Am Eur J Agron 2(2):109–116

    Google Scholar 

  • Babar S, Siddiqui EH, Hussain I, Bhati KH, Rasheed R (2014) Mitigating the effects of salinity by foliar application of Salicylic acid in fenugreek. Physiol J 14:1–6. doi:10.1155/2014/869058

    Article  Google Scholar 

  • Babu MA, Singh D, Gothandam KM (2011) Effect of salt stress on expression of carotenoid pathway genes in tomato. J Stress Physiol Biochem 7(3):87–94

    Google Scholar 

  • Bagdi DL, Kakraliya BL, Gathala BMK (2011) Effect of plant growth regulators on physiological, biochemical traits, growth and yield of wheat (Triticum aestivum L.) under salt stress. Agric Sci Dig 24:23–58. doi:10.1080/07352680590910410

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410

    Article  CAS  Google Scholar 

  • Bates LE (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bavei V, Shiran B, Khodambashi M, Ranjbar A (2011) Protein electrophoretic profiles and physiochemical indicators of salinity tolerance in sorghum (Sorghum bicolor L.). Afr J Biotech 10(14):2683–2697. doi:10.5897/AJB09.754

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivations stress. (A review). Ann Bot 91:179–194. doi:10.1093/aob/mcfl18

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1978) Methods of analysis for soils, plant and water, vol 4034. University of California Division Agricultural science, Berkeley, pp 162–165

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101. doi:10.1007/s11738-009-0384-2

    Article  CAS  Google Scholar 

  • Delavari PM, Baghizadeh A, Enteshari SH, Kalantari KHM, Yazdanpanah A, Mousavi EA (2010) The effect of salicylic acid on some of biochemical and morphological characteristic of Ocimum Basilicum under salinity stress. Aust J Basic Appl Sci 4(10):4832–4845

    CAS  Google Scholar 

  • Dolatabadi N, Toorchi M, Shakiba MR, Kazemnia H, Komatsu S (2012) The response and protein pattern of spring rapeseed genotypes to sodium chloride stress. Afr J Agric Res 7(5):755–763. doi:10.5897/AJAR11.1631

    Google Scholar 

  • El Sabagh A, Islam MS, Ueda A, Saneoka H, Barutçular C (2015) Increasing reproductive stage tolerance to salinity stress in soybean. Int J Agric Crop Sci 8(5):738–745

    Google Scholar 

  • El Sabagh A, Omar AE, Saneoka H, Barutçular C (2016) Physiological performance of soybean germination and seedling growth under salinity stress. Dicle Univ J Inst Nat Appl Sci 4(1):6–15

    Google Scholar 

  • El-Khallal SM, Hathout TM, Abdel Raheim A, Ashour A, Kerrit AA (2009) Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plant growth under salt stress. Res J Agric Biol Sci 5(4):380–390

    CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224. doi:10.1007/s10725-005-4928-1

    Article  CAS  Google Scholar 

  • Erasalan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128. doi:10.1016/j.scienta.2007.3.012

    Article  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55. doi:10.1016/j.jssas.2013.01.001

    Google Scholar 

  • Ghassemi-Golezani K, Taifeh-Noori M, OustanSh S, Moghaddam M, Seyyed-Rahmani S (2011) Physiological performance of soybean cultivars under salinity stress. J Plant Physiol Breed 1:1–8

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York, p 680 (paperback)

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736. doi:10.1016/j.jplph.2005.12.009

    Article  CAS  Google Scholar 

  • Hajer AS, Mallbari AA, Al-Zahranani HS, Almaghrabi OA (2006) Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. Afr J Biotechnol 5(10):855–861. doi:10.5897/AJB06.029

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan A, Shinwari ZK, Hussain J, Sohn E, Kang S, Kim Y, Khan MA, Lee I (2010) Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pak J Bot 42(5):3103–3112

    CAS  Google Scholar 

  • Horwitz W, Latimer J (2005) Official methods of analysis of AOAC international. AOAC international, Gaithersburg

    Google Scholar 

  • Idrees M, Naeem M, Aftab T, Khan M, Moinuddin MA (2011) Salicylic acid mitigates salinity stress by improving antioxidant defense system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33:987–999. doi:10.1007/s11738-010-0631-6

    Article  CAS  Google Scholar 

  • Jamil M, Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES (2007) Salinity reduced growth PS II photochemistry and chlorophyll content in radish. Sci Agric 64:1–10. doi:10.1590/S0103-90162007000200002

    Article  Google Scholar 

  • Janda T, Horvath E, Szalai C, Paldi E (2007) Role of salicylic acid in the induction of abiotic stress tolerance. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 91–154

    Chapter  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic response of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492. doi:10.1078/0176-1617-00865

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. doi:10.3389/fpls.2015.00462

    Google Scholar 

  • Kurum R, Ulukapi K, Aydinsakir K, Onus AN (2013) The influence of salinity on seedling growth of some pumpkin varieties used as rootstock. Not Bot Hortic Agrobot 41(1):219–225

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Lee DH, Kim TS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745. doi:10.1078/0176-1617-00174

    Article  CAS  Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One 9(10):e109492. doi:10.1371/journal.pone.0109492

    Article  Google Scholar 

  • Lichtenthaler HK and Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protoc Food Anal Chem (CPFA) pp F4.3.1–F4.3.8. doi: 10.1002/0471142913.faf0403s01

  • Luo QY, Yu BJ, Liu YL (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162(9):1003–1012. doi:10.1016/j.jplph.2004.11.008

    Article  CAS  Google Scholar 

  • Magda AFS, Ahmed MA, Abdallah MSA, Ebtesam A (2013) Physiological role of salicylic acid in improving growth and productivity of barley (Hordeum vulgare L.) under sandy soil conditions. Middle East J Agric Res 2(2):68–75

    Google Scholar 

  • Martinez CA, Maestri M, Lani EG (1996) In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Sci 116:177–184. doi:10.1016/0168-9452(96)04374-9

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  CAS  Google Scholar 

  • Mohamed AHMA (2007) Physiological aspects of mung bean plant (vigna radiate L.) in response to salt stress and gibberellic acid treatment. Res J Agric Biol Sci 3(4):200–213

    Google Scholar 

  • Nakasathien S, Israel W, Wilson F, Kwanyuen P (2000) Regulation of seed protein concentration in soybean by supra-optimal nitrogen supply. Crop Sci 40:1277–1284. doi:10.2135/cropsci2000.4051277x

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811. doi:10.2135/cropsci2004.7970

    Article  Google Scholar 

  • Nikee E, Pazoki A, Zahedi H (2014) Influences of ascorbic acid and gibberellin on alleviation of salt stress in summer savory (Satureja hortensis L.). Int J Biosci 5(4):245–255. doi:10.12692/ijb/5.4.245-248

    Article  CAS  Google Scholar 

  • Noureldin NA, Hassan MZ, Hassan RK, Abdel-Wahab SI (2002) Performance of some soybean genotypes in sandy soil as influenced by some abiotic stresses. I. Effect of vegetative growth Characteristics. Annal Agricultural Sciences. Ain Shams Univ. Cairo. 47:191–207

    Google Scholar 

  • Omami EN, Hammes PS (2006) Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthus spp.). N Z J Crop Hortic Sci 34:33–44. doi:10.1080/01140671.2006.9514385

    Article  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118. doi:10.1093/jxb/erj134

    Article  CAS  Google Scholar 

  • Parveen MAUH, Akhtar J, Basra SMA (2016) Interactive effect of salinity and potassium on growth, biochemical parameters, protein and oil quality of soybean genotypes. Pak J Agric Sci 53(1):69–78. doi:10.21162/PAKJAS/16.4755

    Google Scholar 

  • Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24:679–691. doi:10.1046/j.1365-313x.2000.00912.x

    Article  CAS  Google Scholar 

  • Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L (2011) Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 144:1159–1174. doi:10.1007/s12011-011-9037-6

    Article  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463. doi:10.1146/annurev.pp.43.060192.002255

    Article  CAS  Google Scholar 

  • Sahu GK (2013) Salicylic acid: Role in plant physiology and stress tolerance. In: Rout GR, Das AB (eds) Molecular stress physiology of plants, pp 217–239. doi:10.1007/978-81-322-0807-5_9

  • Saied AS, Keutgen AJ, Noga G (2005) The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci Hortic 103:289–303. doi:10.1016/j.scienta.2004.06.015

    Article  CAS  Google Scholar 

  • Salachna P, Piechocki R, Zawadzińska A, Wośkowiak A (2015) Response of speckled spur-flower to salinity stress and salicylic acid treatment. J Ecol Eng 16:68–75. doi:10.12911/22998993/60456

    Article  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322. doi:10.1016/S0168-9452(02)00415-6

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141. doi:10.1023/A:1022556103536

    Article  CAS  Google Scholar 

  • Souza CAF, Sodek L (2003) Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ Exp Bot 50:1–8. doi:10.1016/S0098-8472(02)00108-9

    Article  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compound to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italic). Physiol Plant 109:435–440. doi:10.1034/j.1399-3054.2000.100410.x

    Article  CAS  Google Scholar 

  • Starck Z (2005) Gospodarka mineralna roślin. In: Koncewicz J, Lewak S (eds) Fizjologia roślin. PWN Warszwa, pp 232–239

  • Stevens J, Senaratna T (2006) SA induces salinity tolerance in tomato, associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regul 49:77–83. doi:10.1007/s10725-006-0019-1

    CAS  Google Scholar 

  • Surabhi GK, Reddy AM, Kumasi GJ, Sudhakar C (2008) Modulations in key enzymes of nitrogen metabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity to salt stress. Environ Exp Bot 64:171–179. doi:10.1016/j.envexpbot.2008.04.006

    Article  CAS  Google Scholar 

  • Szepesi A, Csiszar J, Bajkan S, Gemes K, Horvath F, Erdel L, Deer AK, Simon ML, Tari I (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt and osmotic stress. Acta Biol Szeged 49:123–125

    Google Scholar 

  • Tavakkoli E, Rengasamy P, Mcdonald GK (2010) High concentrations of Na+ and Cl ions soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459. doi:10.1093/jxb/erq251

    Article  CAS  Google Scholar 

  • Younis ME, Hasaneen MN, Kazamel AMS (2009) Plant growth, metabolism and adaptation to stress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and manitol on amino acids, nucleic acids and protein patterns in Vicia faba seedlings? Protoplasma 235:37–47. doi:10.1007/s00709-008-0025-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abd El-Hameid Asmaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmaa, R.A.EH., Ahmed, M.A., Karima, M.G.ED. et al. Role of Salicylic Acid to Improve Physiological Characters and Bio-Chemical Markers of Soybean (Glycine max L.) Under Sea Salt Stress. Int J Environ Res 11, 547–556 (2017). https://doi.org/10.1007/s41742-017-0048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-017-0048-9

Keywords

Navigation